3 research outputs found

    SEAD: source encrypted authentic data for wireless sensor networks

    Get PDF
    One of the critical issues in WSNs is providing security for the secret data in military applications. It is necessary to ensure data integrity and authentication for the source data and secure end-to-end path for data transmission. Mobile sinks are suitable for data collection and localization. Mobile sinks and sensor nodes communicate with each other using their public identity, which is prone to security attacks like sink replication and node replication attack. In this work, we have proposed Source Encrypted Authentic Data algorithm (SEAD) that hides the location of mobile sink from malicious nodes. The sensed data is encrypted utilizing symmetric encryption---Advanced Encryption Standards (AES) and tracks the location of the mobile sink. When data encounters a malicious node in a path, then data transmission path is diverted through a secure path. SEAD uses public encryption---Elliptic Curve Cryptography (ECC) to verify the authenticity of the data. Simulation results show that the proposed algorithm ensures data integrity and node authenticity against malicious nodes. Double encryption in the proposed algorithm produces better results in comparison with the existing algorithms

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature

    Design for Secure Test - A Case Study on Pipelined Advanced Encryption Standard

    No full text
    corecore