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This paper presents a new design method of asymmetrical relay resonators for maximum wireless power transfer. A new design
method for relay resonators is demanded because maximum power transfer efficiency (PTE) is not obtained at the resonant
frequency of unit resonator. The maximum PTE for relay resonators is obtained at the different resonances of unit resonator. The
optimum design of asymmetrical relay is conducted by both the optimum placement and the optimum capacitance of resonators.
The optimum placement is found by scanning the positions of the relays and optimum capacitance can be found by using genetic
algorithm (GA). The PTEs are enhanced when capacitance is optimally designed by GA according to the position of relays,
respectively, and thenmaximum efficiency is obtained at the optimum placement of relays.The capacitance of the second resonator
to 𝑛th resonator and the load resistance should be determined for maximum efficiency while the capacitance of the first resonator
and the source resistance are obtained for the impedance matching. The simulated and measured results are in good agreement.

1. Introduction

Wireless power transfer (WPT) is very useful and appli-
cable technology in many areas, for example, smart phone
[1], smart car [2], home appliances, medical devices [3–6],
automated logistics, and robots such as drone. In particular,
WPT will be more needed to apply to Internet of things (IoT)
and wearable devices in the near future. So far, induction
method WPT application has been actively commercialized,
for example, charging of smart phone, charging of electric
toothbrush, and powering of automated logistics, but mag-
netic resonance WPT could hardly be commercialized and
is currently being developed. However, magnetic resonance
WPT application will be actively developed and commer-
cialized since The Alliance for Wireless Power (A4WP) and
Power Matters Alliance (PMA) are consolidated in June 2015
which are standards of magnetic and induction resonance
WPT, respectively [7].

Magnetic resonanceWPT [8] has an advantage compared
with induction WPT. Magnetic resonance WPT can transfer

power to longer distance of tens of centimeters effectively by
using the resonance of a transmitter and a receiver whereas
the inductive coupling method is used in short distance
of many millimeters. However, magnetic resonance WPT
cannot prevent the efficiency from dropping gradually as
the distance between a transmitter and a receiver is longer
[9]. Therefore, the researches to improve PTE have been
conducted actively. The researches of an optimum load,
a metamaterial slab, and a frequency-tuning method are
demonstrated [10–15].

Another approach to improve the power transfer effi-
ciency at long distance is to employ the relay resonators [16–
27]. Many researches on relay resonators of magnetic reso-
nance WPT have been conducted to extend the distance of
power transfer. By adding relay resonators, PTE is improved
at long distance between transmitting and receiving resonator
[16].The optimumposition of one relay between transmitting
and receiving resonators was investigated [17] and number
of relays and distance between relays were optimized for
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maximum PTE [18]. In addition, it is possible to control
power flow by employing relay resonators [19, 20].

The analysis of PTE in a relay resonator system was
complicated. In [21, 22], nonadjacent coupling of relays
was ignored because nonadjacent coupling is smaller than
adjacent coupling. However, the analysis ignoring nonad-
jacent coupling could not give birth to an exact result.
The research of relay resonators by considering nonadjacent
coupling was conducted [23]. It has been proved that the
maximum PTE is not achieved at the resonance frequency
of unit resonator due to magnetic couplings between non-
adjacent resonators [23]. Therefore, it is clear that a new
design method of relay resonators is required to obtain
the maximum PTE. The design method of optimization
of capacitance of each resonator was employed in case
of symmetric relay configuration [24] and the optimum
placement of the asymmetrical relay resonators was found
as the positions of the relays are scanned [25]. However, the
PTE of the asymmetrical relay resonators is not maximized
because the capacitance of each resonator is not designed
optimally.

In this paper, the optimum design of asymmetrical relay
resonator is presented by optimizing the capacitance of each
resonator as well as the placement of asymmetrical relay
resonator. Additional improvement of PTE is achieved using
the optimum capacitance determined by both PTE equation
and GA after optimizing the placement of resonator. Finally,
the maximum power transfer efficiency can be obtained

by finding both the optimum positions and the optimum
capacitance of the asymmetrical relay resonators.

2. Equivalent Circuit of Asymmetrical
Relay Resonators

Figure 1 shows a structure of asymmetrical relay resonators.
There are four resonators: a transmitter, two relays, and a
receiver. The distance between a transmitter and a receiver is
fixed to be 75 cm.The2 relays are added between a transmitter
and a receiver. The 2 relays can be rearranged between a
transmitter and a receiver.

Figure 2 shows the equivalent circuit of asymmetrical
relay resonators with a source and a load. 𝑅

𝑖
, 𝐿
𝑖
, and 𝐶

𝑖

(𝑖 = 1, 2, . . . , 𝑛) are the resistance, self-inductance, and
lumped capacitance connected in series to the 𝑖th resonator,
respectively. 𝑀

𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗) is the mutual

inductance between 𝑖th resonator and 𝑗th resonator. 𝑅
𝑆
and

𝑅
𝐿
are source and load resistance, respectively. 𝐼

𝑖
(𝑖 =

1, 2, . . . , 𝑛) is the current flowing on the 𝑖th resonator. 𝑉
𝑠
is

source voltage and 𝑍in is input impedance. It is noted that
𝑅
𝑖
, 𝐿
𝑖
, and 𝑀

𝑖𝑗
are constants because the size of resonators

and distance are fixed.Therefore, the design variables become
𝐶
1
, . . . , 𝐶

𝑛
, 𝑅
𝑆
, and 𝑅

𝐿
. The purpose of this work is to find

the optimum design variables for maximum power transfer
of asymmetrical relay resonators.

Kirchhoff ’s voltage law (KVL) equations of the equivalent
circuit of Figure 2 are given in the following matrix form:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(𝑅
𝑆
+ 𝑅
1
+ 𝑗(𝜔𝐿

1
−

1

𝜔𝐶
1

)) 𝑗𝜔𝑀
12

⋅ ⋅ ⋅ 𝑗𝜔𝑀
1,𝑛−1

𝑗𝜔𝑀
1,𝑛

𝑗𝜔𝑀
21

(𝑅
2
+ 𝑗(𝜔𝐿

2
−

1

𝜔𝐶
2

)) ⋅ ⋅ ⋅ 𝑗𝜔𝑀
2,𝑛−1

𝑗𝜔𝑀
2,𝑛

.

.

.

.

.

. d
.
.
.

.

.

.

𝑗𝜔𝑀
𝑛−1,1

𝑗𝜔𝑀
𝑛−1,2

⋅ ⋅ ⋅ (𝑅
𝑛−1

+ 𝑗(𝜔𝐿
𝑛−1

−

1

𝜔𝐶
𝑛−1

)) 𝑗𝜔𝑀
𝑛−1,𝑛

𝑗𝜔𝑀
𝑛,1

𝑗𝜔𝑀
𝑛,2

⋅ ⋅ ⋅ 𝑗𝜔𝑀
𝑛,𝑛−1

(𝑅
𝑛
+ 𝑅
𝐿
+ 𝑗(𝜔𝐿

𝑛
−

1

𝜔𝐶
𝑛

))

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐼
1

𝐼
2

.

.

.

𝐼
𝑛−1

𝐼
𝑛

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑉
𝑆

0

.

.

.

0

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(1)

where 𝜔 is an angular frequency.
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Figure 1: Structure of the asymmetrical relay resonators.
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Figure 2: Equivalent circuit of asymmetrical relay resonators.

The efficiency of wireless power transfer is defined as
the ratio of the dissipated power (𝑃

𝐿
) at the load to the

input power (𝑃in) which can be obtained by adding the total
dissipated power in the resonators and the load. The PTE is
given by [24]:
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To calculate the efficiency of (2), the current ratio should
be obtained from (1). The current column [𝐼

1
⋅ ⋅ ⋅ 𝐼
𝑛
]
𝑇 of (1)

should be normalized by 𝐼
𝑛
. Then, the first row [(𝑅

𝑆
+ 𝑅
𝐿
+

𝑗(𝜔𝐿
1
−1/𝜔𝐶

1
)) ⋅ ⋅ ⋅ 𝑗𝜔𝑀
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] and [𝑉

𝑠
] of (1) can be erased and

the last column [𝑗𝜔𝑀
2,𝑛
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𝑛
+𝑅
𝐿
+𝑗(𝜔𝐿
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𝑛
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𝑇 can

be transposed to the right hand side. Therefore, the last row
of the current matrix [𝐼

𝑛
/𝐼
𝑛
] is erased. Then, it becomes as

follows:
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From (3), the current ratio 𝐼
1
/𝐼
𝑛
, . . . , and 𝐼

𝑛−1
/𝐼
𝑛
can be

obtained by using inverse matrix and they are substituted for
(2). Therefore, the PTE (𝜂) becomes a function of 𝐶

2
, . . . , 𝐶

𝑛

and 𝑅
𝐿
as follows:
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𝑛
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) . (4)

Note that 𝐶
1
and 𝑅

𝑆
are not related to PTE (𝜂) but are

related to impedance matching. Our purpose is to determine
𝐶
2
, . . . , 𝐶

𝑛
and 𝑅

𝐿
for maximum PTE. 𝐶

1
and 𝑅

𝑆
are also

important for impedance matching that will be determined
by impedance matching condition.

3. Optimum Design of Asymmetrical
Relay Resonators

First, the optimum resistance of 𝑅
𝐿,opt should be expressed

as a function of 𝐶
2
, 𝐶
3
, . . ., and 𝐶

𝑛−1
to satisfy the equation

of 𝜕𝜂(𝐶
2
, . . . , 𝐶

𝑛
, 𝑅
𝐿
)/𝜕𝑅
𝐿
= 0 [17]. The equation of 𝑅

𝐿,opt =
𝑓(𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑛−1
) is substituted to (4) and, then, PTE

(𝜂) becomes a function of 𝐶
2
, 𝐶
3
, . . ., and 𝐶

𝑛
. To obtain

the optimum capacitance of 𝐶
2,opt, 𝐶3,opt, . . ., and 𝐶

𝑛,opt for
maximum efficiency, the equations of 𝜕𝜂/𝜕𝐶

2
= 0, . . ., and

𝜕𝜂/𝜕𝐶
𝑛
= 0 should be simultaneously solved but they are

very complicated. Therefore, 𝐶
2,opt, . . ., and 𝐶

𝑛,opt could be
determined by GA and PTE equation of (4). GA is a search
heuristic that mimics the process of natural selection. It
used to generate useful solution to optimization and search
problems. GA finds the minimum value of fitness function
by repetition of selection, crossover, and mutation which are
inherent process [24, 28]. This GA procedure is summarized
in Figure 3 andGAoptions are listed in Table 1.Theminimum
value of fitness function, that is, negative PTE equation of (4),
is found through the repetition of selection, crossover, and
mutationwhich are inherent process of GA. Finally, themini-
mum value of negative PTE corresponding tomaximumPTE
is found when the optimum capacitance is determined. The
optimization algorithmofGAwas implemented byMATLAB
code. After 𝐶

2,opt, . . ., and 𝐶
𝑛,opt are determined, 𝑅

𝐿,opt is

obtained by the equation of 𝑅
𝐿,opt = 𝑓(𝐶

2
, 𝐶
3
, . . . , 𝐶

𝑛−1
).

Lastly, 𝐶
1
and 𝑅

𝑆
are chosen to match the imaginary part

and real part of input impedance, respectively. The input
impedance (𝑍in) is obtained from the equivalent circuit of
Figure 2 and is given by

𝑍in = 𝑅1 + 𝑗(𝜔𝐿1 −
1
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(5)

𝐶
1,opt is determined for Im(𝑍in) to be zero and 𝑅𝑆,opt is set to

be Re(𝑍in) from (5).

4. Results

Figure 4 shows the calculated PTE when using the optimum
capacitance determined by GA and using the conventional
capacitance determined by 𝐶

𝑖
= 1/(𝜔

0

2
𝐿
𝑖
) (𝑖 = 2, 3, 4). Note

that 𝐶
1
is given by Im(𝑍in) = 0 for impedance matching

condition. The structure is shown in Figure 1 when 𝑑
1
and

𝑑
2
scan from 16 to 40 cm and from 13 to 37 cm, respectively.

The PTEs when using the optimum capacitance are much
higher and flatter than those using conventional capacitance.
The average and standard deviation of PTE are 75.3% and
5.38%, respectively, when the optimum capacitance is used.
On the other hand, when the conventional capacitance [25]
is used, the average and standard deviation are 51.8% and
16.43%, respectively. These results clearly indicate that our
method is to find the maximum PTE in the asymmetrical 𝑛-
resonator system, compared with the previous method [25]
in the modified paper. The operating frequency of 6.78MHz
is standardized frequency by A4WP formagnetically coupled
wireless power transfer system.
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Six cases according to relay position of 𝑑
1
and 𝑑

2
are

chosen arbitrarily to demonstrate that our method is gen-
erally applied for the various cases. The distances between
resonators are shown in Figure 5. Figure 6 shows the pho-
tograph of measurement setup. There are four resonators
with capacitors in series whose configuration is the case of
#1 in Figure 5. Two feeding loops near resonators 1 and 4
are shown as a source and a load, respectively. The space
between resonator 1 and feeding loop (port 1) determines
source resistance of 𝑅

𝑆
and that between feeding loop (port

2) and resonator 2 determines load resistance of 𝑅
𝐿
for the

impedancematching. Power transfer efficiency (PTE) is given
by |𝑠
21
|
2
/(1 − |𝑠

11
|
2
) measured by a vector network analyzer

shown in the photograph.
Figure 5 shows the PTEs of six cases, both simulation and

measurement. Note that case #4 is the optimum placement of
the relays when 𝑑

1
and 𝑑

2
are found to be 37 cm and 26 cm,

respectively. It is clearly shown that the PTE is improved by
using the optimum capacitance at the optimum placement.

The values of 𝐶
1
,. . . , 𝐶

4
, 𝑅
𝑆
, and 𝑅

𝐿
are specified in Table 2

in both cases of optimum capacitance and conventional
capacitance. The measured results tend to agree with the
simulated results.

However, the efficiencies of measurement are small,
compared with the simulation results. The measured errors
are thought to be caused by the following reasons. First, the
conductivity of the fabricated resonators is lower than that of
pure copper used in the simulation. Second, the capacitors
have a loss that is not considered in simulation. Lastly, the
parameters such as𝑅

𝑖
,𝐿
𝑖
, and𝑀

𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3, 4, 𝑖 ̸= 𝑗) from

HFSS simulator may be slightly different from the fabricated
resonator values. It could generate some errors in finding the
optimum capacitance value because GA code uses the 𝑅

𝑖
, 𝐿
𝑖
,

and𝑀
𝑖𝑗
from HFSS simulator.

Figure 7 shows the calculated dissipation power of four
resonators and the load for the six cases when 1W power is
injected. It is clear that the small dissipated power of four
resonators and the large load power indicate the good transfer
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Table 1: GA options.

Classification Values
Variables 𝐶

2
, 𝐶
3
, 𝐶
4

Boundary of variables
𝐶
2
: 700∼900 pF

𝐶
3
: 3000∼7000 pF

𝐶
4
: 1400∼2000 pF

Population 1000
Generation 20
Selection Tournament
Crossover Scattered
Mutation Adaptive Feasible
Fitness function −𝜂 = 𝑓 (𝐶

2
, 𝐶
3
, 𝐶
4
)

efficiency. The power has a relationship to the equation of
𝑃
𝑖
= (1/2)|𝐼

𝑖
|
2
/𝑅
𝑖
(𝑖 = 1, . . . , 4) and 𝑃

𝐿
= (1/2)|𝐼

4
|
2
/𝑅
𝐿
.

Therefore, the dissipated powers are related to the currents
on each resonator since 𝑅

𝑖
(𝑖 = 1, 2, 3, 4) is fixed. In cases

of using conventional capacitance, if the distances between
two adjacent resonators are longer, the power cannot be
transferred well but can be dissipated in the first resonator
between them as seen in cases such as cases #1, #3, and #6
in Figure 7. By using optimum capacitance, the currents of
resonators can be optimized. For example, the more current
is flowing on the large loop of resonator 2 to transfer power
more efficiently.Therefore, themore power is to be dissipated
in the load. Case #4 is the most optimized placement (𝑑

1
and

𝑑
2
) for the maximum PTE in this configuration. By using the

optimum capacitance, the PTE is further improved. To be
summarized, the optimum capacitance of the asymmetrical
relays should be designed to obtain maximum PTE as well as
the optimum positions of relay resonators.

5. Conclusion

This work presents a new design method of asymmetrical
relay resonators for efficient wireless power transfer. The
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Figure 7: Dissipated power at four resonators and the load (𝑃in = 1W).

Table 2: Designed parameters: (a) conventional design by 𝐶
𝑖
=

1/(𝜔
0

2
𝐿
𝑖
) (𝑖 = 2, 3, 4) and (b) optimum design by GA.

(a)

#1 #2 #3 #4 #5 #6
𝑅
𝐿
(Ω) 0.021 0.071 54.26 1.97 0.083 3.99

𝑅
𝑆
(Ω) 0.289 42.37 383.59 0.252 0.026 0.019

𝐶
1
(pF) 1841 618.5 836 1483 1496 1495

𝐶
2
(pF) 821.6

𝐶
3
(pF) 5018

𝐶
4
(pF) 1495

(b)

#1 #2 #3 #4 #5 #6
𝑅
𝐿
(Ω) 0.056 0.08 0.067 0.518 0.335 1.165

𝑅
𝑆
(Ω) 0.397 0.717 0.401 0.311 0.323 0.07

𝐶
1
(pF) 1001 1004 1008 1494 1494 1495

𝐶
2
(pF) 758 764 765 819 813 800

𝐶
3
(pF) 3405 4960 3878 4597 4151 2584

𝐶
4
(pF) 1495 1495 1454 1467 1493 1069

optimum design of asymmetrical relay is performed by
both optimum distances between the relays and optimum

capacitance of resonators. The optimum locations of the
asymmetrical relay resonators were found as the positions
of the relays are scanned. To further improve the PTE,
the optimum capacitance of the resonators was determined
by GA. To find optimum capacitance, GA can replace the
complicated simultaneous equations. The PTEs when using
the optimum capacitance are much higher and flatter than
those using conventional capacitance as the positions of the
relays are scanned. 𝐶

1
and 𝑅

𝑆
are not related to the PTE

but are related to the impedance matching. The dissipated
powers of each resonator and load are investigated, which
assures that optimum currents of resonators are set by the
optimum capacitance to transfer power more efficiently. The
design method can be extended and applied to different
configurations, that is, the relay resonators including a source
and a load.
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