6,051 research outputs found

    Ring-resonator-based wavelength filters

    Get PDF
    Microring resonators (MR) represent a class of filters with characteristics very similar to those of Fabry–Perot filters. However, they offer the advantage that the injected and reflected signals are separated in individual waveguides, and in addition, their design does not require any facets or gratings and is thus particularly simple. MRs evolved from the fields of fibre optic ring resonators and micron scale droplets. Their inherently small size (with typical diameters in the range between several to tens of micrometres), their filter characteristics and their potential for being used in complex and flexible configurations make these devices particularly attractive for integrated optics or VLSI photonics applications.\ud MRs for filter applications, delay lines, as add/drop multiplexers, and modulators will be covered in detail in this chapter, while other applications such as in optical sensing, in spectroscopy or for coherent light generation (MR lasers) are outside the scope of this chapter.\ud This chapter focuses primarily on 4-port microrings, while 2-port devices will play a minor role here and are covered in more detail in Chap. 9. The present chapter starts with design considerations, the functional behaviour, and key characteristics of a single microring resonator and continues with the design of cascaded MRs allowing the implementation of higher order filters. Finally, complex devices like add-drop filters, tuneable dispersion compensators, all-optical wavelength converters, and tuneable cross-connects are treated.\u

    The Beauty of Symmetry: Common-mode rejection filters for high-speed interconnects and balanced microwave circuits

    Get PDF
    Common-mode rejection filters operating at microwave frequencies have been the subject of intensive research activity in the last decade. These filters are of interest for the suppression of common-mode noise in high-speed digital circuits, where differential signals are widely employed due to the high immunity to noise, electromagnetic interference (EMI) and crosstalk of differential-mode interconnects. These filters can also be used to improve common-mode rejection in microwave filters and circuits dealing with differential signals. Ideally, common-mode stopband filters should be transparent for the differential mode from DC up to very high frequencies (all-pass), should preserve the signal integrity for such mode, and should exhibit the widest and deepest possible rejection band for the common mode in the region of interest. Moreover, these characteristics should be achieved by means of structures with the smallest possible size. In this article, several techniques for the implementation of common-mode suppression filters in planar technology are reviewed. In all the cases, the strategy to simultaneously achieve common-mode suppression and all-pass behavior for the differential mode is based on selective mode-suppression. This selective mode suppression (either the common or the differential mode) in balanced lines is typically (although not exclusively) achieved by symmetrically loading the lines with symmetric resonant elements, opaque for the common-mode and transparent for the differential mode (common-mode suppression), or vice versa (differential-mode suppression).MINECO, Spain-TEC2013-40600-R, TEC2013-41913-PGeneralitat de Catalunya-2014SGR-15

    A fundamental limit on the performance of geometrically-tuned planar resonators

    Get PDF

    Distortion mechanisms in varactor diode-tuned microwave filters

    Get PDF

    Miniaturised bandpass filters for wireless communications

    Get PDF
    The wireless industry has seen exceptional development over the past few decades due to years of sustained military and commercial enterprise. While the electromagnetic spectrum is becoming increasingly congested, there is a growing tendency to strive for higher bandwidths, faster throughputs, greater versatility, compatibility and interoperability in current and emerging wireless technologies. Consequently, an increasingly stringent specification is imposed upon the frequency utilization of wireless devices. New challenges are constantly being discovered in the development and realization of RF and microwave filters, which have not only sustained but fuelled microwave filter research over the many years. These developments have encouraged new solutions and techniques for the realization of compact, low loss, highly selective RF and microwave bandpass filters. The theme of this dissertation is the realization of planar compact performance microwave and RF bandpass filters for wireless communication systems. The work may be broadly categorised into three sections as follows. The first section presents a novel compact planar dual-mode resonator with several interesting and attractive features. Generally, planar microwave dual-mode resonators are known to half the filter footprint. However, it is found that the proposed resonator is capable of achieving further size reductions. In addition the resonator inherently possesses a relatively wide stopband as the lowest spurious harmonic resonance is observed at thrice the fundamental frequency. Properties of this resonator, such as these and more are explored in depth to arrive at an accurate electrical equivalent circuit, which is used as the basis for high order filter design. The application of these resonators in the design of bandpass filters is the subject of the second section. A general filter design procedure based on the equivalent circuit is presented to assist the design of all-pole filters. Alternatively, it is shown that generalised Chebyshev filters with enhanced selectivity may be developed with cross coupled resonator topologies. The discussions are supplemented with detailed design examples which are accompanied by theoretical, simulated and experimental results in order to illustrate the filter development process and showcase practical filter performance. The third section explores the possibility of employing these resonators in the development of frequency tunable bandpass filters. Preference is given to varactor diodes as the tuning element due to the numerous qualities of this device in contrast to other schemes. In particular, interest is paid to center frequency tuned filters with constant bandwidth. Tunable filters constructed with the dual-mode resonator are shown to have a relatively wide tuning range as well as significantly higher linearity in comparison to similar published works. In line with the previous section, experimental verification is presented to support and supplement the discussions
    corecore