26,712 research outputs found

    Power Allocation and Parameter Estimation for Multipath-based 5G Positioning

    Get PDF
    We consider a single-anchor multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) system with imperfectly synchronized transmitter (Tx) and receiver (Rx) clocks, where the Rx estimates its position based on the received reference signals. The Tx, having (imperfect) prior knowledge about the Rx location and the surrounding geometry, transmits the reference signals based on a set of fixed beams. In this work, we develop strategies for the power allocation among the beams aiming to minimize the expected Cram\'er-Rao lower bound (CRLB) for Rx positioning. Additional constraints on the design are included to ensure that the line-of-sight (LOS) path is detected with high probability. Furthermore, the effect of clock asynchronism on the resulting allocation strategies is also studied. We also propose a gridless compressed sensing-based position estimation algorithm, which exploits the information on the clock offset provided by non-line-of-sight paths, and show that it is asymptotically efficient.Comment: 30 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    Compressed Sensing Based Direct Conversion Receiver With Interference Reducing Sampling

    Full text link
    This paper describes a direct conversion receiver applying compressed sensing with the objective to relax the analog filtering requirements seen in the traditional architecture. The analog filter is cumbersome in an \gls{IC} design and relaxing its requirements is an advantage in terms of die area, performance and robustness of the receiver. The objective is met by a selection of sampling pattern matched to the prior knowledge of the frequency placement of the desired and interfering signals. A simple numerical example demonstrates the principle. The work is part of an ongoing research effort and the different project phases are explained.Comment: 3 pages, 5 figures, submitted to IEEE International Conference On Sensing Communication and Networking 2014 (poster

    Info-Greedy sequential adaptive compressed sensing

    Full text link
    We present an information-theoretic framework for sequential adaptive compressed sensing, Info-Greedy Sensing, where measurements are chosen to maximize the extracted information conditioned on the previous measurements. We show that the widely used bisection approach is Info-Greedy for a family of kk-sparse signals by connecting compressed sensing and blackbox complexity of sequential query algorithms, and present Info-Greedy algorithms for Gaussian and Gaussian Mixture Model (GMM) signals, as well as ways to design sparse Info-Greedy measurements. Numerical examples demonstrate the good performance of the proposed algorithms using simulated and real data: Info-Greedy Sensing shows significant improvement over random projection for signals with sparse and low-rank covariance matrices, and adaptivity brings robustness when there is a mismatch between the assumed and the true distributions.Comment: Preliminary results presented at Allerton Conference 2014. To appear in IEEE Journal Selected Topics on Signal Processin

    Low-complexity Multiclass Encryption by Compressed Sensing

    Get PDF
    The idea that compressed sensing may be used to encrypt information from unauthorised receivers has already been envisioned, but never explored in depth since its security may seem compromised by the linearity of its encoding process. In this paper we apply this simple encoding to define a general private-key encryption scheme in which a transmitter distributes the same encoded measurements to receivers of different classes, which are provided partially corrupted encoding matrices and are thus allowed to decode the acquired signal at provably different levels of recovery quality. The security properties of this scheme are thoroughly analysed: firstly, the properties of our multiclass encryption are theoretically investigated by deriving performance bounds on the recovery quality attained by lower-class receivers with respect to high-class ones. Then we perform a statistical analysis of the measurements to show that, although not perfectly secure, compressed sensing grants some level of security that comes at almost-zero cost and thus may benefit resource-limited applications. In addition to this we report some exemplary applications of multiclass encryption by compressed sensing of speech signals, electrocardiographic tracks and images, in which quality degradation is quantified as the impossibility of some feature extraction algorithms to obtain sensitive information from suitably degraded signal recoveries.Comment: IEEE Transactions on Signal Processing, accepted for publication. Article in pres

    On Known-Plaintext Attacks to a Compressed Sensing-based Encryption: A Quantitative Analysis

    Get PDF
    Despite the linearity of its encoding, compressed sensing may be used to provide a limited form of data protection when random encoding matrices are used to produce sets of low-dimensional measurements (ciphertexts). In this paper we quantify by theoretical means the resistance of the least complex form of this kind of encoding against known-plaintext attacks. For both standard compressed sensing with antipodal random matrices and recent multiclass encryption schemes based on it, we show how the number of candidate encoding matrices that match a typical plaintext-ciphertext pair is so large that the search for the true encoding matrix inconclusive. Such results on the practical ineffectiveness of known-plaintext attacks underlie the fact that even closely-related signal recovery under encoding matrix uncertainty is doomed to fail. Practical attacks are then exemplified by applying compressed sensing with antipodal random matrices as a multiclass encryption scheme to signals such as images and electrocardiographic tracks, showing that the extracted information on the true encoding matrix from a plaintext-ciphertext pair leads to no significant signal recovery quality increase. This theoretical and empirical evidence clarifies that, although not perfectly secure, both standard compressed sensing and multiclass encryption schemes feature a noteworthy level of security against known-plaintext attacks, therefore increasing its appeal as a negligible-cost encryption method for resource-limited sensing applications.Comment: IEEE Transactions on Information Forensics and Security, accepted for publication. Article in pres
    • …
    corecore