6 research outputs found

    A receding horizon event-driven control strategy for intelligent traffic management

    Get PDF
    AbstractIn this paper, the intelligent traffic management within a smart city environment is addressed by developing an ad-hoc model predictive control strategy based on an event-driven formulation. To this end, a constrained hybrid system description is considered for safety verification purposes and a low-demanding receding horizon controller is then derived by exploiting set-theoretic arguments. Simulations are performed on the train-gate benchmark system to show the effectiveness and benefits of the proposed methodology

    Approximate Dynamic Programming for Constrained Piecewise Affine Systems with Stability and Safety Guarantees

    Full text link
    Infinite-horizon optimal control of constrained piecewise affine (PWA) systems has been approximately addressed by hybrid model predictive control (MPC), which, however, has computational limitations, both in offline design and online implementation. In this paper, we consider an alternative approach based on approximate dynamic programming (ADP), an important class of methods in reinforcement learning. We accommodate non-convex union-of-polyhedra state constraints and linear input constraints into ADP by designing PWA penalty functions. PWA function approximation is used, which allows for a mixed-integer encoding to implement ADP. The main advantage of the proposed ADP method is its online computational efficiency. Particularly, we propose two control policies, which lead to solving a smaller-scale mixed-integer linear program than conventional hybrid MPC, or a single convex quadratic program, depending on whether the policy is implicitly determined online or explicitly computed offline. We characterize the stability and safety properties of the closed-loop systems, as well as the sub-optimality of the proposed policies, by quantifying the approximation errors of value functions and policies. We also develop an offline mixed-integer linear programming-based method to certify the reliability of the proposed method. Simulation results on an inverted pendulum with elastic walls and on an adaptive cruise control problem validate the control performance in terms of constraint satisfaction and CPU time

    zonoLAB: A MATLAB toolbox for set-based control systems analysis using hybrid zonotopes

    Full text link
    This paper introduces zonoLAB, a MATLAB-based toolbox for set-based control system analysis using the hybrid zonotope set representation. Hybrid zonotopes have proven to be an expressive set representation that can exactly represent the reachable sets of mixed-logical dynamical systems and tightly approximate the reachable sets of nonlinear dynamic systems. Moreover, hybrid zonotopes can exactly represent the continuous piecewise linear control laws associated with model predictive control and the input-output mappings of neural networks with piecewise linear activation functions. The hybrid zonotope set representation is also highly exploitable, where efficient methods developed for mixed-integer linear programming can be directly used for set operation and analysis. The zonoLAB toolbox is designed to make these capabilities accessible to the dynamic systems and controls community, with functionality spanning fundamental operations with hybrid zonotope, constrained zonotope, and zonotope set representations, powerful set analysis tools, and general-purpose algorithms for reachability analysis of open- and closed-loop systems

    Innovative solar energy technologies and control algorithms for enhancing demand-side management in buildings

    Get PDF
    The present thesis investigates innovative energy technologies and control algorithms for enhancing demand-side management in buildings. The work focuses on an innovative low-temperature solar thermal system for supplying space heating demand of buildings. This technology is used as a case study to explore possible solutions to fulfil the mismatch between energy production and its exploitation in building. This shortcoming represents the primary issue of renewable energy sources. Technologies enhancing the energy storage capacity and active demand-side management or demand-response strategies must be implemented in buildings. For these purposes, it is possible to employ hardware or software solutions. The hardware solutions for thermal demand response of buildings are those technologies that allow the energy loads to be permanently shifted or mitigated. The software solutions for demand response are those that integrate an intelligent supervisory layer in the building automation (or management) systems. The present thesis approaches the problem from both the hardware technologies side and the software solutions side. This approach enables the mutual relationships and interactions between the strategies to be appropriately measured. The thesis can be roughly divided in two parts. The first part of the thesis focuses on an innovative solar thermal system exploiting a novel heat transfer fluid and storage media based on micro-encapsulated Phase Change Material slurry. This material leads the system to enhance latent heat exchange processes and increasing the overall performance. The features of Phase Change Material slurry are investigated experimentally and theoretically. A full-scale prototype of this innovative solar system enhancing latent heat exchange is conceived, designed and realised. An experimental campaign on the prototype is used to calibrate and validate a numerical model of the solar thermal system. This model is developed in this thesis to define the thermo-energetic behaviour of the technology. It consists of two mathematical sub-models able to describe the power/energy balances of the flat-plate solar thermal collector and the thermal energy storage unit respectively. In closed-loop configuration, all the Key Performance Indicators used to assess the reliability of the model indicate an excellent comparison between the system monitored outputs and simulation results. Simulation are performed both varying parametrically the boundary condition and investigating the long-term system performance in different climatic locations. Compared to a traditional water-based system used as a reference baseline, the simulation results show that the innovative system could improve the production of useful heat up to 7 % throughout the year and 19 % during the heating season. Once the hardware technology has been defined, the implementation of an innovative control method is necessary to enhance the operational efficiency of the system. This is the primary focus of the second part of the thesis. A specific solution is considered particularly promising for this purpose: the adoption of Model Predictive Control (MPC) formulations for improving the system thermal and energy management. Firstly, this thesis provides a robust and complete framework of the steps required to define an MPC problem for building processes regulation correctly. This goal is reached employing an extended review of the scientific literature and practical application concerning MPC application for building management. Secondly, an MPC algorithm is formulated to regulate the full-scale solar thermal prototype. A testbed virtual environment is developed to perform closed-loop simulations. The existing rule-based control logic is employed as the reference baseline. Compared to the baseline, the MPC algorithm produces energy savings up to 19.2 % with lower unmet energy demand

    Game-Theoretic and Set-Based Methods for Safe Autonomous Vehicles on Shared Roads

    Full text link
    Autonomous vehicle (AV) technology promises safer, cleaner, and more efficient transportation, as well as improved mobility for the young, elderly, and disabled. One of the biggest challenges of AV technology is the development and high-confidence verification and validation (V&V) of decision and control systems for AVs to safely and effectively operate on roads shared with other road users (including human-driven vehicles). This dissertation investigates game-theoretic and set-based methods to address this challenge. Firstly, this dissertation presents two game-theoretic approaches to modeling the interactions among drivers/vehicles on shared roads. The first approach is based on the "level-k reasoning" human behavioral model and focuses on the representation of heterogeneous driving styles of real-world drivers. The second approach is based on a novel leader-follower game formulation inspired by the "right-of-way" traffic rules and focuses on the modeling of driver intents and their resulting behaviors under such traffic rules and etiquette. Both approaches lead to interpretable and scalable driver/vehicle interaction models. This dissertation then introduces an application of these models to fast and economical virtual V&V of AV control systems. Secondly, this dissertation presents a high-level control framework for AVs to safely and effectively interact with other road users. The framework is based on a constrained partially observable Markov decision process (POMDP) formulation of the AV control problem, which is then solved using a tailored model predictive control algorithm called POMDP-MPC. The major advantages of this control framework include its abilities to handle interaction uncertainties and provide an explicit probabilistic safety guarantee under such uncertainties. Finally, this dissertation introduces the Action Governor (AG), which is a novel add-on scheme to a nominal control loop for formally enforcing pointwise-in-time state and control constraints. The AG operates based on set-theoretic techniques and online optimization. Theoretical properties and computational approaches of the AG for discrete-time linear systems subject to non-convex exclusion-zone avoidance constraints are established. The use of the AG for enhancing AV safety is illustrated through relevant simulation case studies.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/167992/1/nanli_1.pd
    corecore