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Abstract—We consider a single-anchor multiple-input
multiple-output orthogonal frequency-division multiplexing
system with imperfectly synchronized transmitter (Tx) and
receiver (Rx) clocks, where the Rx estimates its position based on
the received reference signals. The Tx, having (imperfect) prior
knowledge about the Rx location and the surrounding geometry,
transmits reference signals based on a set of fixed beams. We
develop strategies for the power allocation among the beams
aiming to minimize the expected Cramér-Rao lower bound for
Rx positioning. Additional constraints on the design are included
to make the optimized power allocation robust to uncertainty on
the line-of-sight (LOS) path direction. Furthermore, the effect
of clock asynchronism on the proposed allocation strategies is
studied. Our evaluation results show that, for non-negligible
synchronization error, it is optimal to allocate a large fraction
of the available power for the illumination of the non-LOS
(NLOS) paths, which help resolve the clock offset. In addition,
the complexity reduction achieved by our proposed suboptimal
approach incurs only a small performance degradation. We
also propose an off-grid compressed sensing-based position
estimation algorithm, which exploits the information on the
clock offset provided by NLOS paths, and show that it is
asymptotically efficient.

Index Terms—positioning, localization, 5G, reference signal,
power allocation, parameter estimation

I. INTRODUCTION

With the advent of fifth generation (5G) mobile networks,
positioning has attracted lots of research interest. The large
chunks of bandwidth available at millimeter-wave (mm-Wave)
frequencies as well as the potentially large number of antennas
placed at both sides of the communication link are the main
driving forces, not only for very high data rates and massive
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connectivity [1], [2], but also for a drastic improvement of
the positioning accuracy of cellular networks [3]. Recently,
within the Third Generation Partnership Project (3GPP), new
techniques have been standardized, including downlink (DL)-
angle of departure (AOD), uplink (UL)-angle of arrival (AOA)
and multi-cell round-trip time (RTT) [4], in addition to the
already existing ones in previous generations of cellular net-
works [5], such as observed time difference of arrival (OT-
DOA) and uplink TDOA (UTDOA). Furthermore, proposals
for reporting delay and angular multipath measurements to
enable single-anchor positioning have been considered [6].
With their enhanced positioning capabilities, 5G systems aim
to accommodate use cases like autonomous driving [7], aug-
mented reality and industrial internet of things (IIoT) [6].

Single-anchor localization has received increasing attention
in recent years. Leveraging the high temporal and angular res-
olution of mm-Wave multiple-input multiple-output (MIMO)
systems, it has the potential to ease the requirements of multi-
anchor hearability and interference management. The funda-
mental limits of single-anchor positioning were investigated
in [8]–[12].

Single-anchor localization algorithms in the literature can
be classified into two categories: one-shot schemes without
tracking [13]–[20], and approaches with tracking [21]–[27].
While the latter mainly focus on positon estimation and track-
ing given the channel parameter measurements, the former also
deal with the estimation of the channel parameters, as done
in this work. A three-stage algorithm for the estimation of
the user equipment (UE) state (position and orientation) with
a MIMO-orthogonal frequency-division multiplexing (OFDM)
system was proposed in [13], where in the first stage a
compressed sensing-based algorithm is used to obtain coarse
estimates of the multipath parameters (number of paths, times
of arrival (TOAs), AODs, AOAs and gains), with the coarse
estimates refined in the second stage. In the third stage, the
refined estimates are mapped to the receiver (Rx) position
and orientation and the scatterer/reflector positions using the
extended invariance principle (EXIP). A similar approach is
followed in [14], with the main difference being the mapping
from channel parameters to position parameters, where an
iterative Gibbs sampling method is employed. In [15] range-
free angle-based approaches are developed assuming prior map
information. An algorithm for localization and synchronization
of cooperating full-duplex agents using a single-anchor is
developed in [16]. Furthermore, the authors of [17] propose
a protocol and an accompanying algorithm that enables a
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single-anchor to (quasi-)simultaneously receive messages from
multiple agents in order to localize them using TOA and
AOA measurements. A DL positioning algorithm for a single-
antenna Rx, based on TOA and AOD measurements is pro-
posed in [19]. The work is extended in [20], where a two-
step process is used, with the coarse parameter estimates
obtained in the first step used for adaptation of the transmitter
(Tx) beamforming matrix in the second step. Additionally,
in [28] an iterative Tx beamforming refinement and position
estimation algorithm is developed.

Similar to [20], [28], many works have considered the use
of prior knowledge of the Rx position at the Tx to design
beamformers that improve the Rx’s localization accuracy.
In [29] Cramér-Rao lower bound (CRLB)-optimal precoders
for tracking the AOD and AOA of a path were designed,
taking the uncertainty about their value into account. In [30],
assuming a line-of-sight (LOS) channel and a multicarrier
system, beamformers minimizing the TOA and AOA error
bounds were proposed, based on the current estimate of the Rx
position. Using a similar setup, but additionally considering
multiple users, the authors of [31] designed beamformers
maximizing a weighted sum of Fisher information on delay,
AOD and AOA. Although in a different context, the algorithms
and conclusions of [32] and [33] are relevant to our Tx
beamforming problem. In [32] and [33], robust beamformers
under angular uncertainty were designed and it was concluded
that the Rx steering vector and its derivative contain all the
localization information. Again in a different but still relevant
setup, the authors of [34] and [35] computed the optimal
power allocation among multiple anchors for ranging-based
localization by solving a semidefinite program (SDP). The
power allocation problem is formulated as the computation
of either the optimal sharing of a fixed available total power
budget among the network anchors so as to minimize the
squared position error bound (SPEB) of a target or the power
allocation vector with the minimum sum power that satisfies
a set of predefined positioning accuracy constraints. Similar
approaches were considered in [36] and [37]. In [38] it
was further shown that, when the uncertainty about the Rx
position is not considered, it is optimal to transmit only on the
directions corresponding to the Tx array steering vector and its
derivative. The power allocation among these two directions
minimizing the SPEB was then analytically calculated in [38].
When the Rx location uncertainty is taken into account, the
optimal power allocation among the beams of a given Tx beam
codebook was computed to minimize the average or maximum
SPEB.

In this paper, we extend our work in [38]. We consider
a single-anchor setup and a sparse multipath channel, which
comprises the LOS path and a number of single-bounce non-
LOS (NLOS) paths, as multi-bounce paths are considered
too weak for reception at mm-Wave frequencies [39]–[42].
The Tx has only a coarse prior knowledge of the underlying
geometry and in addition, the Tx-Rx clocks are imperfectly
synchronized. We optimize the power allocation on a beam
codebook for the multipath channel and examine the effect of
imperfect synchronization on the resulting power allocation.
The power allocation is based on the CRLB, which provides

a fundamental lower bound on the covariance of the esti-
mation error of any (unbiased) estimator. Hence, the power
allocation can be performed without knowledge of the position
estimation algorithm and only the statistics of the UE state
and environment are needed. This is a benefit compared to
an algorithm-dependent allocation. We also develop a novel
position estimation algorithm, which is evaluated for the
proposed power allocation strategies. The main contributions
of the work can be summarized as follows:

• We propose power allocation strategies on a fixed Tx
beam codebook with the aim of minimizing the expected
positioning error of the Rx. The optimal solution and a
suboptimal one with lower computational complexity are
presented and evaluated.

• We develop a two-stage position estimation algorithm.
The first stage consists of an off-grid channel parameter
estimation algorithm, based on [43]. The second stage
maps the channel parameter estimates to position pa-
rameters. The information about the clock offset offered
by NLOS paths in combination with the LOS path is
exploited so as to discard false alarms.

We note that although a two-dimensional (2D) scenario is
considered in the paper, the fundamental conclusions also hold
in a three-dimensional (3D) setup: the global optimum power
allocation can be decoupled in intra-path power allocation and
inter-path power allocation, and the first one can be done path
by path. Also, the quality of Tx-Rx synchronization impacts
the amount of power allocated for NLOS paths illumination, so
as to help the Rx resolve the clock offset. The power allocation
strategies can be easily adapted to a 3D setup. As far as the
position estimation algorithm is concerned, both the channel
parameter estimation and the mapping to position can be
extended to a 3D setup. Nevertheless, the increased complexity
of the grid search step used in the proposed channel parameter
estimation could potentially require further consideration.

The rest of the paper is organized as follows. In Sec. II we
present the system model and the assumptions of the work.
The theoretical bound on positioning accuracy is briefly dis-
cussed in Sec. III and the proposed power allocation methods
are presented in Sec. IV. The position estimation algorithm
is introduced in Sec. V and numerical evaluations of the
proposed approaches are provided in Sec. VI. Finally, Sec. VII
concludes the work.

Notation: We use bold lowercase for vectors, bold upper-
case for matrices, non-bold for scalars and calligraphic letters
for sets. Depending on its argument, | · | denotes the absolute
value of a scalar, the determinant of a matrix or the cardinality
of a set. The transpose, conjugate transpose and 𝑝-norm of a
vector/matrix are denoted by (·)T, (·)H and ∥ · ∥ 𝑝 and the
Frobenius norm of a matrix is denoted by ∥ · ∥F. ℜ{·} and
ℑ{·} denote the real and imaginary part of a complex number
and arg(·) denotes its phase. The 𝑖-th element of a vector and
the (𝑖, 𝑗)-th element of a matrix are denoted by [·]𝑖 and [·]𝑖, 𝑗 ,
respectively. I𝑛, 1 and 0 denote the identity matrix of size 𝑛,
and the all-ones and all-zeros matrix of the appropriate size.
diag(x) denotes the diagonal matrix with the elements of x on
its diagonal. The expectation operator is denoted by E[·] and
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Fig. 1. Geometric model, example with a uniform linear array (ULA) at the
Tx and a uniform circular array (UCA) at the Rx.

the sets of real and complex numbers are denoted by R and
C. A multivariate (circularly symmetric complex) Gaussian
distribution with mean µ and covariance matrix C is denoted
by N(µ,C) (NC (µ,C)). The Hessian of a function 𝑓 (x) is
denoted as 𝐷2

x 𝑓 (x).

II. SYSTEM MODEL AND ASSUMPTIONS

A. Geometric Model

The Tx consists of an array with 𝑁T antennas and reference
point located at the origin. The Rx consists of an array with 𝑁R

antennas, a reference point located at pR =
[
𝑝R,x, 𝑝R,y

]T ∈ R2

and orientation 𝛼R. The position of the 𝑗-th element of the Tx
array is given by

pT, 𝑗 = 𝑑T, 𝑗u
(
𝜓T, 𝑗

) ∈ R2, 𝑗 = 0, . . . , 𝑁T − 1, (1)

where u
(
𝜓
)
=

[
cos

(
𝜓
)
, sin

(
𝜓
) ]T and 𝑑T, 𝑗 and 𝜓T, 𝑗 are its

distance and angle from the Tx array’s reference point, as
shown in Fig. 1. The position of the 𝑖-th element of the Rx
array is

pR,𝑖 = pR + 𝑑R,𝑖u(𝜓R,𝑖 + 𝛼R) ∈ R2, 𝑖 = 0, . . . , 𝑁R − 1.(2)

We assume that for all antenna pairs there are 𝐿 discrete
propagation paths. The first of these 𝐿 paths (𝑙 = 0) is the
LOS path and the rest (𝑙 = 1, . . . , 𝐿 − 1) are single-bounce
NLOS paths. The point of incidence of the 𝑙-th single-bounce
path, which corresponds either to scattering or reflection, is
ps,𝑙 =

[
𝑝s,𝑙,x, 𝑝s,𝑙,y

]T
, 𝑙 = 1, . . . , 𝐿 − 1. The array apertures

are assumed to be small compared to the distance between
Tx and Rx, as well as the distance between each of the
scatterers/reflectors and the Tx or Rx. Therefore, the delay
of the 𝑙-th path from Tx element 𝑗 to Rx element 𝑖 can be
approximated by [12]

𝜏𝑙,𝑖, 𝑗 ≈ 𝜏′𝑙 − 𝜏T, 𝑗 (\T,𝑙) − 𝜏R,𝑖 (\R,𝑙), 𝑙 = 0, . . . , 𝐿 − 1, (3)

where

𝜏′𝑙 =

{
∥pR∥2/𝑐, 𝑙 = 0,(∥ps,𝑙 ∥2 + ∥pR − ps,𝑙 ∥2

)/𝑐, 𝑙 ≠ 0,
(4)

𝜏T, 𝑗 (\T,𝑙) = 𝑑T, 𝑗u
T (𝜓T, 𝑗 )u(\T,𝑙)/𝑐, (5)

𝜏R,𝑖 (\R,𝑙) = 𝑑R,𝑖u
T (𝜓R,𝑖)u(\R,𝑙)/𝑐, (6)

with 𝑐 being the speed of light. The angles are defined as

\T,𝑙 =


atan2

(
𝑝R,y, 𝑝R,x

)
, 𝑙 = 0,

atan2
(
𝑝s,𝑙,y, 𝑝s,𝑙,x

)
, 𝑙 ≠ 0,

(7)

\R,𝑙 =


\T,𝑙 + 𝜋 − 𝛼R, 𝑙 = 0,
atan2

(
𝑝s,𝑙,y − 𝑝R,y, 𝑝s,𝑙,x − 𝑝R,x

)
− 𝛼R, 𝑙 ≠ 0,

(8)

with atan2
(
𝑦, 𝑥

)
being the four-quadrant inverse tangent func-

tion.

B. Signal Model

An OFDM waveform with subcarrier spacing Δ 𝑓 , 𝑁 subcar-
riers and cyclic prefix (CP) duration 𝑇CP is considered. The ref-
erence signal is transmitted on 𝑁P subcarriers, whose indices
are described by P = {𝑝1, . . . , 𝑝𝑁P } and 𝑁B OFDM symbols
are transmitted. We assume a narrowband signal model, i.e.,
𝐵/ 𝑓c ≪ _c/𝐷max, where 𝐵 ≈ Δ 𝑓 (max(P) − min(P)) is
the signal bandwidth, 𝑓𝑐 is the carrier frequency, _c is the
carrier wavelength and 𝐷max is the largest of the Tx and
Rx array apertures. The reference signal resource grid R
comprises all resource elements at the time-frequency points
(𝑝, 𝑏), 𝑝 ∈ P, 𝑏 = 0, . . . , 𝑁B − 1. The transmitter uses a
beam codebook {f𝑘}𝑀T

𝑘=1, where 𝑀T is the number of beams
in the codebook and ∥f𝑘 ∥2 = 1,∀𝑘 . The 𝑘-th beam is used on a
subset R𝑘 of resource elements (REs) (𝑝, 𝑏), with R𝑘∩R𝑘′ = ∅
for 𝑘 ≠ 𝑘 ′. The transmitted signal vector at the 𝑝-th subcarrier,
𝑝 ∈ P, of the 𝑏-th OFDM symbol, 𝑏 = 0, . . . , 𝑁B − 1, then is

x[𝑝, 𝑏] = _𝑘 [𝑝, 𝑏]f𝑘 , (𝑝, 𝑏) ∈ R𝑘 , (9)

where

_𝑘 [𝑝, 𝑏] =
√︁
𝑃tot𝑞𝑘𝛾𝑘 [𝑝, 𝑏] ej 𝛽𝑘 [𝑝,𝑏] (10)

is the symbol assigned to f𝑘 at the 𝑝-th subcarrier, 𝑃tot is
the total Tx power (disregarding the power used for the CP),
𝑞𝑘 is the fraction of 𝑃tot allocated to f𝑘 , with

∑𝑀T
𝑘=1 𝑞𝑘 = 1,

𝛾𝑘 [𝑝, 𝑏] is the fraction of 𝑞𝑘 allocated to the RE (𝑝, 𝑏), with∑
(𝑝,𝑏) ∈R𝑘

𝛾𝑘 [𝑝, 𝑏] = 1, and 𝛽𝑘 [𝑝, 𝑏] is the phase of _𝑘 [𝑝, 𝑏].
The received signal is

y[𝑝, 𝑏] = m[𝑝, 𝑏] + η[𝑝, 𝑏], (11)

where

m[𝑝, 𝑏] =
𝐿−1∑︁
𝑙=0

ℎ𝑙 e− j 𝜔𝑝 𝜏𝑙 aR (\R,𝑙)aT
T (\T,𝑙)x[𝑝, 𝑏], (12)

aT (\T,𝑙) =
[
𝑒j 𝜔𝑐 𝜏T,1 (\T,𝑙) , . . . , ej 𝜔𝑐 𝜏T,𝑁T (\T,𝑙)

]T
∈ C𝑁T (13)

is the Tx array steering vector, with the Rx steering vector
aR (\R,𝑙) defined accordingly, and

𝜏𝑙 = 𝜏′𝑙 + 𝜖clk, (14)

with 𝜖clk being the clock offset, which describes the mis-
match between the clocks at the Tx and Rx devices. Also,
𝜔𝑝 = 2𝜋𝑝Δ 𝑓 , 𝜔c = 2𝜋 𝑓c, ℎ𝑙 is the gain of the 𝑙-th path
and η[𝑝, 𝑏] ∼ NC (0, 𝜎2

[I𝑁R ) is the additive white Gaussian
noise (AWGN). The gains ℎ𝑙 are assumed to be time-invariant,
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therefore the channel is assumed to be quasi-static for 𝑁B
OFDM symbols.

The clock offset, which arises from imperfect Tx-Rx clock
synchronization, appears in the signal model (11)-(14) in the
following way. In general, the received signal depends on the
absolute TOAs, which are equal to the sum of the respective
path delays 𝜏′

𝑙
and the time of departure (TOD). To extract

information on the path delays, which can then be translated
to position information via (4), the TOD has to be known and
its effect on the received signal removed. The effect of the
TOD on the received signal can be perfectly removed if the
Rx knows the TOD and if the Tx and Rx clocks are perfectly
synchronized. However, in practical systems, where an actual
time synchronization method is employed, e.g. [44], [45], an
offset 𝜖clk between the clocks is present and effectively added
to the observed path delays 𝜏𝑙 (14). The clock offset 𝜖clk is
assumed to be a zero-mean Gaussian random variable with
variance 𝜎2

clk [10], [46], [47]. When 𝜎clk → 0, the clocks
are perfectly synchronized, while 𝜎clk → ∞ corresponds to
asynchronous operation. In the latter case, each TOA cannot be
reliably mapped to a path delay and only differences between
TOAs (if more than one paths are available) can provide
position information.

We write the signal model (11) as

Y𝑏 =
∑︁𝐿−1

𝑙=0
ℎ𝑙C𝑏 (𝜏𝑙 , \T,𝑙 , \R,𝑙) +N𝑏, (15)

where

C𝑏 (𝜏𝑙 , \T,𝑙 , \R,𝑙) = aR (\R,𝑙)aT
T (\T,𝑙)X𝑏diag(a𝜏 (𝜏𝑙)) ∈C𝑁R×𝑁P ,(16)

a𝜏 (𝜏) = [e− j 𝜔𝑝1 𝜏 , . . . , e− j 𝜔𝑝𝑁P
𝜏]T ∈ C𝑁P , (17)

Y𝑏 = [y[𝑝1, 𝑏], . . . , y[𝑝𝑁P , 𝑏]] ∈ C𝑁R×𝑁P , (18)
X𝑏 = [x[𝑝1, 𝑏], . . . ,x[𝑝𝑁P , 𝑏]] ∈ C𝑁T×𝑁P , (19)
N𝑏 = [η[𝑝1, 𝑏], . . . ,η[𝑝𝑁P , 𝑏]] ∈ C𝑁R×𝑁P . (20)

Stacking the observations over 𝑁B OFDM symbols we get

Y =
𝐿−1∑︁
𝑙=0

ℎ𝑙C (𝜏𝑙 , \T,𝑙 , \R,𝑙) +N , (21)

where

Y = [Y T
0 , . . . ,Y T

𝑁B−1]T, (22)

C (𝜏, \T, \R) = [CT
0 (𝜏, \T, \R), . . . ,CT

𝑁B−1 (𝜏, \T, \R)]T,(23)

N = [NT
0 , . . . ,N

T
𝑁B−1] . (24)

Through (4), (7)-(8) and (21), we can see that the observa-
tions Y depend on the position parameter vector ν, defined
as

ν = [pT
R, 𝛼R, 𝜖clk,h

T
0 ,p

T
s,1,h

T
1 , . . . ,p

T
s,𝐿−1,h

T
𝐿−1]T ∈R4𝐿+2, (25)

with h𝑙 = [|ℎ𝑙 |, arg(ℎ𝑙)]T.

C. Assumptions

1) Reference Signal Structure: In this work we consider the
case where Tx uses a fixed beam codebook f𝑘 , 𝑘 = 1, . . . , 𝑀T.
This does not only simplify the optimization task, but also
might be a practical limitation in a 5G system, with devices
using a predefined set of beams for transmission or reception.

We also assume that the resource allocation R𝑘 among the
codebook beams and the power allocation 𝛾𝑘 [𝑝, 𝑏] among
assigned REs, are fixed and therefore, optimizing R𝑘 is
not in the scope of our reference signal optimization task.
The problem of designing a waveform has been addressed
in [48]–[50], where the CRLB and the Ziv-Zakai lower bound
(ZZLB) for range estimation [48], the joint CRLB of time-
delay and channel estimation [49], as well as the CRLB of
the UE position under robustness constraints [50], have been
optimized with respect to the resource allocation.

2) Prior Knowledge at Rx and Tx: In many cases the Tx
might have prior knowledge on ν, based on prior estimation
in the reverse link, map information and known geographical
distribution of the users. For example, the base station (BS) can
make use of preceding UL sounding reference signal (SRS)
transmissions to estimate the UE position and the position
of the scatterers. The estimation algorithm can also exploit
map information, if available, e.g. location of walls and other
objects in an indoor setup. The estimation algorithm could
either provide estimates of the distributions directly [26] or
provide point estimates [13], for which the BS can then
assume a distribution (e.g. Gaussian with variance equal to
the corresponding CRLB, evaluated at the point estimates).
Alternatively, the UE may have an estimate of its position,
as well as a quality measure of this estimate, either from
an external source (e.g. Global Navigation Satellite System
(GNSS)) or from a previous DL transmission (e.g. DL po-
sitioning reference signal (PRS)) and shares them with the
BS. The prior information is encoded by the joint probability
density function (pdf) 𝑝ν (ν). In the following, we examine
how the Tx can exploit the prior information, so as to improve
the ability to localize the Rx.

The Rx, which aims to compute its position and orientation
from the received signal, only has knowledge on the clock
offset’s distribution 𝑝 𝜖clk .

III. POSITION ERROR BOUND

The achievable positioning accuracy of the Rx can be
characterized in terms of the hybrid CRLB. For a parameter
vector ν containing both deterministic and random paramters,
the covariance matrix C of any unbiased estimator ν̂ of ν
satisfies [51], [52]

C − J−1
ν ⪰ 0, (26)

where ⪰ 0 denotes positive semi-definiteness and Jν ∈
R(4𝐿+2)×(4𝐿+2) is the hybrid Fisher information matrix (FIM)
of ν. Jν is defined as

Jν = J
(p)
ν + J (o)ν , (27)

where

J
(p)
ν = Eν𝑟

[−𝐷2
ν ln 𝑝(ν𝑟 )] (28)

accounts for the prior information and

J (o)ν = EY ,ν𝑟
[−𝐷2

ν ln 𝑝(Y |ν)] (29)



5

accounts for the observation-related information, with ν𝑟 rep-
resenting the random parameters in ν. As 𝜖clk is the only pa-
rameter with prior information at the Rx, it is straightforward
to find that, based on (25), the only non-zero entry of J (p)ν is[

J
(p)
ν

]
4,4 = 1/𝜎2

clk. (30)

Since ν is observed under AWGN, the (𝑖, 𝑗)-th entry of the
J (o)ν is[

J (o)ν

]
𝑖, 𝑗

=
2
𝜎2
[

𝑁B∑︁
𝑏=1

∑︁
𝑝∈P
ℜ

{
𝜕mH

𝑏
[𝑝]

𝜕a𝑖

𝜕m𝑏 [𝑝]
𝜕a 𝑗

}
. (31)

Using (4), (12) and (31), we can see that J (o)ν is independent
of the value of 𝜖clk. The SPEB is defined as

SPEB = tr(ETJ−1
ν E), (32)

where E = [e1, e2] and e𝑖 is the 𝑖-th column of the identity
matrix of the appropriate size. The position error bound (PEB)
is defined as its square root.

IV. BEAM POWER ALLOCATION OPTIMIZATION

For the reference signal optimization, we make use of the
assumption that with large bandwidth and number of antennas
the paths are asymptotically orthogonal [9], [12]. We note that
the SPEB is a function of

ν ′ = [pT
R, 𝛼R, |ℎ0 |,pT

s,1, |ℎ1 |, . . . ,pT
s,𝐿−1, |ℎ𝐿−1 |]T ∈ R3𝐿+1, (33)

that is, it is independent of the values of arg(ℎ𝑙), 𝑙 =
1, . . . , 𝐿 − 1, and 𝜖clk. Also, due to the inner product of the
derivatives in (31), we can observe (see (9), (10) and (12))
that J is independent of 𝛽𝑘 [𝑝, 𝑏]. In the following, we write
Jν = Jν (q, ν ′), with q = [𝑞1, . . . , 𝑞𝑀T ] ∈ R𝑀T , to stress that
Jν is the hybrid FIM of ν, whose value depends on q and
ν ′. Similarly, we write SPEB = SPEB(q, ν ′).

We study how the Tx can optimize the beam power alloca-
tion q using its prior knowledge on ν ′ so as to enable higher
positioning accuracy at the Rx. We choose the expected SPEB
(ESPEB)

ESPEB = Eν′ [SPEB(q, ν ′)] (34)

as the performance metric. The optimization problem in hand
reads as:

min
q
Eν′ [SPEB(q, ν ′)] s.t. q ≽ 0, 1Tq ≤ 1, (35)

where ≽ denotes element-wise inequality.

A. Optimal Solution

In order to solve (35), one can employ a cubature rule
[53], [54] with positive weights to approximate the expectation
integral with a sum:

Eν′ [SPEB(q, ν ′)] ≈
∑︁𝑁ν′

𝑗=1
𝑝 𝑗SPEB(q, ν ′𝑗 ), (36)

where ν ′
𝑗

and 𝑝 𝑗 > 0, 𝑗 = 1, . . . , 𝑁ν′ are the cubature points
and their corresponding weights, with 𝑁ν′ being the number
of cubature points. 𝑁ν′ is determined by the dimension of ν ′

and the degree 𝑟 of the cubature1. The cubature points and
their weights are determined by the pdf of ν ′ and 𝑟 . Then,
(35) becomes

min
q

∑︁𝑁ν′

𝑗=1
𝑝 𝑗SPEB(q, ν ′𝑗 ) s.t. q ≽ 0, 1Tq ≤ 1. (37)

In a similar fashion to [38], using the epigraph form of (37),
we can show that it is equivalent to the following SDP:

min
q,B1 ,...,B𝑁ν′

∑︁𝑁ν′

𝑗=1
𝑝 𝑗 tr(B 𝑗 )

s.t.

[
B 𝑗 ET

E J (q, ν ′
𝑗
)

]
⪰ 0, 𝑗 = 1, . . . , 𝑁ν′ ,

q ≽ 0, 1Tq ≤ 1, (38)

where B 𝑗 ∈ R2×2, 𝑗 = 1, . . . , 𝑁ν , are auxiliary variables of the
SDP and ⪰ denotes positive semidefiniteness. The positivity
requirement on the cubature weights is imposed to ensure
convexity of the objective in (38).

The optimal vector q obtained with (38) may indicate that a
very small fraction of the available power should be allocated
in the direction of the LOS path, which may lead to a missed
detection of the LOS path at the Rx. This can be avoided by en-
suring that the excitation on directions around the LOS path is
at least a fraction 𝑞th of the excitation in any other direction. To
this end, for a given confidence level ^, we define \ (^)T,𝑙,min and
\ (^)T,𝑙,max as the minimum and maximum AODs corresponding
to the 2D Rx locations (𝑙 = 0) or scatterer/reflector locations
(𝑙 = 1, . . . , 𝐿 − 1) in the ^-confidence ellipse of the respective
marginal. With a uniform grid of 𝑁\ possible AODs \T,𝑙,𝑚

within the interval [\ (^)T,𝑙,min, \
(^)
T,𝑙,max]

\ (^)T,𝑙,𝑚 = \ (^)T,𝑙,min +
𝑚 − 1
𝑁\ − 1

\ (^)T,𝑙,max, 𝑚 = 1, . . . , 𝑁\ , (39)

we define the excitation matrix A𝑙 ∈ R𝑁\×𝑀T for the 𝑙-th path
as

[A𝑙]𝑚,𝑘 = |aT
T (\ (^)T,𝑙,𝑚)f𝑘 |2. (40)

Finally, the excitation vector for the possible AODs of the 𝑙-
th path is A𝑙q. We augment (38) with the following linear
constraints:

A0q ≽ 𝑞th∥Aq∥∞1𝑁\
, (41)

where A = [AT
0 , . . . ,A

T
𝐿−1]T. We note that the con-

straints (41) are equivalent to

A0q ≽ 𝑞th𝑒max1𝑁\
, Aq ≼ 𝑒max1𝐿𝑁\

, (42)

with 𝑒max being an auxiliary optimization variable. We refer
to the optimal vector q obtained with (38) as the optimized
unconstrained solution (opt. unconstr.). The optimal vector q
obtained with (38) under the constraints (41) is referred as the
optimized constrained solution (opt. constr.)

The main challenge with the solutions described above is
that 𝑝ν is a multidimensional pdf. The number of auxil-
iary matrices B 𝑗 and corresponding positive semidefiniteness

1A cubature rule has degree 𝑟 if it is exact for a (multivariate) polynomial
of degree 𝑟 .
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(PSD) constraints in (38) is equal to the number of cubature
points. For known cubature rules [53], the number of points is
lower bounded by (3𝐿 + 1) (𝑟−1)/2, which could result in very
high complexity for our optimization task, as the integrand is
highly non-linear and a rule with 𝑟 ≥ 5 is required for an
accurate approximation.

B. Dimensionality Reduction

A way to circumvent the dimensionality challenge is to
use a surrogate function which involves the expectation over
a smaller set of parameters. To this end, we first note that
eT
𝑖
J−1e𝑖 , 𝑖 = 1, 2, is a convex function of J and so is the

SPEB as a sum of convex functions. Splitting ν ′ into any
couple of vectors ν1 and ν2, we can write

Eν [SPEB(q, ν)] = Eν
[
tr(ETJ−1 (q, ν ′)E)]

= Eν1

[
Eν2 |ν1

[
tr(ETJ−1 (q, ν1, ν2)E)

] ]
(𝑎)≥ Eν1

[
tr(ET(Eν2 |ν1 [J (q, ν1, ν2)])−1E)] (43)

where (a) follows from Jensen’s inequality. We choose ν1 =
[pT

R,p
T
s,1, . . . ,p

T
s,𝐿−1]T and ν2 = [𝛼R, |ℎ0 |, |ℎ1 |, . . . , |ℎ𝐿−1 |]T,

as the position parameters are the ones determining the AODs,
which in turn determine which beams are relevant or not.
One could optimize the lower bound on the ESPEB given
in (43), as described in (35)-(38). We refer to the resulting
solution as the optimal solution with reduced dimensionality
(opt. reduced). The number of required cubature points 𝑁ν′ is
still lower bounded by (2𝐿) (𝑟−1)/2.

C. Low-Complexity Suboptimal Solution

Our aim is to reduce the complexity of the optimization
problem in hand. We accomplish this by taking the following
heuristic approach: we compute a power allocation vector
q𝑙 , 𝑙 = 0, . . . , 𝐿−1, considering the uncertainty regarding each
path separately. We then weight the resulting power allocation
vectors in order to minimize a lower bound on the ESPEB,
with the final power allocation vector being the weighted sum
of the per-path power allocation vectors.

More specifically, for the power allocation vector q0, we
consider only the LOS path and neglect the NLOS paths and
solve

q0 = argmin
q
EpR

[
tr(ET (E |ℎ0 |,𝛼R |pR [JνLOS(q,pR, 𝛼R, |ℎ0 |)])−1E)]

s.t. A0q ≽ 𝑞th,LOS∥A0q∥∞1𝑁\
, q ≽ 0, 1Tq ≤ 1, (44)

where JνLOS represents the FIM for the parameter vector
νLOS = [pT

R, 𝛼R, 𝜖clk,h
T
0 ]T. Similarly to (41), the first con-

straint in (44) limits the ratio of power used among possible
LOS directions, with 𝑞th,LOS being the corresponding mini-
mum ratio. For the gain of the LOS path it is natural that
𝑝(h0 |pR) = 𝑝(h0 |𝑑0), with 𝑑0 = ∥pR∥2, i.e., the distribution
of the gain depends only on the Tx-Rx distance. Thus, the
integration over the radial component 𝑑0 and the angular
component \T,0 of pR can be carried out separately. Then,
as shown in the Appendix, we can reformulate (44) as an
SDP using a one-dimensional (1D) quadrature rule for the
approximation of the expectation integral over \T,0.

For the power allocation vector q𝑙 , we consider only the 𝑙-th
NLOS path and set the Rx position and orientation equal to
the mean values p̄R and �̄�R of their respective marginal prior
distributions. This is basically a bistatic radar setup, where the
goal is the estimation of the point of incidence. Therefore, we
obtain q𝑙 by solving

q𝑙 = argmin
q
Eps,𝑙

[
tr(ET (E |ℎ𝑙 | |ps,𝑙 [JNLOS,𝑙 (q,ps,𝑙 , |ℎ𝑙 |)])−1E)]

s.t. q ≽ 0, 1Tq ≤ 1, (45)

where JNLOS,𝑙 represent the FIM for the parameter vector
νNLOS,𝑙 = [pT

s,𝑙 , 𝜖clk,h
T
𝑙
]T. Problem (45) can be solved em-

ploying a 2D cubature for the integration over ps,𝑙 .
Finally, we compute the optimal weights w ∈ R𝐿 of q𝑙 , 𝑙 =

0, . . . , 𝐿 − 1, by minimizing an approximate lower bound on
the ESPEB, obtained similarly to (43):

w = argmin
w′

EpR [tr(ETJ−1 (Qw′, ν̄)E)]
s.t. A0Qw′ ≽ 𝑞th∥AQw′∥∞1𝑁\

Qw′ ≽ 0, 1TQw′ ≤ 1, (46)

where, in order to further reduce the computational load,
we have replaced Eν |pR [J (Qw′, ν)] with its approximation
J (Qw′, ν̄), with ν̄ = Eν |pR [ν] and Q = [q0, . . . , q𝐿−1].
Finally, the beam power allocation vector is q = Qw and
is referred to in the following as the suboptimal solution
(subopt.). The computational complexity of this approach
is dominated by the solution of (45) and (46), where 2D
cubatures with a minimum of 2(𝑟−1)/2 points can be employed.

V. CHANNEL AND POSITION ESTIMATION

In this section we present a novel two-stage algorithm for
Rx position, orientation and clock offset estimation. In the first
step, an off-grid parameter estimation approach, based on [43],
is employed to recover the number paths and their respective
TOAs, AODs and AOAs. In the second step, the recovered
channel parameters are mapped to the position parameter
vector ν.

A. Channel Parameter Estimation

For our positioning purposes, we are not merely interested
in denoising Y , but we would like to recover the number
of paths, along with their respective gains, TOAs, AODs and
AOAs. Hence, we aim to solve the following optimization
problem:

min
𝐿′, {𝜏𝑙 , \T,𝑙 , \R,𝑙 ,ℎ𝑙 }𝐿′−1

𝑙=0

Λ(R) + 𝜒∥h∥1, (47)

where

Λ(R) = 1
2
∥R∥2F (48)

is the loss function,

R = Y −
∑︁𝐿′−1

𝑙=0
ℎ𝑙C (𝜏𝑙 , \T,𝑙\R,𝑙) (49)

is the residual, 𝜒 is a regularization parameter and h =
[ℎ0, . . . , ℎ𝐿′−1]T. The penalty term ∥h∥1 is included to make
the channel representation more parsimonious; otherwise the
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number of detected paths could grow arbitrarily so as to
minimize the objective. As usual in sparse recovery setups,
instead of a non-convex L0 norm penalty term, we use the L1
norm. We solve problem (47) using the algorithmic framework
of [43], termed as Alternating Descent Conditional Gradient
Method (ADCGM), which is described in Alg. 1. We note that,
for notational brevity, in (47)-(49) and in the following, we
write R instead of R(𝐿 ′, {𝜏𝑙 , \T,𝑙 , \R,𝑙}𝐿′−1

𝑙=0 ). Also, the resid-
ual at iteration 𝑖 is denoted as R𝑖 and the TOAs of the detected
paths are stacked in the vector τ (𝑖) = [𝜏 (𝑖)0 , . . . , 𝜏 (𝑖)

𝐿 (𝑖)−1] ∈
R𝐿

(𝑖)
, where 𝐿 (𝑖) is the number of detected paths at iteration

𝑖. The parameter vectors θ (𝑖)T and θ (𝑖)R are defined accordingly.
The maximum number of iterations is 𝐿max and at each
iteration a new path can be detected (Step 2) or previously
detected paths can be dropped (Step 4(b)). In the following,

Algorithm 1 Channel parameter estimation with ADCGM

input: {X𝑏}𝑁B
𝑏=1, Y , 𝜎2

[ , 𝑃fa

initialize: τ (0) , θ (0)T , θ (0)R ,h(0) = [ ], 𝑖 = 0
do

1. Compute residual R𝑖

2. Detect next potential path:

𝜏 (𝑖) , \ (𝑖)T , \ (𝑖)R = argmax
(𝜏,\T , \R) ∈G

�� tr(RH
𝑖 C (𝜏, \T, \R))

�� (50)

3. Update support: τ (𝑖+1) = [(τ (𝑖) )T, 𝜏 (𝑖) ],
θ (𝑖+1)T = [(θ (𝑖)T )T, \

(𝑖)
T ], θ

(𝑖+1)
R = [(θ (𝑖)R )T, \

(𝑖)
R ]

4. Coordinate descent on non-convex objective:
for 𝑗 = 1 to 𝑁cd do

(a) Compute gains:

h(𝑖+1) = argminh Λ(R) + 𝜒∥h∥1 (51)

(b) Prune support:

{τ , θT, θR,h} (𝑖+1) = prune({τ , θT, θR,h} (𝑖+1) )
(c) Locally improve support:

{τ , θT, θR} (𝑖+1) = local_descent({τ , θT, θR,h} (𝑖+1) )
end for
𝑖 = 𝑖 + 1

while 𝑖 < 𝐿max and
�� tr(RH

𝑖
C (𝜏 (𝑖) , \ (𝑖)T , \ (𝑖)R )

�� > Z1

we describe steps 2 and 4 in detail.
1) Detection of a New Potential Path (Step 2): In order to

get the next potential path we have to solve (50), which is non-
convex and can be solved by discretizing the 3D parameter
space [0, 𝑇CP] × [−𝜋, 𝜋) × [−𝜋, 𝜋) to get an 𝑁𝜏 × 𝑁\T × 𝑁\R -
dimensional grid G.

After computing the new potential source, we compare the
correspoding objective with a predefined threshold Z1 > 0,
which is a function of the noise variance 𝜎2

[ , the reference
signal X and the desired false alarm probability 𝑃fa.

2) Coordinate Descent (Step 4): In this algorithmic step
we iteratively perform 3 sub-steps for a fixed number of 𝑁cd
iterations:

(a) We update the gains solving (51), keeping the other
path parameters fixed. The regularization parameter 𝜒
determines the accuracy-sparsity trade-off.

(b) We prune the paths whose gain is effectively zero: the 𝑙-th
path is pruned if |ℎ𝑙 |2/Z2 < max𝑙=0,...,𝐿 (𝑖)−1 |ℎ𝑙 |2, where
0 < Z2 ≪ 1.

(c) For the local descent step we perform truncated Newton
steps for each path and each parameter sequentially. The
delay of the 𝑙-th path is updated as

𝜏 (𝑖+1)
𝑙

← 𝜏 (𝑖+1)
𝑙

− sgn(𝜕Λ/𝜕𝜏 (𝑖+1)
𝑙
)𝑠 (𝑖+1)

𝜏,𝑙
, (52)

where

𝑠 (𝑖+1)
𝜏,𝑙

= min

(����( 𝜕2Λ

(𝜕𝜏 (𝑖+1)
𝑙
)2

)−1
𝜕Λ

𝜕𝜏 (𝑖+1)
𝑙

����, 𝑁CP𝑇s

2(𝑁𝜏 − 1)

)
is the step size, with 𝑇s = 𝑁Δ 𝑓 . The AODs and AOAs
are updated in a similar fashion. We note that we limit
the maximum step size for each of the parameters to be
equal to half of the corresponding grid bin size, in order
to avoid convergence problems near inflection points of
the loss function.

B. Mapping to Position Parameters
Having an estimate ˆ̃ν of the channel parameter vector ν̃

defined as

ν̃ = [𝜏0, \T,0, \R,0, . . . , 𝜏�̂�−1, \T, �̂�−1, \R, �̂�−1]T, (53)

where �̂� is the estimated number of paths, and choosing the
strongest path as the LOS path, we estimate the position
parameter vector ν employing the EXIP as in [13], with a
slight modification to include the prior information on the
clock offset. To this end, we intend to solve

argmin
ν
( ˆ̃ν − 𝑓 (ν))TJ ˆ̃ν ( ˆ̃ν − 𝑓 (ν)) + (𝜖clk/𝜎clk)2, (54)

where J ˆ̃ν is the channel parameter FIM and 𝑓 : R2�̂�+2 → R3�̂�

is the mapping from position to channel parameters, deter-
mined by (4), (7)-(8).

We note that false alarms, that is falsely detected paths,
can have severe impact on position estimation. Therefore, we
apply the following two criteria to filter them out:
• A single-bounce NLOS path and a LOS path always form

a triangle, as can be seen in Fig. 1. Such formation of a
triangle is possible if a single-bounce NLOS path satisfies

Δ\T,𝑙 · Δ\R,𝑙 < 0, 𝑙 = 1, . . . , �̂� − 1, (55)

where Δ\T,𝑙 = \T,𝑙 − \T,0 and Δ\R,𝑙 = \R,𝑙 − \R,0, with
Δ\T,𝑙 and Δ\R,𝑙 ∈ [−𝜋, 𝜋). Therefore if the 𝑙-th path,
𝑙 = 1, . . . , �̂� − 1, does not satisfy (55), it is dropped.

• Combined with the LOS path, each NLOS path forms a
triangle, which provides a system of 3 equations with 3
unknowns 𝑑𝑙,1 = ∥ps,𝑙 ∥2, 𝑑𝑙,2 = ∥pR − ps,𝑙 ∥2 and 𝜖clk:

𝑑𝑙,1 + 𝑑𝑙,2 = 𝑐(𝜏𝑙 − 𝜖clk), (56a)
𝑑𝑙,1 sin(Δ\T,𝑙) = −𝑑𝑙,2 sin(Δ\R,𝑙),(56b)

𝑑𝑙,1 cos(Δ\T,𝑙) + 𝑑𝑙,2 cos(Δ\R,𝑙) = 𝑐(𝜏0 − 𝜖clk). (56c)

By solving (56) for each path separately we get an
estimate of 𝜖clk:

𝜖clk,𝑙 =
𝜏𝑙 sin(Δ\R,𝑙 −Δ\T,𝑙) − 𝜏0 (sin(Δ\R,𝑙) − sin(Δ\T,𝑙))

sin(Δ\R,𝑙 −Δ\T,𝑙) − (sin(Δ\R,𝑙) − sin(Δ\T,𝑙)) .

(57)
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Fig. 2. Prior knowledge at the Tx for simulation results.

With Z3,𝑎 > 0 and Z3,𝑏 > 0 being predefined probability
thresholds for estimated 𝜖clk values, if 𝑝 𝜖clk (𝜖clk,𝑙) < Z3,𝑎
or 𝑝 𝜖clk (𝜖clk,𝑙) < Z3,𝑏𝑝clk,max, the path is filtered out, with
𝑝clk,max = max𝑙=1,..., �̂�−1 𝑝(𝜖clk,𝑙). The intuition behind
both these conditions is the following: Due to their ran-
domness, the parameters of falsely detected paths, which
correspond to noise, will generally result in very unlikely
values of clock offset estimates from (57) and can conse-
quently be rejected by the first condition. The reason for
including the second condition, is that combined with a
low Z3,𝑎 value, it allows us to prevent rejection of existing
paths, while still rejecting false alarms, in the case of less
likely 𝜖clk realizations.

Replacing ˆ̃ν with ˆ̃ν ′, which contains only the remaining
paths, we solve (54) with the Levenberg-Marquardt algo-
rthm [55], [56]. For the initial point ν (0) we compute

𝜖 (0)clk =

∑
𝑙 |ℎ𝑙 |2𝜖clk,𝑙∑

𝑙 |ℎ𝑙 |2
, (58)

p(0)R = 𝑐(𝜏0 − 𝜖 (0)clk )u(\T,0), (59)

𝛼 (0)R = \T,0 + 𝜋 − \R,0, (60)

and

p(0)s,𝑙 =
tan(\R,𝑙 + 𝛼 (0)R )𝑝

(0)
R,𝑥 − 𝑝 (0)R,𝑦

tan(\R,𝑙 + 𝛼 (0)R ) cos \T,𝑙 − sin \T,𝑙

u(\T,𝑙), (61)

for 𝑙 = 1, . . . , �̂� ′, where �̂� ′ is the number of remaining
estimated paths.

VI. NUMERICAL RESULTS

A. Simulation Setup

For the evaluation of the power allocation and the position
estimation algorithms we consider the setup shown in Fig. 2.
The Tx is equipped with a ULA with 𝑁T = 32 antennas. In
order to be able to discriminate all possible AOAs, the Rx has
a UCA with 𝑁R = 16 antennas. With the Rx being equipped
with a UCA, the SPEB is independent of the orientation 𝛼R.

We consider NLOS paths resulting from single-bounce re-
flections. The phases of the complex path gains are uniformly
distributed over [−𝜋, 𝜋) and their magnitudes are given by

|ℎ𝑙 | =
{
𝑐/(4𝜋 𝑓c∥pR∥2), 𝑙 = 0,√
𝜌𝑙𝑐/(4𝜋 𝑓c (∥ps,𝑙 ∥2 + ∥pR − ps,𝑙 ∥2)), 𝑙 ≠ 0,

(62)

where 𝜌𝑙 is the reflection coefficient and _c = 𝑐/ 𝑓c. The prior
knowledge at the Tx is described by N(µ,C), where

µ = [p̄T
R, p̄

T
s,1, �̄�, p̄

T
s,2, �̄�, p̄

T
s,3, �̄�]T ∈ R11, (63)

C =



C0,0 C0,1 0 C0,2 0 C0,3 0
CT

0,1 C1,1 0 0 0 0 0

0 0 𝜎2
𝜌 0 0 0 0

CT
0,2 0 0 C2,2 0 0 0

0 0 0 0 𝜎2
𝜌 0 0

CT
0,3 0 0 0 0 C3,3 0

0 0 0 0 0 0 𝜎2
𝜌


∈ R11×11, (64)

with

p̄R =

[
25
10

]
m, C0,0 = 4/

√
2I2m2,

p̄s,1 =

[
15.63

25

]
m, C1,1 =

[
3.48 0

0 1

]
m2, C0,1 =

[
4.45 0

0 0

]
m2,

p̄s,2 =

[
10.42
−25

]
m, C2,2 =

[
1.34 0

0 1

]
m2, C0,2 =

[
1.64 0

0 0

]
m2,

p̄s,3 =

[
60

6.32

]
m, C3,3 =

[
1 0
0 2.31

]
m2, C0,3 =

[
0 0
0 3.24

]
m2,

�̄� = −10dB, 𝜎𝜌 = 4dB.

Samples from this distribution are depicted in Fig. 2.
For the waveform we set 𝑓c = 38 GHz, 𝑁 = 64, 𝑁B =

10, P = {−31, . . . ,−1, 1 . . . , 31} and Δ 𝑓 (max(P) −
min(P))(≈ 𝐵) = 120 MHz. The resources are assigned
to the beams in an interleaved and staggered manner, i.e.,
R𝑘 = {(𝑘 +𝑏+ 𝑖𝑀T, 𝑏) |𝑖 ∈ Z, 𝑏 = 1, . . . , 𝑁B : 𝑘 +𝑏+ 𝑖𝑀T ∈ P}.
The power of each beam is distributed uniformly among
its resources, i.e., 𝛾𝑘 [𝑝, 𝑏] = 1/|R𝑘 |. The noise variance is
𝜎2
[ = 100.1(𝑛Rx+𝑁0)𝑁Δ 𝑓 , where 𝑁0 = −174 dBm Hz−1 is the

noise power spectral density per dimension and 𝑛Rx = 8 dB is
the Rx noise figure. The standard deviation of the clock offset
is equal to the 2 sample intervals, i.e., 𝜎clk = 2/(𝑁Δ 𝑓 ), so
that 𝑐𝜎clk ≈ 4.88 m. We use a DFT beam codebook:

f𝑘 =
[
1, e− j 2𝜋

𝑁T
𝑘
, . . . , e− j 2𝜋

𝑁T
(𝑁T−1)𝑘 ]

, 𝑘 = 1, . . . , 𝑀T = 𝑁T.(65)

Regarding the position estimation algorithm parameters, we
set 𝑁𝜏 = 2𝑁P, 𝑁\T = 2𝑁T, 𝑁\R = 2𝑁R, 𝑃fa = 0.05,
Z1 is pre-trained for the given 𝑃fa and power allocation
strategy, Z2 = −35 dB, 𝑁cd = 3, 𝐿max = 10, 𝜒 =
𝜎[

√︁
2(𝑁T + 𝑁R) |P|𝑁B𝑃RE/𝑁T (chosen according to [57]),

Z3,𝑎 = 10−4 and Z3,𝑏 = 10−2.

B. Power Allocation Strategies

We consider the power allocation strategies discussed in
Sec. IV. To fairly evaluate our power allocation strategies, we
set as a benchmark the uniform power allocation to beams
exciting useful directions. We refer to this strategy as "uni" in
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the following. The corresponding details of each approach are
as follows:
• opt. unconstr.: The number of points of known cubatures

of 5th degree (in order to ensure a sufficiently dense
sampling of the support of the distribution) with positive
weights is 211+2·11 = 2070 [53], which incurs prohibitive
computational complexity. To make it manageable, we
instead draw 112 = 121 random samples (as many as
the lower bound for any cubature) from the joint 11-
dimensional distribution.

• opt. constr.: We draw 121 random samples from the
joint 11-dimensional distribution and set ^ = 0.995,
𝑞th = −10 dB and 𝑁\ = 15.

• opt. reduced: We draw 82 = 64 random samples from
the joint 8-dimensional distribution and set ^ = 0.995,
𝑞th = −10 dB and 𝑁\ = 15.

• subopt.: We use 9-point cubatures for the involved 2D
marginals and set ^ = 0.995, 𝑞th,LOS = −3 dB, 𝑞th =
−10 dB and 𝑁\ = 15.

• uni: For a given confidence level ^ we get a grid of AODs
for each path as in (39) and compute the set of useful
beams as

B (^)uni = ∪𝐿−1
𝑙=0 ∪𝑁\

𝑚=0

{
argmax
𝑘=1,...,𝑁T

|aT
T (\ (^)T,𝑙,𝑚)f𝑘 |

}
. (66)

The power allocation vector q is

𝑞𝑘 =

{
1/|B (^)uni |, 𝑘 ∈ B (^)uni ,

0, 𝑘 ∉ B (^)uni .
(67)

We set again 𝑁\ = 15. We consider two values for ^,
namely ^ = 0.60 and ^ = 0.9, and refer to the resulting
power allocation strategies as "uni 0.60" and "uni 0.90".
We note that choosing ^ = 0.995 as for the other strategies
results in performance degradation; hence, results for this
value are not included.

The beampatterns of the power allocation strategies for the
considered prior knowledge are shown in Fig. 3. We also show
the sample average PEB, which is denoted as E[PEB] and
computed by drawing 2000 random samples from the prior.
We observe in Figs. 3(a)-(d) that for the optimized power
allocation strategies, most of the available power is used on
beams illuminating NLOS paths. The reason for this is that
for non-perfect Tx-Rx synchronization (i.e., 𝜎clk = 2/(𝑁Δ 𝑓 )),
neither the LOS nor a NLOS path provide individually suffi-
cient information about the Tx-Rx distance, because the TOA
measurements cannot be reliably translated to distances. Only
when 𝜎clk is very small (i.e., when the synchronization error is
very small), having only the delay measurement of the LOS
suffices to determine the distance between the BS and the
UE. However, when the synchronization error is not small, it
is the differences between delays that are informative, and this
implies that several paths (not only one) have to be illuminated
with sufficient power.

Furthermore, when comparing Fig. 3(a) with Figs. 3(b)-
(d), we see that when the constraints (41) are not applied,
the power allocation to NLOS components is higher, with
the power invested to less likely LOS directions being very
low. From Figs. 3(b) and (c), we can see that the impact
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Fig. 3. Beam patterns |aT
T (\T)f𝑘

√
𝑞𝑘 |, 𝑘 = 1, . . . , 𝑀T, for different power

allocation strategies.

of the dimensionality reduction (43) is the reduction of the
power used on the 2nd NLOS path. This is explained by
the fact that the fading of the path gains is not taken into
account; hence, for the mean values of the path gains, more
power is used on the paths that offer more useful position
information. Also, in Fig. 3(d) we observe that our suboptimal
approach allocates almost no power to the 2nd NLOS path,
as in the last step, where all paths are considered jointly, only
the receiver’s location uncertainty and the mean locations of
scatterers/reflectors are taken into account. For this setup, the
information offered by the 1st NLOS path is more useful
and therefore most of the available power is allocated for
its illumination. For the uniform allocation, higher confidence
values lead to activation of more beams and spreading of the
available power to more directions.

Regarding the achievable positioning accuracy of the dif-
ferent power allocation strategies, we see that "opt. unconstr."
achieves the lowest E[PEB], with "opt. constr." and "opt.
reduced" having almost the same performance. The reduced
complexity for the computation of the "subopt." power allo-
cation incurs a slight performance penalty, but the resulting
E[PEB] is still significantly lower than that of the uniform
power allocation strategies.

C. Positioning Accuracy for Fixed Geometry

We fix the geometry and the reflection coefficients to their
mean value µ in (63) to examine the position estimation accu-
racy as a function of the Tx power. For the power allocation
strategies described in Sec. VI-B, in Fig. 4, we plot the position
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Fig. 4. Position RMSE (solid lines) and PEB (dashed lines) vs Tx power for
different power allocation strategies.

root mean square error (RMSE)
√︃
Eη, 𝜖clk [∥p̂R − pR∥22] and

PEB as functions of the average power per resource element
𝑃RE = 𝑃tot/(𝑁B𝑁P), with p̂R being the position estimate.
We note that the average Tx power 𝑃T is related to 𝑃RE as
𝑃T = 𝑃RE𝑁P/𝑁 .

Similar to our conclusions in Sec. VI-B, we observe that
the PEB attained with the "opt. unconstr." power allocation
is slightly lower than those of "opt. constr.", "opt. reduced"
and "subopt.", which are approximately equal. The PEBs of
the above-mentioned power allocations are significantly lower
than those of the benchmarking uniform power allocations.

We now examine the performance of the power allocation
strategies using the position estimation algorithm, i.e., we
compare them with respect to their RMSE. Regarding the
performance of the position estimation algorithm itself, due
to space limitations, a detailed comparison with [13] was not
possible, but we have verified that the proposed method leads
to improved performance with respect to [13]. We can see in
Fig. 4 that the bound is attained for all power allocation strate-
gies, with the 𝑃RE value for which the RMSE converges to
the PEB being different for each strategy. Regarding uniform
power allocation, the gap of the RMSE to the bound for low
Tx power is attributed to the fact that, although the LOS path
is detected, the probability of detection for the NLOS is small.
With only the LOS path being detected, the clock offset cannot
be resolved and the resulting position RMSE approaches the
standard deviation of the clock offset 𝑐 ·𝜎clk ≈ 4.88 m. Among
the two considered configurations (^ = 0.60 and ^ = 0.90), the
former has slightly better performance, as the available power
is more concentrated to the true location of the Rx and the
reflectors. However, this comes at a cost, when the uncertainty
about the geometry is considered (as discussed in Sec. VI-D).

The optimized allocation strategies ("opt. unconstr.", "opt.
constr.", "opt. reduced" and "subopt.") result in similar PEBs
and offer significant improvement compared to the uniform
ones, with a gain of 3 to 4 dB for the same localization
accuracy. The lowest PEB is attained by "opt. unconstr.", but
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Fig. 5. Empirical cdf of ∥p̂R−pR ∥2 for different power allocation strategies.

the RMSE converges to the PEB for larger 𝑃RE, compared to
the other strategies. The reason for this behavior is that, as
can be observed in Fig. 3(a), only a small fraction of power
is used in the LOS direction and the Tx power required for
the LOS path to be detected is larger. When the LOS path
is missed, the first arriving NLOS path is treated as LOS
by the algorithm, resulting in a large position error. Due to
the constraints (41), the rest of the proposed strategies ("opt.
constr.", "opt. reduced" and "subopt.") allocate more power to
the LOS, enabling the algorithm to attain the PEB at lower
values of 𝑃RE, with only a small performance penatly. The
RMSE of "opt. reduced" converges slightly faster to the bound
compared to "opt. constr.", as slightly more power is allocated
to the LOS path. The "subopt." allocation exhibits the most
robust performance, as the LOS path can be detected for much
lower Tx power values.

D. Positioning Accuracy with Random Samples

The results in Fig. 4 and the corresponding discussion in
Sec. VI-C are useful in comparing the power allocation strate-
gies and evaluating the convergence of the position estimation
algorithm for a varying signal-to-noise ratio (SNR), but do
not provide a complete characterization of the performance
of the power allocation strategies. To better examine their
performance, for 𝑃RE = 0 dBm and the rest of the system
parameters as described in Sec. VI-A, we plot in Fig. 5 the
cumulative distribution function (cdf) of the position error
∥p̂R−pR∥2, which is computed by drawing samples from (63)-
(64). A summary of the percentiles of the distribution of the
position error is provided in Table I.

We can observe in Fig. 5 and Table I that "opt. reduced"
and "opt. constr." achieve the best performance. The latter is
slightly worse at higher percentiles, as more points would be
required for a more accurate approximation of the expecta-
tion in the corresponding optimization problem. In spite of
the lower computational cost of the "subopt." allocation, its
performance degradation is almost unnoticeable. On the other
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TABLE I
PERCENTILES OF THE CDF OF THE POSITION ERROR IN m FOR DIFFERENT

POWER ALLOCATION STRATEGIES.

50% 90% 95% 99%

opt. unconstr. 0.22 0.93 29.55 72.25
opt. constr. 0.21 0.59 0.78 1.32

opt. reduced 0.21 0.57 0.76 1.25
subopt. 0.21 0.65 0.84 1.45

uni 0.60 0.31 0.91 1.30 20.83
uni 0.90 0.30 0.86 1.10 1.96

hand, the "opt. unconstr." approach, although attaining almost
the same median error as the other optimized strategies, has
much lower accuracy for higher percentiles. This is attributed
to the low power used in the direction around the LOS path,
resulting in low probability of detection of the LOS. Compared
to the best of the uniform allocations, the "opt. reduced"
power allocation offers a position error reduction of 30%, 34%,
31% and 36% at the 50%, 90%, 95% and 99% percentile,
respectively.

Regarding the uniform allocations, we can see that spread-
ing the power to a reduced set of beams ("uni 0.60") might
result in better positioning accuracy for some geometry re-
alizations, as seen for example in Fig. 4, but it significantly
deteriorates the performance for other possible realizations.
This explains the higher values of position errors at the upper
percentiles of the corresponding cdf.

E. Impact of Synchronization Quality

We now examine the effect of synchronization quality, as
captured by 𝜎clk, on the power allocation and the positioning
accuracy. First, similar to (66), we define the set of LOS-
illuminating beams as

B (^)LOS = ∪𝑁\

𝑚=0

{
argmax
𝑘=1,...,𝑁T

|aT
T (\ (^)T,0,𝑚)f𝑘 |

}
(68)

and the fraction of power used on them as

𝑞LOS =
∑︁

𝑘∈B (^ )LOS
𝑞𝑘 . (69)

In Fig. 6(a) we plot 𝑞LOS as a function of 𝜎clk for the power
allocation strategies "opt. unconstr.", "opt. constr.", "subopt"
and "uni 0.90", for 𝑁R = {4, 16}, 𝑃RE = 0 dBm, ^ = 0.995 and
the rest of the system parameters as described in Sec. VI-A;
in Fig. 6(b) we plot the corresponding E[PEB]. We can see
in Fig. 6(a) that for very low values of 𝜎clk, equivalent to
almost perfect Tx-Rx synchronization, it is optimal to use
almost all the available power on LOS-illuminating beams.
As 𝜎clk increases, 𝑞LOS decreases rapidly for all optimized
allocation strategies, until it saturates at a relatively low value.
This is explained as follows: The clock offset decreases the
amount of distance information provided by the LOS path;
the larger the standard deviation of the clock offset, the more
significant the decrease. This can be understood from (4)
and (14), where we can see that the values 𝜖clk determine
how reliably the LOS delay measurement can be translated to
distance measurement. As 𝜎clk increases, 𝜖clk is likely to take
values which are significantly different from zero, making the
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Fig. 6. Fraction of power allocated to LOS-illuminating beams 𝑞LOS and
E[PEB] as functions of 𝑐𝜎clk.

distance measurement from the LOS path unreliable. Hence, as
𝜎clk increases, the distance information provided by the NLOS
paths becomes more significant and, therefore, more power is
used on them. Nevertheless, the saturation occurs because the
measurement of the LOS AOD offers significant information
in the orthogonal direction, which is reduced when 𝑞LOS is
decreased. The saturation value for "opt. constr." is higher due
to the additional constraints on LOS illumination.

Furthermore, we observe that the transition from high to
low 𝑞LOS values is slower for 𝑁R = 4. This is attributed to the
fact that NLOS paths offer rank-1 position information, whose
intensity depends on the quality of the TOA, AOD and AOA
measurements combined [11], [12]. Therefore, the intensity of
the information from the NLOS paths is smaller for 𝑁R = 4
than for 𝑁R = 16, as the quality of the AOA measurement is
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poorer. Consequently, for larger values of 𝜎clk, the information
from the NLOS paths becomes significant relative to the LOS
distance information.

In Fig. 6(b) it can be observed that E[PEB] increases with
increasing 𝜎clk, until it saturates at a value dependent on
the power allocation strategy and the system configuration
(𝑁R = {4, 16}). As 𝜎clk increases the reduction of distance
information from the LOS path cannot be complemented
by distance information from the NLOS paths (even with
optimized power allocation), resulting in a larger error. In the
saturation region the distance information from the LOS path
becomes negligible compared to the clock offset-independent
part of distance information offered by the combination of
NLOS paths with the LOS path.

VII. CONCLUSION

Optimal power allocation for single-anchor localization
using a beam codebook and lower-complexity suboptimal
alternatives have been considered under imperfect Tx-Rx
synchronization. A channel and position estimation method
has also been proposed. Numerical results show that our
suboptimal power allocation approach offers a good balance
between performance and complexity, as the significant re-
duction of the power-allocation complexity incurs only a very
small performance degradation. While these results have been
observed in general and not only for the considered setup,
more simulations would be appropriate to exactly quantify
the performance variation in a broader set of cases. Our
analysis has shown that, even for small clock offset standard
deviation, it is optimal in the CRLB sense to allocate most of
the available power to scatterer/reflector illuminating beams
to recover necessary range information. We have also shown
that guaranteeing a minimum amount of power used on LOS-
illuminating beams, can be beneficial when the actual position
estimation is considered, as it ensures that the LOS path
is detected with a high probability. The proposed position
estimation algorithm reaches the corresponding CRLB for all
considered power allocation strategies. It avoids the appear-
ance of spurious paths due to grid mismatch, by benefiting
from the off-grid estimation of channel parameters. In addition,
noisy detected paths are filtered out exploiting the information
on the clock offset carried by single-bounce-NLOS paths.

APPENDIX
POWER ALLOCATION FOR THE LOS PATH

Here we show how to formulate (44) as an SDP using only
a 1D quadrature rule for the approximation of the expectation
over \T,0. This is accomplished in two steps:
• In the first step we show that the integration over 𝑑0 and
\T,0 can be carried out separately;

• in the second step, after averaging over 𝑑0, we exploit
the form of the resulting function of \T,0 and formulate
the problem as an SDP.

We write E𝑑0 , \T,0 [·] instead of EpR [·]. Also, for notational
brevity we write

J̄ = E𝛼R ,h0 |𝑑0 , \T,0 [JνLOS (q, 𝑑0, \T,0, 𝛼R,h0)] . (70)

We index the elements of J̄ with the pair of parameters to
which they correspond.

First, after some algebra we find that

tr(ETJ̄−1E) = 𝑐2

𝐽𝜏0 ,𝜏0−
𝐽2
𝜏0 , \T,0

𝐽\T,0 , \T,0

+ 𝑑2
0

𝐽\T,0 , \T,0−
𝐽2
𝜏0 , \T,0
𝐽𝜏0 ,𝜏0

+ 𝑐2𝜎2
clk,

(71)

where

𝐽𝑎,𝑏 = E𝛼R ,h0 |𝑑0 , \T,0 [𝐽𝑎,𝑏], (72)

𝐽𝑎,𝑏 =
2
𝜎2
[

𝑁B∑︁
𝑏=1

∑︁
𝑝∈P
ℜ

{
𝜕mH

𝑏
[𝑝]

𝜕𝑎

𝜕m𝑏 [𝑝]
𝜕𝑏

}
, (73)

with 𝑎, 𝑏 ∈ {𝑑0, \T,0}. We can show that 𝐽𝑎,𝑏, 𝑎, 𝑏 ∈
{𝑑0, \T,0}, are independent of 𝛼R and the phase of ℎ0. Hence,
they can be expressed as

𝐽𝑎,𝑏 = Eh0 |𝑑0 , \T,0 [𝐽𝑎,𝑏 (q, \T,0, |ℎ0 (𝑑0) |2)]
= Eh0 |𝑑0 , \T,0 [|ℎ0 (𝑑0) |2 𝑗𝑎,𝑏 (q, \T,0)]
= 𝑔0 (𝑑0) 𝑗𝑎,𝑏 (q, \T,0), (74)

where 𝑔0 (𝑑0) = Eh0 |𝑑0 [|ℎ0 (𝑑0) |2] and 𝑗𝑎,𝑏 (q, \T,0) =
𝐽𝑎,𝑏 (q, \T,0, |ℎ0 (𝑑0) |2)/|ℎ0 (𝑑0) |2 is a function of q and \T,0.
For the second equality in (74), we used the fact that 𝐽𝑎,𝑏 can
be expressed as the product of two terms, one dependent on
the gain magnitude and the other on q and \T,0. We can then
rewrite (71) as

tr(ETJ̄−1E) = 1
𝑔0(𝑑0)

(
𝑐2

𝐼𝜏0(q, \T,0) +
𝑑2

0
𝐼\T,0(q, \T,0)

)
+𝑐2𝜎2

clk, (75)

where

𝐼𝜏0 (q, \T,0) = 𝑗𝜏0 ,𝜏0 (q, \T,0) −
𝑗2
𝜏0 , \T,0

(q, \T,0)
𝑗\T,0 , \T,0 (q, \T,0) , (76)

𝐼\T,0 (q, \T,0) = 𝑗\T,0 , \T,0 (q, \T,0) −
𝑗2
𝜏0 , \T,0

(q, \T,0)
𝑗𝜏0 ,𝜏0 (q, \T,0) . (77)

It is apparent from (75) that integration of the function over
𝑑0 and \T,0 can be carried out separately.

For the second step, taking the expectation over 𝑑0 and
defining

�̄�0 (\T,0) = 1/E𝑑0 |\T,0 [1/𝑔0 (𝑑0)] (78)

𝑑0 (\T,0) =
√︄
E𝑑0 |\T,0

[
�̄�0 (\T,0)
𝑔0 (𝑑0) 𝑑

2
0

]
(79)

we get

E𝑑0 |\T,0 [tr(ETJ̄−1E)] = 1
�̄�0 (\T,0)

(
𝑐2

𝐼𝜏0 (q, \T,0) +
(
𝑑0 (\T,0)

)2

𝐼\T,0 (q, \T,0)

)
+𝑐2𝜎2

clk. (80)

Comparing (80) to (71), we can conclude that, in order
to be able to formulate the problem in a convex form,
E𝑑0 |\T,0 [tr(ETJ̄−1E)] can be expressed as

E𝑑0 |\T,0 [tr(ETJ̌−1E)]
= tr(ETJ−1

νLOS
(q, 𝑑0 (\T,0), \T,0, �̌�R,

√︁
�̄�0 (\T,0) ej 𝛽𝑔 )E), (81)
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where �̌�R and 𝛽𝑔 can be chosen arbitrarily, since they do not
have an impact on the objective. Finally, using (81) and the
identity

E𝑑0 , \T,0

[
tr(ETJ̄E)] = E\T,0 [E𝑑0 |\T,0 [tr(ETJ̄−1E)]], (82)

we can employ a 1D quadrature rule to approximate the
expectation integral over \T,0 to get the following SDP:

min
q,B1 ,...,B𝑁\T,0

∑︁𝑁\T,0

𝑗=1
𝑝 𝑗 tr(B 𝑗 )

s.t. q ≥ 0, 1Tq ≤ 1,[
B 𝑗 ET

E JνLOS(q, 𝑑0 (\T,0, 𝑗 ), \T,0, 𝑗 , �̌�R,
√︁
�̄�0 (\T,0, 𝑗 ) ej 𝛽𝑔 )

]
⪰ 0,

𝑗 = 1, . . . , 𝑁\T,0 . (83)
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