8 research outputs found

    The use of multiple antenna techniques for uwb wireless personal area networks (UWB-MIMO WPANS)

    Get PDF
    The research activities over the three years were presented in this thesis. The work centred on the use of multiple spatial elements for Ultra wide band wireless system in order to increase the throughput, and for wireless range requirement applications, increases the coverage area. The challenges and problems of this type of implementation are identified and analysed when considered at the physical layer. The study presents a model design that integrates the multiple antenna configurations on the short range wireless communication systems. As the demand for capacity increases in Wireless Personal Area Networks (WPAN); to address this issue, the framework of the Wi-Media Ultra Wide Band (UWB) standard has been implemented in many WPAN systems. However, challenging issues still remain in terms of increasing throughput, as well as extending cellular coverage range. Multiple Input Multiple Output (MIMO) technology is a well-established antenna technology that can increase system capacity and extend the link coverage area for wireless communication systems. The work started by carrying out an investigation into integrated MIMO technology for WPANs based on the Wi-Media framework using Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM). It considered an extensive review of applicable research, the potential problems posed by some approaches and some novel approaches to resolve these issues. The proposed ECMA-368 standard was considered, and a UWB system with a multiple antenna configuration was undertaken as a basis for the analysis. A novel scheme incorporating Dual Circular 32 - QAM was proposed for MB-OFDM based systems in order to enhance overall throughput, and could be modified to increase the coverage area at compromise of the data rate. The scheme was incorporated into a spatial multiplexing model with measured computational complexity and practical design issues. This way the capacity could be increased to twice the theoretical levels, which could pay the way to high speed multi-media wireless indoor communication between devices. Furthermore, the range of the indoor wireless network could be increased in practical wireless sensor networks. The inherent presence of spatial and frequency diversity that is associated with this multiple radiators configuration enlarge the signal space, by introducing additional degrees of freedom that provide a linear increase in the system capacity, for the same available spectrum. By incorporating the spatial elements with a Dual Circular modulation that is specified within the standard, it can be shown that a substantial gain in spectral efficiency could be possible. A performance analysis of this system and the use of spatial multiplexing for potential data rates above Gigabit per second transmission were considered. In this work, a model design was constructed that increases the throughput of indoor wireless network systems with the use of dual radiating elements at the both transmitter and receiver. A simulation model had been developed that encapsulate the proposed design. Tests were carried out which investigate the performance characteristics of various spatial and modulation proposals and identifies the challenges surrounding their deployments. Results analysis based on various simulation tests including the IEEE802.15.3a UWB channel model had shown a lower error rate performance in the implementation of the model. The proposed model can be integrated in commercial indoor wireless networks and devices with relatively low implementation cost. Further, the design used in future work to address the current challenges in this field and provides a framework for future systems development

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Radio over fibre distribution systems for ultra-wide band and millimetre wave applications

    Get PDF
    Short range wireless technology such as ultra-wideband (UWB) and 60 GHz millimetre wave (mm-wave) play a key role for wireless connectivity in indoor home, office environment or large enclosed public areas. UWB has been allocated at the frequency band 3.1-10.6 GHz with an emission power below -41.3 dBm. Mm-wave signals around 60 GHz have also attracted much attention to support high-speed data for short range wireless applications. The wide bandwidth and high allowable transmit power at 60 GHz enable multi-Gbps wireless transmission over typical indoor distances. Radio-over-fibre (RoF) systems are used to extend the propagation distance of both UWB and mm-wave signals over hundred of meters inside a building. UWB or mm-wave signals over fibre can be generated first at the central office before being distributed to the remote access points through optical fibre. In this work, we investigate two new techniques to generate and distribute UWB signals. These techniques are based on generating Gaussian pulse position modulation (PPM) using a gain switched laser (GSL). The simulation and experimental results have been carried out to show the suitability of employing gain switching in UWB over fibre systems (UWBoF) to develop a reliable, simple, and low cost technique for distributing UWB pulses. The second part of this work proposes two configurations for optical mm-wave generation and transmission of 3 Gbps downstream data based on GSL. We investigate the distribution of these two methods over fibre with wireless link, and demonstrate the system simplicity and cost efficiency for mm-wave over fibre systems. Both configurations are simulated to verify our obtained results and show system performance at higher bit rates. In the third part, we generate phase modulated mm-waves by using an external injection of a modulated light source into GSL. The performance of this system is experimentally investigated and simulated for different fiber links

    25 years of network access technologies: from voice to internet; the changing face of telecommunications

    Get PDF
    This work contributes to knowledge in the field of semiconductor system architectures, circuit design and implementation, and communications protocols. The work starts by describing the challenges of interfacing legacy analogue subscriber loops to an electronic circuit contained within the Central Office (Telephone Exchange) building. It then moves on to describe the globalisation of the telecom network, the demand for software programmable devices to enable system customisation cost effectively, and the creation of circuit and system blocks to realise this. The work culminates in the application challenges of developing a wireless RF front end, including antenna, for an Ultra Wideband communications systems applications. This thesis illustrates how higher levels of integration over the period of 1981 to 2010 have influenced the realisation of complex system level products, particularly analogue signal processing capabilities for communications applications. There have been many publications illustrating the impact of technology advancement from an economic or technology perspective. The thesis shows how technology advancement has impacted the physical realisation of semiconductor products over the period, at system, circuit, and physical implementation levels
    corecore