5 research outputs found

    Design Considerations for Asymmetric Magnetically Coupled Resonators used in Wireless Power Transfer Applications

    No full text
    Abstract — Magnetic resonance coupling is a widely used technique for wireless power transfer (WPT) in biomedical and consumer electronics applications. For specific applications, device size limits the overall size of the transmit and receive coils. In this work, design considerations for an asymmetrical 4-element WPT system are investigated. For either a target efficiency or a desired WPT range, the optimal coil parameters such as Q and coupling coefficient are defined and these design considerations are experimentally verified. The results can be used to design an optimal set of coils for various WPT applications. I

    ENABLING TECHNOLOGY FOR WIRELESS POWER TRANSMISSION SUPPLY TO REMOTE EQUIPMENT IN CRITICAL LOGISTIC SCENARIOS

    Get PDF
    In this work were reviewed various issues concerning the supply of electrical and electronic equipment in presence of not wired physical scenarios have been reviewed. Possible solutions have been examined, in particular, the WPT solution one. Different technologies have been analyzed, with particular attention to resonant inductive type, examining applications and study approaches, as well as the pros and cons. Different prototypes have been studied, time after time, simulated designed and manufactured; these prototypes made possible the use of several methods of characterization. Finally an application, based on the same technology, for sensing purposes, specifically ground monitoring, has been optimized
    corecore