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A Fundamental Limit on the Performance of
Geometrically-Tuned Planar Resonators

Adham Naji, Member, IEEE, Paul Warr, Mark Beach, Member, IEEE and Kevin Morris

Abstract—Geometric frequency tuning in planar electromag-
netic resonators is common in many applications. It comes,
however, at a penalty in the resonance quality, Q0. The lit-
erature traces the causes of such penalty often in terms of
the shortcomings in the added elements and materials, which
were used to achieve the tuning. In this paper, however, it is
shown that another underlying source of quality degradation
exists at the fundamental geometric level. This source, unlike
other added sources of degradation during tuning, will always
exist (even before tuning takes place) and will rely on the
‘modal areas’ of the geometric modifications made to host
the tuning mechanism. It hence forms an upper bound to the
performance that can be achieved from a geometrically-tuned
planar resonator, carries an important insight to resonator design
in general and significantly helps understanding the problem of
geometric tuning in particular. We present the electromagnetic
theory behind this limit and canonically demonstrate it using
practical microwave resonator examples. The theory, Finite-
Element Method simulation and experiment results are presented
and good agreement is observed. It is shown that incorporating
such understanding into the design process of tunable planar
resonators can help optimize their performance against a given
set of design requirements. Furthermore, the presented theory
provides a useful electromagnetic model as a tool for estimating
the Q0 for geometrically-modified or irregular metal patches and
planar resonators in general, to assist analysis and design at any
wavelength or application. The theory also asserts that, under a
given mode, a planar resonator will always have its maximum
Q0 before introducing any internal subtractive geometric modi-
fications (e.g., cuts, apertures or slits) to its original shape.

Index Terms—Tunable Resonators, Tunable Filters, Unloaded-
Q, Planar Resonator, Frequency Tuning, Microstrip Resonator,
Design Optimization, Millimeter Resonators, Applied Electroma-
gentism.

I. INTRODUCTION

TUNING electromagnetic resonators to change their res-
onant frequencies is desirable and common in many

fields and applications. As resonators usually form the build-
ing blocks of many physical systems, such as various filter
structures, antennas, optical and imaging devices (to mention
a few), their performance is often critical to the overall system
operation [1]–[6]. A classic problem that normally accompa-
nies resonator tuning attempts, however, is the degradation
of resonance quality as the tuning takes place. Often such
degradation worsens as the tuning range widens with respect
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to the initial point of resonance, at which the structure was
designed to be optimal [7].

A common method of tuning (discussed below) is to change
the geometric shape of the resonating structure in a given
material, as to resonate at a different frequency (or wave-
length). Yet, all known attempts that use tuning elements to
help the structure adapt in shape are known to have degrading
effects on the quality of resonance. As a result, focus is
usually given to optimizing these added tuning elements. In
this paper we pay attention to another, more-inherent source of
degradation, which is the geometrical modification itself and
its specific design, which is found to dictate key performance
limits, enhance the understanding of the tuning problem and
carry significant insight to the design aspects of tuned planar
resonators in general. We discuss the theory behind this
important source and demonstrate it with practical examples.

To demonstrate this general principle in a feasible manner,
we apply the theory developed herein onto planar resonators
in the microwave region. In this region the device sizes that
correspond to the resonating wavelengths, using conventional
materials, have often been found useful for radiating power
or storing electromagnetic energy without significant loss, in
addition to being physically convenient to handle and easy to
fabricate [8]–[10]. In fact, it is interesting here to note that
many fields in physics and engineering that deal with wave
phenomena at various scales, such as optics, acoustics, radio
engineering, super-resolution microscopy, imaging, metama-
terials and transformation optics, have benefited from the
mutual resemblance with microwave systems to demonstrate
or share common principles (e.g., [1], [4], [9]–[14]). This fact
also stems from the canonical generality (and complexity) of
wave theory (from Maxwell’s equations) at the microwave
frequencies [13].

II. GEOMETRIC TUNING

Since, in a given material, a resonant structure is defined by
its physical dimensions, its function is generally attributed to
its geometry. Due to this fact, electromagnetic or microwave
systems and circuits are often described as distributed (as
opposed to lumped) in nature [1], [4]. When it is desirable
to make such a system tunable in frequency (f = υ/λ), it is
then implied that a mechanism must be found to modify its
geometry (to change the value of λ) or its material properties
(to change the value of υ), relative to one another. Where υ
is the velocity of propagation and λ is the resonant wave-
length. This change will result in a structure that resonates
at different frequencies. Such attempts for achieving tuning
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Fig. 1: (a) A canonical example of geometric tuning in a
circular disk and (b) its extension into multiple (four) layers.

can be seen in abundance in the literature. Although changing
the material properties (e.g., ferroelectrics) is used feasibly
under some scenarios, the second method that uses geometric
tuning is far more applicable and more flexible. This fact
is also reflected in the literature on microwave resonators
[6], [7], [9], [13], [15]. (Common examples include the use
of PIN diode switches or Micro-ElectroMechanical System
(MEMS) switches, which switch between different geometric
configurations, providing different overall apparent shapes of
the resonator.) The term ‘geometric tuning’, in this paper,
refers to any shape modifications applied to the distributed face
of the planar resonator (along its plane) to change its apparent
shape from its original condition. We do not consider, hence,
tuning mechanisms that utilize lumped tuning techniques, such
as varactors (which tune lumped capacitance, not shape) or
switches that shunt across the substrate (rather than along
the resonator’s surface plane). Since the discussion herein is
about pre-defined resonator shapes, its also implied that the
introduced geometric modifications are in fact subtractive (not
additive) to the original shape and occur within its original
boundaries (i.e., internal). For example, apertures or slits inside
a patch resonator are considered, but not the addition of a
metallic extension outside the patch’s original contour.

When microwave resonators are geometrically tuned in
such a manner, one tangible and consistent problem is al-
ways observed: the degradation in resonance quality, which
accompanies the tuning. Although the exact amount of quality
degradation (compared to its value before tuning) is dependent
on the particular scenario of implementation, its sources have
generally been traced back in the literature to a few key limita-
tions [7], [16]–[18]: imperfections in the utilized materials or
techniques, introduced losses and distortion due to switching
elements and, most importantly, increased impedance mis-
match with other parts of the system due to the introduction
of tuning. The last cause, in particular, stems from the fact
that matching is an inherently frequency-dependent process.
Hence, usually a change in resonant frequency will imply
losing the previously-optimized electromagnetic coupling that
once existed between the resonator and its feeding source (or
connected load) before tuning. This would cause a system’s
impedance to mismatch, unless some complex techniques are
added to compensate for this effect.

III. INHERENT Q0 LIMIT

Given an initially fixed structure that resonates at a given
frequency f0, its resonance quality at f0 will degrade merely
due to any geometric modifications that are applied internally
to that structure, even if the techniques used for achieving
the geometric tuning are of ideal characteristics and the
impedance matching to the system is maintained. Having non-
ideal tuning techniques or imperfect material characteristics
will only add further degradation to this upper bound (limit)
on performance. Furthermore, this degradation in quality will
occur due to the mere installation of the subtractive geometric
tuning mechanism to the resonator’s face, even if tuning has
not yet taken place (i.e., at the same frequency). This point
indicates that the initial structure prior to these modifica-
tions will always have the maximum Q0, and any internal
modification will decrease Q0, even if tuning is not sought.
Using a simple method of calculation, it is shown that Q0

will degrade depending on the relative locations and sizes of
the geometric modifications within the surface of the structure
and as seen by the resonating mode. The total effect is called
the ‘modal-area’ of these modifications, which is the sum of
such areas from the perspective of the resonant mode (Section
IV). This result carries important implications to different
aspects regarding the design of tunable resonators, or any other
electromagnetic structure that is related to (or inspired from)
such resonant structures, in the different fields of physical
sciences and engineering. Examples include structures that
carry geometric patterns, random defects, or even periodic and
fractal geometric effects.

IV. THEORY

We consider one of the most common (and convenient)
types of modern resonating structures, the planar structure,
where geometric modifications can be applied internally to a
metallic surface of a resonator. The metallic surface is typically
lithographically-etched or machined (depending on size and
accuracy) on a dielectric substrate, which lies above a ground
plane. The resonance quality is succinctly expressed using the
unloaded-quality factor Q0 at resonance. This metric is very
powerful for characterizing the performance of the resonator
itself, rather than the system parts coupled to it. Effectively, by
using Q0, the effects of any impedance matching or coupling
coefficients are not taken into consideration [1], [4], [19], [20].

As an example, consider the canonical case of a metallic
disk patch of radius a, on a substrate with a complex relative
permittivity ε′r − jε′′r and height h, positioned above a ground
plane (a microstrip structure). Geometric tuning can be applied
for tuning the resonant frequency of this resonator by making
a narrow (r2 − r3 = ∆r << λ) annular aperture (slit) in
the metallic patch, and then bridging this aperture with links
(switches), which are removable, as in Fig. 1(a). The operation
is simple, when the links are present, the structure appears to
be one solid disk with radius a; when the links are removed, it
appears as a ring with radii a and r2 and a separate smaller disk
with radius r3. The two cases offer two different frequencies,
one for the whole disk and one for the ring. Note that this can
be further iterated into multiple layers of rings, to give more
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Fig. 2: A general arbitrary planar resonator with arbitrary
geometric modifications applied to it.

tuning steps and more complex structures, as in Fig. 1(b) for
example. We wish to ascertain whether Q0 degrades due to
these modifications, even if those links were chosen to be
ideal elements, and before any tuning. That is, even when the
links are present and the structure resembles its original solid
form, with radius a and at the same resonant frequency f0, we
would like to know if Q0 will degrade and, if so, according
to what law. In effect, the links are chosen to be metallic
contacts made from the same metal as the original patch,
with the aperture etched away photolithographically. This will
provide the ideal links for the comparison of the performance
before and after the addition of this tuning mechanism (all
at f0). Note that the use of the unloaded-Q, on the other
hand, automatically drops from consideration any contribution
in quality degradation from the system coupling or impedance
mismatching.

Before analyzing this canonical example, however, we first
consider the general arbitrary case of Fig. 2.

The unloaded-Q is known in general as

Q =
ω · average EM-stored energy

lost power
=
ω(We +Wm)

Pl
, (1)

where ω is angular frequency (= 2πf ), We and Wm are the
average stored electric and magnetic energies, respectively,
and Pl is the total lost power in the structure. At resonance,
ω = ω0, it is known that We becomes equal to Wm. Also,
Pl will comprise different mechanisms of loss; mainly, power
loss in the imperfect dielectric (due to ε′′r ), Pld , power loss due
to conductor surface resistance (Rm), Plc , and power lost to
radiation, enclosure, or other losses and stray couplings from
the edge of the resonator, Plr . Hence, Q at resonance becomes

Q0 =
2ω0We

Pld + Plc + Plr
. (2)

Usually the axial thickness of the substrate (along axis
z) is relatively much smaller than its cross-sectional area
(planar area in the xy-plane) and λ, and no field variations
are considered along the z-axis. Therefore, modes that usually
dominate such planar structures are Transverse Magnetic (TM)

modes, denoted TMz
mnp, with p = 0, while m represents the

variations along x and n the variations along y. Prior to the
application of geometric tuning to this general structure, the
energy stored in the resonator’s volume, V0, the power lost
in its dielectric, and the power lost along both its conductive
surfaces, each with area S0, are

We =
ε0ε
′
r

4

∫
V0

E · E∗ dV =
ε0ε
′
rh

4

∫
S0

|E|2 dS (3)

Pld =
2ω0ε

′′
r

ε′r
We (4)

Plc = 2
Rm
2

∫
S0

J · J∗ dS

= Rm

∫
S0

|H|2 dS = Rm
ε0ε
′
r

µ0µr

∫
S0

|E|2 dS (5)

since,
∫
V

dV ≡
h∫
0

dz
∫
S

dS = h
∫
S

dS, and at resonance we have

µ0µ
′
r

4

∫
V

H ·H∗dV = Wm = We =
ε0ε
′
r

4

∫
V

E · E∗dV

⇒ |H|2 =
ε0ε
′
r

µ0µr
|E|2. (6)

Where E, H and J are the electric field, magnetic field,
and current density, respectively, with boldface symbols rep-
resenting vectors.

It is important to note that the quality factor is defined per
resonant frequency (i.e., at one distinct mode, or a number of
degenerate modes, where applicable). Therefore, one can base
all the calculations on the original resonant angular frequency,
ω0, of the original structure. Once the geometric modifications
are applied (i.e., the arbitrary apertures in Fig. 2 are made),
the operating mode in the resonator encounters additional
discontinuities in its path. These can be clearly observed (or
envisaged) by considering the paths of the surface currents at
the top metallic patch. Perturbation theory [2], [4], [13] implies
that, as a first approximation, the disturbance negligibly affects
the nature of the propagating mode, as the modifications
remain much smaller than the operating wavelength, λ. Thus,
the original dominant mode remains dominant (see for ex-
ample the mode distributions in Fig. 3). The discontinuities,
however, have an effect on the spacial prevalence of that mode,
compared to its original state. Specifically, the modal surface
currents will no longer pass through the gaps (apertures) in
the metallic patch, and the electromagnetic field guided within
the substrate underneath it will behave in harmony with this
and with the new setup of boundary conditions. In effect,
apart from some fringing field’s margin near the edges of
the apertures, the field now is discouraged from occupying
or delivering any net electromagnetic power into the volumes
directly beneath the apertures under the current mode; as can
be readily found using the Poynting’s theorem for average
power flow into such volumes. These topical effects, which
can be seen collectively as directing the surface currents into
passing through the links bridging the apertures, are merely
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the net effect of the overall account that involves higher
and/or evanescent mode excitations in the vicinity of the
introduced discontinuities. The original mode loses some of
its energy (∆We) feeding such mode conversion, regardless
of whether such modes would be supported further by the
overall structure. The amplitude of the original mode’s field
will thus be reduced by some conversion factor ξ ∈ [0, 1], due
to encountering the discontinuities. The loss of amplitude will
feed other modes, whose emerging amplitudes can be found
using Lorentz’s Reciprocity Theorem [2]–[5]. This gives new
power loss terms (dielectric, conductors, and radiation losses)
from such modes as

Plnew =
∑
t

Pld,new +
∑
t

Plc,new +
∑
t

Plr,new = Pl ·ξ2, (7)

where t is an arbitrary index that covers all the new modes
considered from mode conversion. The dominant mode will
have a new Q0 value, donated Q̆0, as follows

Q̆0 = 2ω0
W̆e

P̆l
= 2ω0

We −∆We

Pl −∆Pl + Plnew
, (8)

where ∆Pl = Pl · ξ2,

∆We =
ε0ε
′
r

4

N∑
j=1

∫
∆Vj

|E|2dV,

N denotes the total number of apertures or links, ∆Vj denotes
the volumes that lie directly beneath the arbitrary apertures
(each indexed with an index j), and ∆Pl is the reduction in the
original lost power due to the reduction in the field amplitude
(ξ).

Since the reference in equation (8) is to the original mode,
any power that passes via mode conversion to other modes
is considered lost power from this mode. Therefore, although
the losses Pl have reduced by some amount (ξ2) due to the
reduction in amplitude of the field, there is also an increase
in wasted power elsewhere by the same amount (ξ2). Thus, in
total, ∆Pl ≈ Plnew and P̆l ≈ Pl. The reduced amplitude of
the field has thus affected mainly the stored energy under that
mode (by ∆We), rather than the losses Pl. Then

Q̆0 = 2ω0
We −∆We

Pl
= 2ω0

δ ·We

Pl
, (9)

where: ]0, 1] 3 δ =
We −∆We

We
,

because having δ equal to zero would mean that the resonant
structure has vanished (an inadmissible value).

This definition leads to

⇒ δ =

∫
V0

|E|2dV −
N∑
j=1

( ∫
∆Vj

|E|2dV

)
∫
V0

|E|2dV

= 1−

N∑
j=1

( ∫
∆Sj

|E|2dS

)
∫
S0

|E|2dS
= 1− γ, (10)
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Fig. 3: Examples of different ∆r gaps applied to the circular
resonator: (a) ∆r=0 mm, (b) ∆r=1 mm, (c) ∆r=2 mm, (d)
∆r=3 mm, (e) ∆r=4 mm, (f) ∆r=5 mm; all on a Duroid
substrate with ε′r ≈ 6.15, ε′′r ≈ 0.0068, h = 1.27 mm, α = 5◦,
N = 36 links, r1 = a = 12 mm, r2 = 9.5 mm, 0.5 oz. of
Copper cladding for both ground plane and resonator face,
and each structure is enclosed inside an Aluminum enclosure
with dimensions 50 mm × 50 mm × 31 mm. The lower
part of each tuning step shows the normalized E-field modal
distribution (color scale between red (highest value) and blue
(lowest value)). Note how the general features of the dominant
mode are still maintained across the structure.

where γ is called the normalized modal-area of the modifica-
tions.

This important result does not only provide a simple the-
oretical method for approximately evaluating Q̆0 after the
introduction of geometric modifications (for tuning or other
purposes), but also shows that Q̆0 will always be less than
Q0, as Q̆0/Q0 = δ. Furthermore, it shows that the rate of
degradation in Q0 as the modifications on the resonator’s
surface increase (∂δ/∂S) will depend on the spatial variations
(i.e., as a function f(x, y)) of the mode and on the size and
position of these modifications with respect to that mode. The
curve of Q0 as a function of these modifications will thus be
always rolling down, with its rate of decrease depending on the
specific implementation in hand. This can also provide insight
into how to build geometrically-tuned resonators in an optimal
manner, for any specific wavelength, spectrum, or application.
Indeed, some applications might intentionally require wider
bandwidths (lower Q0) from the same resonator and opt to
choose their geometric tuning mechanism as to give Q0 curves
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Fig. 4: An indicative photograph of case (f) in Fig. 3 with
∆r=5 mm; the Aluminum enclosure (dimensions 50 mm ×
50 mm × 31 mm) is removed in this photograph.

that roll down quicker with the size, shape or position of
the made modifications (and vice versa). Furthermore, this
result provides a useful electromagnetic model as a tool for
estimating Q0 for geometrically-modified or irregular metal
patches and resonators in general, to assist analysis and design
for any wavelength or application.

The characteristic reduction in Q0 due to geometric mod-
ifications can be physically explained by the structure’s de-
creased ability to store electromagnetic energy, although its
effective surface currents and losses are approximately fixed.
Since these currents/losses at microwave frequencies are often
attributed to the structure’s surfaces, whereas the energy stor-
age is attributed to the structure’s volume [21], the net effect
of geometric tuning can then be approximately viewed as an
action that affects the structure’s apparent volume at a much
larger rate than affecting its surface area. This causes the ratio
between the effective volume and effective surface area of the
resonator to decrease and a degradation in Q0 is observed.

Note that the relatively small volumes of the links (switches)
in practice will be negligible in terms of storing any electro-
magnetic energy (if any was being offered in their vicinity).
This is particularly the case in the geometric modifications
considered here, where these tuning elements are at the surface
plane of the resonator (not shunt) and since their forward stray
capacitance and inductance values are usually negligibly small.

V. A CANONICAL EXAMPLE

To indicate how this method can be implemented, we now
apply these findings onto the canonical example of Fig. 1(a).
The circular structure was chosen for its attractive features
[22]–[24] of having less fringing losses and discontinuities,
due to its smooth shape (compared to rectangular shapes, for
example). In this case, we consider the field of the dominant
mode TMz

nφmr0 = TMz
110, which is given in a cylindrical

frame of coordinates as

Ez = CJ1[kr]cos(φ), (11)

Hφ =
−jCk
k0Z0

J ′1[kr]cos(φ), (12)

Hr =
−jC
k0Z0r

J1[kr]sin(φ), (13)

where, j =
√
−1, C is an arbitrary amplitude constant, Jq[.]

is Bessel’s function of the first kind and of degree q, J ′q[.] is
the derivative of Jq[.] with respect to its argument, k is the
wavenumber, k0 = k/

√
ε′r, Z0 is the wave impedance (120π),

and (r, φ, z) are the cylindrical coordinates frame’s variables.
In this case we find, after some mathematical manipulation

[4], that the pre-tuning values are

We = |C|2 ε0ε
′
r

4

∫ h

0

∫ 2π

0

∫ a

0

J2
1 [kr]cos2(φ)rdrdφdz

= |C|2 πε0ε
′
rh

4
a2

2

{(
1− 1

k2a2

)
J2

1 [ka]
}

(14)

Pld =
ω0ε
′′
r ε0

2

∫
V

E · E∗dV =
2ωε′′r
ε′r

We (15)

Plc = |C|2 Rm
k2

0Z
2
0

(π)
∫ a

0

{
k2J ′21 [kr] +

1
r2
J2

1 [kr]
}
rdr

= |C|2 Rmπ
k2

0Z
2
0

k2 a
2

2

(
1− 1

k2a2

)
J2

1 [ka]. (16)

while the value of Plr is dependent on the enclosure or
surroundings of the resonator (implementation-dependent).
Applying equation (10) to this case, summing over all aper-
tures, and after some mathematical manipulation, we get the
degradation due to tuning as

γ =
N∆φ

2π︸ ︷︷ ︸
angular ratio

[
r2

2

{
J ′21 [kr] +

(
1− 1

k2r2

)
J2

1 [kr]
}]r2
r3

a2

2

(
1− 1

k2a2

)
J2

1 [ka]︸ ︷︷ ︸
radial ratio (non-linear)

. (17)

Where ∆φ is the angular span of each aperture between two
adjacent links.

In one particular implementation (see Figs. 3, 4 and 5),
the calculated Q̆0 from the theory above was compared
with both Finite-Element Method (FEM) computation (using
the HFSS full-wave electromagnetic field solver [25]) and
laboratory experiments. The results exhibit good agreement
within the fabrication and FEM-numerical tolerances (circa
±3% and ±1% maximum error in f0, respectively) and within
the marginal errors expected due to the complex nature of
the fringing fields in the vicinity of each aperture. Practical
methods that use non-ideal components to achieve the tuning
(e.g., RF switches) will always produce Q0 values which are
below this fundamental limit and within the ‘admissible zone’
shown in Fig. 5.

In the theoretical model above, f0 was continuously recal-
culated (refined) for each value of aperture spacing in ap-
preciation of Cavity Perturbation Theory [1], which accounts
for slight shifts in f0 to maintain the electric/magnetic stored
energies stand-off whilst the structure is perturbed. Also, the
complex internal fringing in the radial direction over the
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Fig. 5: A comparison between the theory predictions (red), the
FEM simulation (green), and the experimental (blue) results
for the circular resonator using: an aluminum enclosure with
dimensions 50 mm × 50 mm × 31 mm, copper metallic
resonator and ground plane (0.5 oz.), ε′r ≈ 6.15, ε′′r ≈ 0.0068,
h = 1.27 mm, α = 5◦, N = 36 links, r1 = a = 12 mm,
r2 = 9.5 mm, and r3 as variable. The upper bound forms the
maximum of the admissible zone, where the practical values
of Q0 will be in any practical geometric tuning (after further
degradation is added due to the materials or the elements
used to achieve the tuning). Fabrication and FEM-numerical
tolerances resulted in maximum errors circa ±3% and ±1%,
respectively.

apertures was approximately considered in terms of ‘effective’
gap sizing. Since the usual model that calculates such effects
[22], [26] is actually linear with gap sizes but for simpler cases
of lines, the method used in this model was to consider the
effective-ratio for the largest value of gapping (∆r) and then
map it linearly onto the rest of the gapping values to give a
reasonable approximation of the fringing.

The measured data for Q0 were deduced from the measure-
ments of the single-port reflection scattering parameters, using
the standard method in [20]. This method relies on measuring
the loaded quality factor, Q, from the S11 curves and the
coupling co-efficient from both the S11 curves and the Smith
chart locii at resonance. The found coupling co-efficient is
then de-embedded from the value of the loaded Q, to give the
unloaded quality factor, Q0. The Vector Network Analyzer
37397C from Anritsu was used to measure the S parameters,
after calibrating it using the standard Open-Short-Terminated-
Thru procedure.

Note that had the geometric tuning to this resonator been
done with a different style, position or shape of geometric
modifications, the rate of decrease of the Q0 curve would have
been different. For example, another test was carried out on
this structure, but with a varying number of links (N = 4,
12, 36). The theory predicts that the reduction in the upper
limit is as shown in Fig. 6. Figs. 7 and 8 show the agreement
between the predicted and measured results for N = 12 links
and N = 4 links, respectively. The theory can thus be useful
in advising on the number of links required for a given set
of design requirements (without using too many or too few
links).

Pre-tuning Q0 (reference)

N = 36 links

N = 12 links

N = 4 links

0 1 2 3 4 5
Dr HmmL200

250

300

350

400

450

500

550

Q0

∆r (mm)

Q0

1

Fig. 6: A comparison between the theory predictions for three
cases with different number in links (N = 4, 12, 36 links), of
the circular resonator. For each case, the quality reduced as
a function of increased gapping (∆r), but the cases with less
number of links exhibited more degradation. This provides an
insight into how to choose the number of links (N ) correctly to
meet a given set of requirements. The setup used an aluminum
enclosure with dimensions 50 mm × 50 mm × 31 mm, copper
metallic resonator and ground plane (0.5 oz.), ε′r ≈ 6.15, ε′′r ≈
0.0068, h = 1.27 mm, α = 5◦, N = 36, 12, 4 links, r1 = a =
12 mm, r2 = 9.5 mm, and r3 as variable.

Pre-tuning Q0 (reference)at ~2.8 GHz

at ~2.8 GHz
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at ~2.8 GHz

at ~2.7 GHz
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Fig. 7: A comparison between the theory predictions (red), the
FEM simulation (green), and the experimental (blue) results
for the circular resonator using: an aluminum enclosure with
dimensions 50 mm × 50 mm × 31 mm, copper metallic
resonator and ground plane (0.5 oz.), ε′r ≈ 6.15, ε′′r ≈ 0.0068,
h = 1.27 mm, α = 5◦, N = 12 links, r1 = a = 12 mm,
r2 = 9.5 mm, and r3 as variable. The upper bound forms the
maximum of the admissible zone, where the practical values
of Q0 will be in any practical geometric tuning (after further
degradation is added due to the materials or the elements
used to achieve the tuning). Fabrication and FEM-numerical
tolerances resulted in maximum errors circa ±3% and ±1%,
respectively.

Fig. 8 also shows how, indeed, the imperfections of a com-
mercial switching element (in this case, PIN diode BAP50-03
from NXP Inc. [27], which was biased to forward resistance
of approximately 2 Ω and has a package size circa 2 mm ×
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Fig. 8: A comparison between the theory predictions (red) and
the experimental (blue) results for circular resonator using only
4 ideal links. Also shown is a measured value of Q0 that falls
within the admissible zone when the 4 links are replaced with
commercial PIN diodes BAP50-03 from NXP Inc. [27], which
were biased to forward resistance of approximately 2 Ω and
has package size circa 2 mm × 1.2 mm × 1 mm. The setup
also used an Aluminum enclosure with dimensions 50 mm ×
50 mm × 31 mm, copper metallic resonator and ground plane
(0.5 oz.), ε′r ≈ 6.15, ε′′r ≈ 0.0068, h = 1.27 mm, α = 5◦,
N = 4 links, r1 = a = 12 mm, r2 = 9.5 mm, and r3 as
variable. Fabrication tolerances resulted in maximum errors
circa ±3%.

1.2 mm × 1 mm) drive Q0 to fall in the admissible zone,
much below the upper limit, as expected. The biasing of these
practical switches was designed to introduce a minimum of
disturbance to the electromagentic field in the vicinity of the
resonator. Thus, it was chosen that the bias wires be extended
along the electric-wall mid-axis, which runs through the disk
and is perpendicular to the line along the feedline (as the local
maxima of the |E| field occur near the feed edge). Fig. 9
shows the mode distribution and the electric-wall. According
to Faraday’s law (Maxwell’s first equation) in its integral form∫

S

∇×E · dS =
∮

Contour

E · dl =
∫
S

−∂B

∂t
· dS, (18)

one can observe that the electromotive force would only be
induced along these bias wires if the magnetic flux (B) could
cross past its circuit loop (normal to the wire), which is an
absent condition when the wires are aligned along the electric-
wall. Experiments that used this setup (see Fig. 10a) confirmed
this by observing only a slight reduction in Q0 (less than 2%)
due to these wires. On the other hand, if the wires were aligned
along the magentic-wall, much more coupling would occur and
Q0 would reduce significantly (by circa 20%).

To indicate how the inherent quality of a resonator can
translate into performance parameters within other encom-
passing systems, such as antennas or filters, 4 dual-mode
resonators were designed to give, at different ∆r gap sizes, the
same frequency, bandwidth and VSWR (matching). This was
achieved by adjusting some design parameters in the layout
shown in Fig. 11 among the 4 cases of ∆r = 0, 1, 3, 5 mm.

Electric

wall

E

E

Js

H

y

x

H

JsJs

H

feed

(a) (b)

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

Fig. 9: The alignment of the bias-wires along the electric-
wall of the structure, parallel to the magnetic flux, will result
in the minimum induction of microwave current along the
wires, according to Faraday’s law (equation (18)). Note that
the electric-wall is perpendicular to the feedline axis, which
tends to pull the maxima of the |E| field towards the feed
position.

Bias wires aligned

along the electric-wall

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

Fig. 10: Realizations of (a) the circular resonator with 4 links
using the BAP50-03 PIN diodes from NXP and with bias-wires
(each 0.25 mm in diameter) aligned along the electric-wall; (b)
a square patch resonator example with ideal links; and (c) a
line resonator example with ideal links.

Since the definition of Q is only valid and meaningful at a
specific frequency, and since the coupling conditions (affecting
matching and bandwidth) were also similar across the 4 cases,
varying ∆r among these resonators to reduce the Q0 (as in
Fig. 3) should result in worsening Insertion Loss (IL). Indeed,
Fig. 12 shows FEM results that verify these expectations, and
show that a reduction in Q0 from 220 to 141, which is around -
1.9 dB, corresponded to approximately 2 dB degradation in IL.
The reduction in Q0 at the resonator level has thus translated to
degradation in IL at the filter system level. Note that coupling
had to be critical as to bring the two degenerate modes of
resonance under one frequency peak. Also note that the feeds
were embedded within ‘pocket’ regions within the patch, near
the edges, to increase the coupling to the required level and
transfer sufficient energy to the resonator from the source (Fig.
12).

VI. OTHER PRACTICAL EXAMPLES

This section briefly shows how one can also apply the
findings of this theory to other resonator shapes, which further
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Fig. 11: The layout of the basic structure of the four dual-
mode filters realized. This design was iterated 4 times, with
each time having a different size of gapping: ∆r = 0, 1, 3,
5 mm. The other parameters, namely, d1, d2 and r1, were
re-adjusted at each case, so that all the cases would produce
the same frequency (required by the definition of Q0), the
same bandwidth and matching (S11 values) to allow for their
Insertion Loss (IL) comparison. With ∆r = 0 mm: d1 = 0.15
mm, d2 = 2.7 mm and r1 = 12 mm. With ∆r = 1 mm: d1 =
0.18 mm, d2 = 2.65 mm and r1 = 11.96 mm. With ∆r = 3
mm: d1 = 0.165 mm, d2 = 2.3 mm and r1 = 11.35 mm. With
∆r = 5 mm: d1 = 0.162 mm, d2 = 1.9 mm and r1 = 10.43 mm.
The setup also used an Aluminum enclosure with dimensions
50 mm × 50 mm × 31 mm, copper metallic resonator and
ground plane (0.5 oz.), ε′r ≈ 10.2, ε′′r ≈ 0.0235, h = 0.635
mm, α = 5◦, N = 36 links. All dimensions on the layout are
in mm.

validates the generality of the used model. Two examples are
considered: a square patch resonator and a line resonator (with
its width much smaller than the wavelength). The geometric
modifications applied follow the same principles developed
in the previous sections. For the line resonator, the gaps are
bridged when the links are present, maintaining the original
resonator frequency, f0. When the links are orderly removed
(starting from the left side in Fig. 10c or Fig. 13b), the length
of the line will be shortened, which will change its resonant
frequency, f0, to higher values.

Figs. 10b-c, 13 and 14 show the realization, layouts and the
performances of the square and line resonators, respectively.
Selected gap sizes (0, 1, 2, 4 mm) are shown for each
case, with both theory predictions and measurement results
compared. It is seen that good agreement exist between the
results, within the fabrication tolerances. The only difference
in the model application to these two cases, compared to the
circular example, is that the normalised modal area, γ, under
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Fig. 12: FEM results for the 4 dual-mode filters designed in
Fig. 11. Observed is the degradation in IL at the filter level,
due to the reduction in Q0 at the resonator level.

the dominant mode in equation (10) is now being calculated
over the sum of aperture areas (Si) which are rectangular
in shape. The dominant modes that traverse these resonators
(TM100 or TM010 for the square and TM100 for the line) are
well-known and take the shape of half-sinusoids.

VII. CONCLUSION

Planar microwave and electromagnetic resonators which
are customarily tuned geometrically often face performance
degradation, expressed in reduced Q0 values. Although this
degradation is partly due to the imperfections in the tuning
elements and materials normally used to achieve the tuning, it
is also partly due to a significant reduction in the theoretical
capability of the structure to store electromagnetic energy after
the introduction of the tuning mechanism itself. This latter
factor is always present, regardless of the quality of the tuning
elements used, and is related to the resonant mode in ques-
tion. This paper presents the electromagnetic theory behind
this factor in general (even at frequencies above microwave
frequencies), provides the physical explanation behind it, and
demonstrates it in the microwave region through practical
examples.

By applying this theoretical model onto planar resonator
tuning problems, the designer is given a tool to assist in
optimizing the tuning method geometrically. Depending on the
desired behavior of Q0 over the range of possible geometric
modifications (which will always produce rolling-down Q0

values but at controllable rates), the designer can choose the
appropriate geometric tuning method that satisfies the design
requirements. This provides insight and better understanding
of the problem of geometric resonator tuning. Furthermore, the
presented theory provides a useful electromagnetic model for
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Fig. 13: Layouts of the (a) square patch resonator and (b) the
line resonator, both with ideal links. Both setups had a variable
gap size and used an Aluminum enclosure with dimensions
50 mm × 50 mm × 31 mm, copper metallic resonator and
ground plane (0.5 oz.), ε′r ≈ 6.15, ε′′r ≈ 0.0068, h = 0.635
mm. All dimensions on the layouts are in mm.
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Fig. 14: Comparison between theory predictions and measure-
ments for the square and line resonators shown in Figs. 10b-
c and 13. Fabrication tolerances resulted in maximum errors
circa ±3%.

estimating Q0 for geometrically-modified or irregular metal
patches and planar resonators in general, to assist analysis and
design at any wavelength or application.
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