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Summary  

The present thesis investigates innovative energy technologies and control 
algorithms for enhancing demand-side management in buildings. The work focuses 
on an innovative low-temperature solar thermal system for supplying space heating 
demand of buildings. This technology is used as a case study to explore possible 
solutions to fulfil the mismatch between energy production and its exploitation in 
building. This shortcoming represents the primary issue of renewable energy 
sources. Technologies enhancing the energy storage capacity and active demand-
side management or demand-response strategies must be implemented in buildings. 
For these purposes, it is possible to employ hardware or software solutions. The 
hardware solutions for thermal demand response of buildings are those technologies 
that allow the energy loads to be permanently shifted or mitigated. The software 
solutions for demand response are those that integrate an intelligent supervisory 
layer in the building automation (or management) systems. The present thesis 
approaches the problem from both the hardware technologies side and the software 
solutions side. This approach enables the mutual relationships and interactions 
between the strategies to be appropriately measured.  

The thesis can be roughly divided in two parts. The first part of the thesis 
focuses on an innovative solar thermal system exploiting a novel heat transfer fluid 
and storage media based on micro-encapsulated Phase Change Material slurry. This 
material leads the system to enhance latent heat exchange processes and increasing 
the overall performance. The features of Phase Change Material slurry are 
investigated experimentally and theoretically. A full-scale prototype of this 
innovative solar system enhancing latent heat exchange is conceived, designed and 
realised. An experimental campaign on the prototype is used to calibrate and 
validate a numerical model of the solar thermal system. This model is developed in 
this thesis to define the thermo-energetic behaviour of the technology. It consists of 
two mathematical sub-models able to describe the power/energy balances of the 



flat-plate solar thermal collector and the thermal energy storage unit respectively. 
In closed-loop configuration, all the Key Performance Indicators used to assess the 
reliability of the model indicate an excellent comparison between the system 
monitored outputs and simulation results. Simulation are performed both varying 
parametrically the boundary condition and investigating the long-term system 
performance in different climatic locations. Compared to a traditional water-based 
system used as a reference baseline, the simulation results show that the innovative 
system could improve the production of useful heat up to 7 % throughout the year 
and 19 % during the heating season.  

Once the hardware technology has been defined, the implementation of an 
innovative control method is necessary to enhance the operational efficiency of the 
system. This is the primary focus of the second part of the thesis. A specific solution 
is considered particularly promising for this purpose: the adoption of Model 
Predictive Control (MPC) formulations for improving the system thermal and 
energy management. Firstly, this thesis provides a robust and complete framework 
of the steps required to define an MPC problem for building processes regulation 
correctly. This goal is reached employing an extended review of the scientific 
literature and practical application concerning MPC application for building 
management. Secondly, an MPC algorithm is formulated to regulate the full-scale 
solar thermal prototype. A testbed virtual environment is developed to perform 
closed-loop simulations. The existing rule-based control logic is employed as the 
reference baseline. Compared to the baseline, the MPC algorithm produces energy 
savings up to 19.2 % with lower unmet energy demand.  
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Chapter 1 

Introduction 

1.1 Background and framework 

According to several studies and reports, buildings are responsible for up to 
40 % of the global energy needs [1,2,3,4]. Furthermore, in the next future, the total 
energy consumption of buildings is expected to grow. This fact is mainly due to an 
increase in the comfort requirements and the population accessing to more 
comfortable – and as a consequence energy-intensive – buildings. Architects, 
engineers, and researchers worldwide are trying to cope with this problem, defining 
sustainable paths of development. This is not a trivial task since buildings are 
characterised by multi-disciplinary aspects.  

 
Figure 1. The most unfortunate building dodecahedron. Image courtesy of prof. 

Forrest Meggers (Princeton University). 
 
To figure out the level of complexity required, the issues concerning 

sustainable buildings can be compared with those encountered in the batteries 
development path. Nowadays, batteries are one of the most interesting technologies 
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of the energy scenario. Nevertheless, some issues should still be addressed to favour 
a larger-scale and more sustainable market penetration of batteries. These problems 
mainly concern the energy density, the power density, the initial capital investment 
cost, and the operating costs. Experts refer to this set of issues as “the unfortunate 
tetrahedron”. Buildings are much more complex structures than batteries. 
Therefore, defining a sustainable path for buildings means dealing with aspects 
related not only to balances of resources (e.g., costs, materials, emission) and 
thermo-energetics (e.g., energy, heat, moisture), but also involving the several 
tangled aspects concerning people (e.g., summer and winter comfort, air quality, 
aesthetics, ethics, culture, occupancy, etc.). This complex framework led experts to 
define the building issues as “the most unfortunate dodecahedron”! 

 
 

 
Figure 2. A visualisation of the Pareto front for the reduction of contrasting needs 

energy consumption vs. improvement of the thermal comfort of occupants 
(evaluated as Predicted Percentage of Dissatisfied). 

 
Nowadays, researchers investigating this very complex building dodecahedron 

have a twofold goal. On the one side, the building stakeholders have to formulate 
the problem of building sustainability. In general, this process coincides with the 
preliminary building design phase. At this stage, all the aspects composing the 
building dodecahedron should be considered and all their possible combinations 
investigated. Nowadays, the research activity is focused on figuring out this process 
using the mathematical formulation of a multi-objective optimization. These 
objective functions are characterized by contrasting (or conflicting) needs. For 
instance, the pursuit of obtaining higher levels of comfort can lead to increase the 
energy demand of buildings dramatically. Likewise, the improvement of building 
energy performance is accompanied by an increase in the building-related initial 
investment costs. Many other examples would be possible. In those cases, a single 
solution that simultaneously optimizes each goal does not exist; whereas it exists a 
very high number (possibly infinite) of equally optimal solutions. These solutions 
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are called non-dominated or Pareto optimal solutions. Without additional subjective 
preference information, all Pareto optimal solutions are considered equally good. 
The entire set of Pareto optimal solutions – not dominated by any other feasible 
solutions – is referred to as the Pareto front (or Pareto frontier). Figure 2 shows an 
example of Pareto front used to investigate the contrasting needs of thermal comfort 
and energy consumption.  

On the other side, building stakeholders have to make decisions. Decision 
making means to define the trade-off among two or more contrasting objective 
functions. Defining trade-offs means finding a unique combination between the set 
of equally good solutions, by appealing to subjective preference information. 
Practitioners can define these ones using their own experience or the indication of 
customers. Usually, the number of possible solutions is reduced and regulated by 
the existence of problem bounds (e.g., economic constraints, or technical feasibility 
constraints, etc.). Using the previous example, defining a trade-off solution between 
the contrasting objectives of increasing the occupants’ thermal comfort and 

reducing the building energy demand means to define a valid and unique 
compromise between two requirements, as highlighted in Figure 3. So far, the 
outcomes of the studies aiming at defining this optimal trade-off led to strongly 
improve the overall building thermo-energetic performance. As a consequence, the 
market penetration of efficient buildings’ technologies and nearly Zero Energy 

Buildings strongly increased. 
 

 
Figure 3. Subjective preferences allow a unique trade-off between the conflicting 

needs to be determined, individuating the required optimal conditions. 
 
However, moving forward the building design phase and considering the 

operational lifespan of a building, new challenges must be faced. Indeed, buildings 
are dynamic systems whose requirements evolve over time. Nowadays, this is more 
significant and evident than in the past.  For instance, the extensive adoption of 
renewable energy sources - directly integrated into the buildings or connected to 
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the energy grids - has increased the variation over time of the energy value 
(evaluated as consumption of resources, as well as energy tariff). Indeed, the energy 
value strongly fluctuates over time, even with substantial daily differences, 
according to the stochastic fluctuations of the energy demand and availability. The 
more the penetration of renewable source, the more stochastic the energy 
availability. Furthermore, it can be observed a mismatch between these stochastic 
patterns of energy production and consumption (e.g., in buildings, space heating 
demand mainly does not occur when solar energy is readily available). This 
variation of the boundary conditions and requirements also affects the selection of 
the optimal trade-off on the Pareto front. Indeed, the selection of the correct 
combination of the parameters must evolve over time, adapting itself to the 
variation of boundary conditions. For instance, Figure 4 shows how this dynamic 
behaviour can be applied to the previous example. On the one hand, the case 
indicated with the black arrow can be representative of conditions where the energy 
value becomes very low (e.g., when significant renewable energy sources are 
available), thus the energy consumption becomes no more a primary concern. On 
the other hand, the case indicated with the red arrow can be symbolic of an increase 
of energy prices or a decrease of comfort requirements (e.g., during unoccupied 
periods).  

 

 
Figure 4. (black arrow) A possible optimal trade-off when energy value is low. 

(red arrow) A possible optimal trade-off when energy value is high or the building 
is unoccupied. 

 
The previous scenario has increased the necessity of buildings capable of 

performing flexible thermal management strategies.  Therefore, modern buildings 
must be able to interact with their occupants and the energy supply grid; to adapt 
their behaviour to the continuous variation of their needs. Buildings with these 
properties are often referred to as responsive buildings. These responsive buildings 
assume a fundamental role also in the energy distribution grid, since they can 
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perform thermal demand response strategies (e.g., active energy storage, peak load 
shifting, etc.). In this context, new market opportunities are emerging. In detail, 
software services capable of performing data analytics tools and energy 
management strategies will play a crucial role in the very next few years. This 
opportunity represents a shift from the traditional energy and building market that 
is generally more hardware solutions oriented. Nowadays potential benefits offered 
by software services are impressive and range from the optimisation of the system 
design to the active energy demand response management.  

The hardware solutions for thermal demand response of buildings are those 
technologies that allow the energy loads to be permanently shifted or mitigated. In 
particular, this goal is achieved by exploiting thermal storage, a feature strictly 
related to the thermal capacity of an element or a structure. Passive storage 
strategies exploit the thermal capacity of the overall building itself (e.g., walls, 
ceilings, floors, structures). Active strategies instead bound the storage functions to 
a specific element (generally referred to as thermal energy storage unit or tank).  
Passive and active storage strategies can be combined to enhance the overall storage 
capabilities of buildings. Furthermore, they can be based on the exploitation of both 
sensible and latent heat (when a phase change occurs).  

The software solutions for demand response are those that integrate an 
intelligent supervisory layer in the building automation (or management) system. 
The continuous collection and exchange through the internet of monitored building-
related data enhance this feature. Such characteristics are typical of the smart 
buildings. In fact, nowadays electronic components are becoming extremely 
affordable; thus their deployment in buildings sharply increased in the last decade. 
This massive implementation has allowed a significant amount of data to be more 
readily available and accessible. Simultaneously, the increase in computational 
power and the availability of accurate weather and energy tariff forecast allowed 
the building designers to explore many possible advanced control strategies for 
optimising the energy management of buildings. In particular, in the design stage, 
data-analytics is necessary to define demand/supply profiles and tune the 
combination of multi-energy systems (e.g., the combination of various renewable 
energy sources with storage and energy delivery systems). Furthermore, in the 
design stage, the monitoring system must be accurately selected and installed 
defining where and which are the most critical variables that must be gathered. In 
the operating phase, the data can be used for continuous commissioning purposes, 
the detection of fault occurrence and the re-tuning and optimisation of system 
controllers. This process consists in the development of an intelligent supervisory 
layer capable of improving the responsiveness of the building automation system. 

 
 

1.2 Aim and objectives  

Nowadays, it is crucial for the scientific research to deeply investigate both 
these hardware and software aspects. It is essential to have a vision that considers 
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both these elements at the same time. In fact, only their correct overlap and 
integration can lead to effective solutions for the challenges offered by the current 
energy scenario. The present thesis is based on this vision. The main goal of the 
work is to investigate hardware technologies and software solutions that enable to 
reduce the mismatch between energy availability and demand in buildings. For this 
purpose, a specific case study of a renewable energy system coupled with a storage 
unit for building space heating was considered as a case study. On the one hand, the 
thesis investigated all the thermo-energetic aspects influencing the performance of 
an innovative hardware technology (a slurry PCM-based solar thermal system for 
building space heating). On the other hand, an innovative close-loop predictive 
controller was devised to enhance the efficiency of this novel system. This case 
study allowed several of the challenges required by the modern energy science to 
be approached and faced. In this perspective, the path of the thesis assumes a 
broaden vision and the approach adopted can be further generalised to different 
technologies or systems.  

The first part of the thesis is focused on an innovative technological solution of 
an active latent heat-based thermal energy storage coupled with a solar thermal 
system. This hardware solution allows the gap between renewable energy 
availability and user energy demand to be permanently shortened. It also mitigates 
the mismatch between peaks of demand and production. Firstly, this technology 
was investigated and conceived theoretically. Secondly, experimental tests were 
performed to define the features required for a storage media capable of exploiting 
latent heat. Thirdly, physical-mathematical numerical models were developed to 
perform simulations. These are essential to assess the potential benefits achievable 
by such a technology. Finally, a full-scale prototype was conceived and realised to 
investigate the performance of the innovative system experimentally. 

Once the technical aspects of this new technology were solved, further 
questions have arisen: “Can we obtain the maximum benefits achievable by an 
innovative technology just adapting the existing control methods developed for 
other technologies? Or does this innovative technology require to set up control 
paradigms ad-hoc developed?”. The coupling of innovative technologies with 
control solutions that effectively exploit the potentialities offered by recent 
advances in electronics is as significant as the investigation of the technology itself. 
Therefore, any innovative technological solution requires being controlled 
optimally to be effective and fully exploit its potential. For this reason, the second 
part of the thesis is mainly focused on the software solutions for demand response. 
In more detail, this part of the thesis is primarily dedicated to the thermal 
management of buildings with Model Predictive Control (MPC), a promising 
control strategy that merges principles of classical feed-back control and 
optimisation. An MPC algorithm has been devised to regulate the hardware 
technological solution developed in the first part of the thesis. 

The primary scopes of the current thesis can be pinpointed through the 
following bullet points: 

• investigation of innovative PCM features and properties; 
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• conceiving, design and prototyping of an innovative technology (hardware 
solutions) capable to enhance the usage of solar radiation and maximise 
energy storage opportunities. This technology is used as a case-study 
throughout the entire work; 

• development of a calibrated and validated numerical models able to capture 
thermal dynamics of the prototype elements and to stress its performance 
according to various boundary conditions; 

• assessment of the potentialities offered by the conceived technology in terms 
of efficiency increase and fulfilling of the mismatch between solar energy 
availability and building energy demand; 

• definition of a clear and exhaustive framework concerning innovative 
controllers (software solutions), with a particular focus on those offering 
predictive features and recursive optimisation features (MPC based); 

• devising of an innovative control algorithm to regulate the prototype under 
investigation and maximise its performance. 

 

1.3 Research methodologies  

Figure 5, Figure 6, Figure 7, Figure 8 outline the methodological framework 
and the key-aspects investigated in the present thesis. Even if this research activity 
has been focused on a specific case study (a solar thermal system exploiting latent 
heat for space heating of residential buildings), it contains all the various aspects 
required to correctly approach the full current scientific challenges offered by the 
energetic scenario.  

Chapter 2 is a literature review of the scientific works regarding solar thermal 
technologies, Phase Change Materials (PCMs) and the combination of these two 
topics (PCMs in solar technologies). Chapter 3 introduces the concept of a solar 
thermal system that uses PCM both as heat transfer fluid and as storage media. This 
Chapter can be further divided into three parts: the theoretical and experimental 
investigation of the features of the PCM adopted in the system; the conceiving and 
designing of a full-scale prototype to test the technology; and the development of a 
physical-mathematical numerical model to describe the dynamical evolution over 
time of the innovative s 

ystem. Chapter 4 presents the results of the research undertaken in Chapter 3. 
Firstly, the numerical model has been validated with experimental measurements; 
secondly, the reliable results of the numerical model were used to parametrically 
assess the system performance under various boundary conditions; finally, 
experimental results about the full-scale prototype are presented. Chapter 5 
switches from the investigation of hardware aspects to the software solutions for 
intelligent building thermal energy management. In detail, the first part of the 
Chapter outlines a literature review and a broad framework of the steps necessary 
to correctly implement an MPC problem in buildings. The second part of the 
Chapter formulates an MPC algorithm to regulate the technology presented in the 
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previous chapters. Close-loop simulations were performed to test the controller 
effectiveness and compare its key performance indicators with those of an existing 
rule base controller. The Conclusion Chapter outlines and summarises the main 
findings of the research path. An outlook on the future perspectives is also provided. 

 

References 

[1]  Pérez-Lombard L, Ortiz J, Pout C.  A review on buildings energy consumption 
information. Energ build 2008;40(3):394-98. https://doi.org/10.1016/ 
j.enbuild.2007.03.007. 

[2]  Allouhi A, El Fouih Y, Kousksou T, Jamil A, Zeraouli Y, Mourad Y. Energy 
consumption and efficiency in buildings: current status and future trends. J 
Cleaner prod 2015;109:118-30. https://doi.org/10.1016/j.jclepro.2015.05.139. 

[3] Cao X, Dai X, Liu J. Building energy-consumption status worldwide and the 
state-of-the-art technologies for zero-energy buildings during the past decade. 
Energ build 2016;128:198-213. 

[4] International Energy Agency. Tracking Clean Energy Progress 2017. Energy 
Technology Perspectives 2017 Excerpt. 2017 IEA report. Available at: 
https://www.iea.org/publications/freepublications/publication/TrackingClean
EnergyProgress2017.pdf 



9 
 

 

 
 

Figure 5. Methodological framework of Chapter 2. Numbers in black-boxes 
indicate the chapter subsections dealing with the topic. 
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Figure 6. Methodological framework of Chapter 3. Numbers in black-boxes 
indicate the chapter subsections dealing with the topic. 
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Figure 7. Methodological framework of Chapter 4. Numbers in black-boxes 
indicate the chapter subsections dealing with the topic. 
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Figure 8. Methodological framework of Chapter 5. Numbers in black-boxes 
indicate the chapter subsections dealing with the topic. 
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Chapter 2 

Recent advances in building 
integrated solar thermal systems 
and Phase Change Materials 
(PCMs) 
 

The scope of the present Chapter 2 is to investigate the findings achieved so 
far in the scientific literature about the technologies involved in the work.  

In detail, the first part of the chapter (Section 2.1) describes the background of 
solar thermal technologies. It provides an outlook of the current technologies 
worldwide adopted and a description of the primary elements composing a solar 
thermal system.  

The following Section 2.2 introduces the Phase Change Materials (PCMs). 
The PCMs are often used in building applications to employ latent 
transformations that allow the thermal levels to be reduced. Thus, improving First 
and Second law efficiencies. This section provides a comprehensive review of 
PCMs, their application in buildings, thermal energy storage units, and solar 
thermal technologies.  

The final part of the chapter presents briefly the technology that was used as 
the case study of the present thesis. The detailed focus on this specific system is 
demanded to Chapter 3 and Chapter 4. 

Some portions of the present Chapter were already published in the following 
scientific papers: 

• Design of a low-temperature solar heating system based on a slurry Phase 
Change Material (PCS). Authors: G Serale, E Fabrizio, M Perino. Journal: 
Energy and Buildings 106, 44-58 [144]; 
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• Numerical model and simulation of a solar thermal collector with slurry 
Phase Change Material (PCM) as the heat transfer fluid. Authors: G Serale, 
F Goia, M Perino. Journal: Solar Energy 134, 429-444 [145]; 

• Potentialities of a Low Temperature Solar Heating System Based on Slurry 
Phase Change Materials (PCS). Authors: G Serale, Y Cascone, A 
Capozzoli, E Fabrizio, M Perino. Journal: Energy Procedia 62, 355-263 
[148]. 
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2.1 Solar thermal collectors 

Solar thermal collectors are the most common devices used for the conversion 
of solar energy into heat [1]. The annual report carried out by the Solar Heating 
and Cooling program of the International Energy Agency at the end of 2017 [2], 
has reported that the worldwide installed heating capacity produced using solar 
thermal collectors was about 436 GWth, which corresponded to an estimated total 
of 6.23∙108 m2 of collector area in operation. These installed power led to 
estimated annual energy savings of 357 GWth worldwide, corresponding to a 
reduction of 1.24∙108 emitted tons of CO2 or 3.84∙107 equivalent tons of oil 
consumption. In 2015 only, 40.2 GWth of solar thermal systems were installed 
(64 % of those were new systems, 36 % refurbishment of existing systems). China 
is the leading country in the installation of new systems with about the 75 % of 
the market in 2015 and a total of 4.42∙108 m2 of collector area in operation. Figure 
1(a) shows the trends of the overall installed heating capacity worldwide during 
the last years (referring to the data yearly outlined by the annual report of the 
Solar Heating and Cooling program of the International Energy Agency). Figure 
1(b) reports the market shares of different world regions in 2015.  

Focusing on Italy, a report of Assolterm [3] – the Italian Association of Solar 
Thermal Energy – dating back to 2014, described the Italian market as constituted 
by around 4∙105 m2 of panels installed each year, and a total installed power 
capacity of solar thermal systems that exceeded 1 GWth. These numbers showed 
that, compared to the European countries most advanced in this sector, Italy is 
behind with respect to both the total installed power capacity per capita (i.e., 18 
kWth per 1000 inhabitants, compared to the 270 kWth per 1000 inhabitants of 
Austria), and the annual market (i.e., an installed capacity of 5 kWth per 1000 
inhabitants, compared to the 29 kWth per 1000 inhabitants of Austria).  

The thermal energy produced by solar thermal systems can be used to satisfy:  

• the domestic hot water demand;  
• the space heating demand; 
• the combined production of domestic hot water and space heating (combi-

system). 

The exploitation of solar energy for space heating alone can provide 
substantial energy savings under certain conditions, which depend on the location, 
and the energy demand profile [4,5]. The full profitability of this use is often 
limited to a great extent by the time mismatch between solar energy availability 
and building energy demand [6]. For instance, on the one hand, during winter time 
the limited solar irradiation that is available can barely cover the total energy 
demand for heating. On the other hand, the high solar radiation available in 
summertime far exceeds the energy demand for domestic hot water production, 
and no direct or fully profitable use for this excess can be found – unless large and 
expensive seasonal storages are adopted [7–9]. For this reason, solutions for 
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space-heating demand only and combi-systems are not very common in buildings. 
For example, in Italy 90 % of the installed collectors serve for the production of 
domestic hot water [3]. 

 

 

 

Figure 1. (a) Increasing trend of solar thermal system installed heat capacity 
worldwide. (b) Country distribution of solar thermal system installed in 2015. 

Data were retrieved from [2]. 

 
Conventional collectors use water and an additive (usually glycol, which acts 

as antifreeze) as a heat transfer fluid. The selection of the heat transfer fluid plays 
a very significant role in a solar thermal system because it is used to transfer the 
energy absorbed in the collector to the heat exchanger placed inside the storage 
tank. For water-based system typical range of working temperatures is 50 - 60 °C. 
This range is required firstly to provide heat terminal units with a sufficiently 
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large enthalpy flux and reasonable flow rates; secondly to ensure the use of 
sufficiently small thermal energy storage systems. This relatively high heat 
transfer fluid temperature range causes two different sets of problems: 

• The first set of problems is related to the considerable thermal energy losses 
that occur in all of the system components. These are due to the high-
temperature difference between the heat transfer fluid and the environment. 
For this reason, an increase in this temperature difference corresponds to a 
decrease in the instantaneous system efficiency as well as in the seasonal 
system efficiency. Higher efficiencies are only reached for a fixed heat 
transfer fluid temperature when the environment temperature rises. Once 
again, in winter time, when the temperature and irradiance are lower, the 
capability of the solar thermal system to exploit solar energy is reduced. 
Even in those winter days when there is high irradiation, the water-based 
heat transfer fluid undergoes a consistent increase in temperature to exploit 
the solar energy, and the inefficiency of the process also increases due to the 
enhanced heat dissipation towards the outside. 

• The second set of problems is related to the time variation of the short 
periods of time during which the solar thermal system can be exploited to 
produce heat. The higher the heat transfer fluid temperature, the higher the 
minimum irradiation required to produce a useful heat gain [10].  

 

2.1.1 Brief scientific literature overview about researches about 
solar thermal collectors 

Solar thermal systems have been widely investigated since the ‘40s [11] and 
nowadays constitute a mature technology that is applied at a large scale and is 
spreading significantly. Shukla et al. have provided a complete review of solar 
thermal system developments that are still adopted in this technology and their 
limitations [12]. The present thesis is focused on solar thermal systems applied at 
building scale. Furthermore, the attention is focused on systems that consider 
solar thermal collector and thermal energy storage as separate elements with 
circulation guaranteed with mechanical pumps. Thus, other applications (e.g., 
solution for industrial or district heating purposes, compact systems integrating 
collector and storage, natural convection systems) are not particularly deepened. 
Eventually, flat plate collectors resulted more attractive for building applications 
compared to evacuated tube collectors. Indeed, even if evacuated collectors better 
perform in producing fluid at high temperatures, they are not competitive because 
of higher initial installation costs. Thus, they are mostly used for industrial [13], 
district-heating assisted [14], or solar-cooling [15] applications, where the process 
temperature required are higher and the panel efficiency can positively intervene 
in a cost-optimal assessment. Therefore, even if evacuated tube collectors are the 
most common technology for solar energy conversion in thermal power (due to 
their massive application in the industrial and district heating sectors in China), 



17 
 

they occupy only a small share of the market of building applications. 
Furthermore, in Italy 86.5 % of the installed solar collectors are of the flat plate 
type, and vacuum tube collectors represent only the remaining 13.5 %. Table 1 
reports the 2015 data of total heat power capacity installed in the various country 
for different collector technologies and different heat carrier fluids [2]. 

 
Table 1. Total heat power capacity installed in various country for different 
collector technologies and different heat carrier fluids. 

Country 

Flat plate collectors Evacuated 
tube 

collectors 
Water 

Unglazed 
Water 
Glazed 

Air 
Unglazed 

Air 
Glazed 

[MWth] [MWth] [MWth] [MWth] [MWth] 

Australia 3605 2308 210 6 110 

Italy 31 2527 / / 395 

Canada 560 49 280 34 32 

China / 24,885 / / 285,585 

United States 15,283 1921 73 36 102 

New Zealand 5 100 / / 7 

 
Over the years, several developments have been made in order to improve the 

overall performance of solar thermal panels and their efficiency, and many 
activities are still underway. These studies can be divided into two macro-
categories: those related to the collector as a component and those related to the 
investigation of novel heat transfer fluids instead of water-based solutions. 

 

2.1.1.1 Studies regarding the collector technologies: 

The solar thermal collector is the element used for harvesting solar energy. In 
the flat plate panel configuration, the collector is composed of the following 
different parts (highlighted in Figure 2):  

• a transparent single (or double) glazing cover to reduce top heat-losses; 
• a selectively coated a flat-plate absorber plate; 
• pipes for the flow of the heat transfer fluid; 
• thermal insulation to reduce heat losses from edge and back of the collector; 
• a protective casing to ensure the components are free from dust and 

moisture. 

Several researchers have worked on the design and development of flat plate 
collectors, mainly focusing on the first three elements that most influence the 
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overall collector performance and whose design can be optimised.  
The most widely-used transparent cover material in solar collectors is the 

single glass configuration, due to its high solar transmittance and low cost. In 
recent years, plastic thin films, plastic sheets, polymeric materials or transparent 
honeycomb compounds are also considered as upper transparent cover material in 
solar collectors [12,16,17]. In the case of the glass cover, studies investigated the 
overall increase of the system efficiency achievable either by applying anti-
reflected coatings to increase the solar transmittance [18] or by the adoption of 
multiple glass layers with air gaps to increase the thermal insulation [19]. A 
thermotropic layer may be added to the transparent cover (as well as over the 
absorber plate) to mitigate stagnation risk [20]. 

 
 

 
Figure 2. Schematic of the parts composing a flat-plate solar thermal collector. 

 
The absorber plate is considered the most crucial parameter in the design of a 

solar thermal collector [21]. Its thermal performance is influenced by the absorber 
shape, material and coating. For easiness in the fabrication process, the most 
common absorber shape is the flat plate, which follows the collector shape. 
However, studies on parabolic, trapezoidal or variable thickness rectangular 
shapes were carried out, showing promising results in terms of improvement of 
the heat exchange. The traditional absorber material is generally a metal (i.e., 
aluminium or copper) for the requirement of high thermal conductivity to 
enhances the solar energy harvesting. However, nowadays polymer-based 
absorption plates are becoming more and more common because they are cheaper, 
more resistant to corrosion, lighter and easier to integrate into the collector [21]. 
This solution is the result of decades of research and development that led to 
realising polymeric material whose performance is comparable to one of the metal 
absorbers. Eventually, the black coating is the most traditional solution for 
absorber plates. However, for the sake of architectural requirements, panels with 
coloured plates were also developed and tested. Both theoretical and experimental 
results confirmed that coloured absorbers had efficiencies close to the black 
absorbers, if dark tone colour paintings are adopted [22]. 

The most common technological solutions concerning collector pipes are 
parallel pipes (risers) and serpentine pipes collectors. Serpentine pipes are more 
efficient due to a more uniform temperature distribution over the absorbed plate 
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surface, but at the same time they result more expensive. Other geometric designs 
include either two orders of pipes connected in parallel [23], rectangular pipes 
[24], fin-and-tube solutions [25] or conjugation with closed-end oscillating heat 
pipes [26].  

The integration of solar thermal collector directly into building elements (e.g., 
in sloped roofs or façade panels) represents a further topic of investigation. It 
results particularly interesting from the architectural point of view. Furthermore, 
the overall benefits of such technologies should be carefully investigated 
considering both the effects in term of active envelope elements and effective 
renewable energy conversion. Maurer et al. provided extensive reviews about 
solar integration system technologies and strategies [27] and simplified models to 
assess the performance of such systems [28]. 

 

2.1.1.2 Studies regarding the heat transfer fluids adopted in the 
solar thermal systems: 

As aforementioned, solar thermal collectors still suffer from efficiency 
drawbacks due to the relatively high working temperatures of the heat transfer 
fluid. An interesting concept that can be introduced to overcome the limitations 
mentioned above and to extend the operational time of solar thermal systems is 
represented by the adoption of a heat transfer fluid that exploits latent heat instead 
of (or together with) sensible heat. By making use of the (isobaric) phase change 
within the heat transfer fluid, which occurs at an almost constant temperature, a 
far greater amount of heat can be exploited in the process at lower temperature 
levels. High temperature-related inefficiencies can thus be reduced. This 
approach, which is based on the harvesting of energy with a low-exergy content, 
can be particularly suitable when used in combination with low-temperature 
HVAC equipment, such as radiant heating systems. On the other hand, domestic 
hot water production probably requires a slightly higher exergy content, and 
therefore needs to be achieved by coupling such a solar thermal system with other 
energy conversion systems that can increase the exergy level (for example, a heat 
pump). 

In recent years, several research projects, involving a two-phase heat transfer 
process [12], have been conducted to study the effectiveness of solar thermal 
systems. In this way, the isobaric phase change process within the heat transfer 
fluid occurs at an almost constant temperature, without compromising the ability 
of the system to store thermal energy. Therefore, solar energy is exploited at 
lower thermal levels, and the previously described problems, due to a relatively 
high-temperature range, are also reduced. The use of refrigerant-filled solar 
collectors, whose application dates back to the ‘70s, has been investigated by 
many researchers. In these studies, heat pumps, integrated with solar collectors, 
were used to exploit the phase change of the refrigerants that were used as the 
heat transfer fluids. Many kinds of refrigerants - such as Chloro Fluoro Carbons 
and Hydro Fluoro Carbons [29,30] - or other natural fluids – such as propane or 
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carbon dioxide – have been used successfully [31,32]. When operating in a 
transcritical condition, the efficiency of these solar thermal systems is much 
higher than that of traditional water-based collectors. Nevertheless, these 
technologies are not so widely diffused due to the presence of substances that are 
harmful to the environment and the complexity of the system. 

All these past attempts, which took advantage of the latent heat of the heat 
transfer fluid, were based on the exploitation of liquid-to-gas transition. However, 
it is also possible to exploit the solid-to-liquid transition latent heat. This solution 
can be obtained through the introduction of Phase Change Materials (PCMs) into 
the solar thermal system. 
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2.2 Phase Change Materials (PCMs) 

The term Phase Change Materials (PCMs) is referred to industrial products 
which - at atmospheric pressure - undergo a phase transition (in general solid-
liquid and vice versa) at a specific utilisation temperature. The nominal phase 
transition temperature should be chosen to match with the requirements of the 
specific application where the PCMs are used. PCMs store (during fusion) and 
release (during solidification) large amounts of thermal energy at an almost 
constant temperature. This fact is due to the exploitation of material latent heat of 
fusion/solidification. Specific latent heat capacities of fusion/solidification of 
PCMs are relatively high. PCMs are used to store excess energy, which would be 
otherwise wasted, and to match the demand and supply when they do not coincide 
in time [33,34]. In this process, PCMs act like an almost isothermal heat reservoir 
(Figure 3), due to the significant amount of heat they store or release during their 
phase transition. Thus, PCMs can be very useful in applications where the 
temperature control is essential. 

 

 
Figure 3. The PCMs allows a significant amount of thermal energy to be stored in 

an almost isothermal process. 
 
 

2.2.1 Phase Change Materials features 

Many characteristics of thermo-physical, chemical, kinetic, environmental 
and economic nature should be considered to evaluate the performance of a PCM 
[35–38]. In general, to satisfy the requirements of heat storage capability the 
following properties should be maximised (the higher the value, the better): 

• specific latent heat capacity of fusion/solidification; 
• specific sensible heat capacity; 
• density (to maximise the heat storable per unit of volume).  
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Moreover, the density variation (hence volume change) between solid and 
liquid phases should be minimised. Otherwise, the container holding the material 
should be oversized to fit with the maximum volume reachable when the material 
is at the maximum expansion (generally during the liquid phase) [33]. 

PCMs should present long-term stability. It means that the thermo-physical 
properties of the PCM should remain constant regardless of the number of 
fusion/solidification cycles. Various laboratory ageing tests showed that the most 
of the materials satisfy this peculiarity. 

For safety reasons, a PCM should be non-toxic and non-flammable at the 
operating temperatures. Chemical compatibility with the container holding the 
material is also required. In particular, corrosion should be avoided to avoid any 
possible leakage of the PCM in a liquid state. In case of encapsulated PCM (see 
2.2.4 for details), process pressures should be maintained as low as possible to 
avoid the risk of encapsulating material ruptures. 

Similarly to other products, the PCM environmental impact can be evaluated 
through a Life Cycle Assessment (LCA) associated with all the stages of product 
life [39]. Life Cycle Assessment allows both the embodied energy (i.e., the energy 
required from the extraction of raw materials to the final product assembly) and 
the operational energy (i.e., the overall energy required during the product 
expected lifetime) to be evaluated. Life Cycle Assessment evaluations found in 
the literature showed that applications of PCM in buildings mostly have a positive 
environmental impact [40–42]. Generally, the use of PCM is most favourable in 
locations with similar weather conditions throughout the year. Furthermore, to 
maximise the operational energy consumption a proper optimisation of the PCM 
features and integration should be performed.  

Several authors investigated the economic feasibility of PCM applications in 
buildings [43]. Contrasting results were found according to different boundary 
conditions, in particular material costs and energy prices [44]. On the one hand, 
[45–47] found acceptable payback periods (between two and ten years). On the 
other hand, [48,49] found that PCMs are not economically beneficial. However, it 
should be considered that nowadays PCMs are mainly adopted in applications 
related to research investigations. Accordingly, prices are higher than the ones 
that would be expected in a scenario where PCMs broadly penetrate the market. 

 
 

2.2.2 Main drawbacks of Phase Change Materials 

According to the type of the PCM, problems such as low thermal 
conductivity, phase segregation, phase separation, hysteresis and supercooling 
may arise. In particular, phase segregation and supercooling are considered 
possible sources of poor stability, which may cause a reduced capability to store 
latent heat, or a significant variation in the phase change temperature [33,50]. The 
scientific literature proposed also several solutions to overcome the drawbacks. 
The adoption of a solution rather than another depends on the specific application. 
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2.2.2.1 Low thermal diffusivity 

Since the PCM are mainly used to store energy when available, the thermal 
diffusivity is an essential factor to take into account when evaluating the 
performance of such materials. Indeed, thermal diffusivity strongly affects the 
homogeneity of the temperature distribution in the material, and this influences 
the level of exploitation of material heat storage capability. Since low thermal 
conductivities characterise many PCMs – values ranging around 0.2 and 0.5 
W/(mK) – and high specific latent heat capacities (in particular when phase 
change occur), the thermal diffusivity is mostly mediocre. This feature causes 
problems in the fusion/solidification process that can occur only in the volumes 
closer to the heat sources (e.g., the heat exchanger in a thermal energy storage 
unit). Many studies investigated possible solutions to this problem recurring to 
material science solutions (e.g., mixing of PCMs with additives or surfactants) or 
to the adoption of arrays or structures, which enhances the heat transfer involving 
the PCM layer as a whole.  

 

2.2.2.2 Phase segregation 

Phase segregation takes place when solidification process occurs at a fast 
cooling rate for incongruent transformations. In these cases, the diffusion heat 
exchange – that is a prolonged process in the solid state of the material - is not 
sufficient itself to homogenise the composition, and non-equilibrium solidification 
takes place. This phenomenon causes the formation of layered grains; whose 
average composition is not a homogeneous equilibrium composition but a 
structure that differs from the core to the boundary. The solidification completes 
at a lower temperature, once the average composition of the solid matches that of 
the original mixture. Since phase segregation depends on the cooling rate, this 
drawback can be overcame selecting an appropriate heat transfer process speed 
rate. Nevertheless, this solution is consistently related to the degree of freedom 
offer by the specific application to the system designer, i.e. in some cases it would 
not be possible to intervene on the heat transfer process speed rate.  
 

2.2.2.3 Phase separation 

Phase separation is the conversion from a single-phase to a multi-phase 
system. Indeed, when a substance is formed by two or more components, 
according to its composition, it may separate in layers characterised by different 
phases. It is mainly due to gravitation effect caused by differences in density. For 
instance, in salt hydrates in the liquid state, sedimentation of the salt component in 
the lower layer of the mixture may occur. This fact is due to the salt density that is 
greater than the water one. Similarly, specific mixtures of micro-encapsulated 
PCM and water (see Section 2.2.5) show a phenomenon - named creaming effect 
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– where the lighter PCM floats on the more massive water matrix, establishing a 
more concentrated PCM layer in the upper part of the mixture. Both phenomena 
lead to a biphasic system with local component concentrations that differs from 
the initial and design conditions. Thus, the global properties of the mixture may 
vary due to this change in concentration, and the behaviour is not homogenous. 
Mechanical mixing can be used in storages to solve phase separation, but it would 
not be a solution at the material level. Another option is the adoption of 
surfactants and additives, which form a three-dimensional network capable of 
holding the PCM together at a microscopic scale or increasing the viscosity of the 
material. 

 

2.2.2.4 Hysteresis 

Hysteresis occurs when the PCM performs differently in case of heating or 
cooling. Hysteresis may cause different transition temperatures and specific latent 
heat capacities upon fusion or solidification process. Hysteresis can be caused by 
a low rate of crystal formation during solidification, a slow diffusion in the solid 
phase, or the formation of a different solid phase concerning the beginning of the 
melting process. Particular attention should be paid to the measurement process to 
avoid apparent hysteresis caused by non-isothermal conditions in the sample. The 
discussion concerning the possible solutions to overcome hysteresis is similar to 
the one figured out for coping with PCM phase segregation. Indeed, both 
drawbacks are due to the speed rate of the heat transfer process and can be 
handled reducing the heating/cooling rate applied to the PCM. Again this solution 
is dependent on to the degree of freedom offer by the specific application to the 
system designer. 

 

2.2.2.5 Supercooling 

Supercooling is the phenomenon for which a PCM remains in the liquid phase 
even when its temperature is lower than the solidification temperature, as shown 
in Figure 4. The solidification process is driven by the nucleation process that 
consists in the formation of first solid crystals (named nuclei). The capability to 
produce nuclei during the time is called nucleation rate. Solidification effectively 
starts only when nuclei with a sufficiently large radius are present. If nucleation 
does not occur or the nucleation rate is too low, the PCM remains liquid even at 
temperatures below its solidification temperature. Since the phase change is not 
activated correctly, this supercooling process involves sensible heat only. 
Afterwards, when the transition process is activated, the temperature suddenly 
rises again to the phase change temperature and remains there until the completion 
of the phase change transformation. Supercooling can be solved - or reduced - 
employing the addition of solid PCM particles to the supercooling liquid or 
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surfactants capable of acting as nucleators. Supercooling can also be considered a 
local form of hysteresis. 

 

 
Figure 4. The supercooling drawback. This figure was adapted from [33]. 
 
 

2.2.3 Classification of Phase Change Materials 

As shown in Figure 5, the substances used as PCMs can be classified as 
organic (e.g., paraffin and non-paraffin, such as fatty acids, esters and glycols), or 
inorganic (e.g., salt hydrate solutions and metals), or eutectic mixtures [51,52]. 
All these substances show a single melting temperature when they are pure, and a 
melting range when they are mixtures [53]. Nevertheless, since pure materials are 
costly, industrial materials are usually mixtures. Thus the phase change occurs in 
a temperature range. 
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Figure 5. Classification of PCMs. 

 

2.2.3.1 Organic Phase Change Materials 

Organic PCMs can be further divided in paraffin or non-paraffin materials. 
On the one side, organic PCMs present no phase segregation, are chemically 
stable and have a high specific latent heat capacity of fusion/solidification. On the 
other side, organic PCM density is lower than the one of inorganic PCMs. 
Organic PCMs can be flammable, show a low thermal conductivity (around 0.2 
W/(mK)) that reduces the heat diffusion and thus storage capability. Furthermore, 
they are characterised by high volume variations during phase transition, which 
can be not compatible with plastic containers. A broad literature review and 
extensive information on the main features of organic PCMs can be found in 
[33,36,50,52]. Typical paraffin materials are hydrocarbons (alkanes), whose 
general formula is CnH2n+2. The melting temperature increases accordingly to the 
number of carbon atoms in the molecular chain. Thus in the preparation process, 
the number of carbon atoms is the primary process controlled to suit the 
application requirements. Among the non-paraffin PCMs are fatty acids, esters 
and glycols. Non-paraffin materials are less adopted than paraffin material 
because more expensive and can be corrosive [51]. 

 

2.2.3.2 Inorganic Phase Change Materials 

Inorganic PCMs can be further divided into salt hydrates or metals. Salt 
hydrates are inorganic salts which retain a definite number of water molecules 
within their crystal structure. The phase change in salt hydrates consists of the 
hydration or dehydration reaction - either total or partial - of the salt. Positive 
features of inorganic PCMs are the lower cost compared to other PCMs, the non-
flammability, the relatively high specific latent heat capacity of 
fusion/solidification and thermal conductivity, around 0.5 W/(mK). Furthermore, 
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salt hydrates have lower embodied energy than other material, thus should be 
preferred in a Life Cycle Assessment perspective. On the contrary, salt hydrates 
present some negative properties such as a critical supercooling effect (see 
Section 2.2.2), a high volume change during phase transition, phase separation, 
and salt hydrates are corrosive towards metals. Extensive information on the main 
features of salt hydrate solutions can be found in [33,51]. 

 

2.2.3.3 Eutectics mixtures 

Eutectics PCMs are mixtures of specific ratios of two (or more) components 
which do not usually chemically interact. The mixture forms a new compound, 
which undergoes a congruent melting with the simultaneous formation of two 
separate solid phases at a lower temperature than that of every single component. 
Eutectics mixtures have a sharp melting point similar to pure substances. Their 
adoption in building application is very limited and only a few data on their 
thermo-physical properties are available in the literature [36]. 

 
 

2.2.4 Incorporation methods 

The PCMs are characterised by the occurrence of periods in which the 
material is in the liquid state. Liquid materials have more kinetic energy than 
solids, so their particles are less rigid and can slide around one another causing the 
fact that liquids have no a definite shape. Thus the need for a container that 
incorporates the PCM arises to give the liquid PCMs the possibility to take the 
shape of the container. In case of application of PCMs for active thermal energy 
storage, the storage tank can behave itself as the liquid material container. 
Otherwise (e.g., for the application of PCMs in the building envelope), various 
incorporation methods are viable, such as direct incorporation, immersion in 
porous materials and shape stabilisation, micro-encapsulation, and macro-
encapsulation [43,54–56]. Figure 6 summarises the incorporation methods for 
PCMs. Incorporation methods are also useful for the formation of those PCM 
slurries in which a separation between PCM and carrier fluid is required (see 
Section 2.2.5). 

 

 
Figure 6. Incorporation methods for PCMs. 
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2.2.4.1 Direct incorporation and immersion 

Direct incorporation and immersion methods are the most straightforward and 
cheapest methods to incorporate PCMs. Direct incorporation consists in directly 
mixing the liquid or powdered PCM into porous material matrices (e.g., gypsum, 
bricks, concrete or plaster in case of building applications) during their 
production. In the immersion method, the porous material matrices – in the form 
of final products (e.g., concrete blocks, gypsum boards) - are immersed in a high-
temperature liquid PCM, which is absorbed by capillarity. Once the PCM cools 
down, it solidifies within the matrix pores and remains incorporated into the 
material. However, in the case of direct incorporation problems of leakage and 
degradation of the mechanical resistance of the porous material due to materials 
interaction may occur. Also in the case of immersion stability problems may arise 
due to PCM evaporation or material interactions. 

 

2.2.4.2 Shape-stabilised Phase Change Materials 

Shape-stabilised PCMs are compounds prepared by mixing melted PCM and 
support material (e.g., styrene-butadiene-styrene copolymer, density polyethylene, 
etc.). The solidified support material is characterised by a porous network that 
absorbs the liquid PCM avoiding leakage, and it provides structural rigidity, 
which is required to maintain the shape unchanged whether the PCM is in the 
liquid or solid state. The resulting mixture of shape-stabilised PCMs is a material 
with a homogeneous aspect. The percentage of PCM can be up to 80 %, so the 
amount of energy that can be stored is comparable to that of traditional PCMs. An 
exhaustive literature overview about shape-stabilised PCMs can be found in 
[57,58]. 

 

2.2.4.3 Macro-encapsulation  

Macro-encapsulation is the process of packing PCMs in relatively big size 
containers, usually larger than 1 cm [59]. According to the type of application, 
these containers can have various shapes, such as panels, pouches, spheres or 
tubes. Containers should be designed appropriately to deal with possible volume 
expansions due to PCM density variation between solid and liquid state. The 
container should be optimised to enhance the heat transfer rate during the phase 
change processes. Coupling macro-encapsulated PCMs with materials 
characterised by high thermal conductivity values (e.g., water or metal matrices) 
allows enhancing the material storage capability through the attenuation of the 
PCM drawback related to its low thermal diffusivity. However, the thermal 
conductivity remains lower than micro-encapsulated solutions (see the following 
paragraph), and the thermal diffusivity of the PCM within the macro-capsule in 
the solid phase may remain poor. Eventually, macro-encapsulation can help to 
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overcome the flammability problems of some PCMs. PCM leakage due to 
perforation or capsule rupture should be avoided by a correct design of the 
capsules allowing the mechanical stress to be tolerated. 

 

2.2.4.4 Micro-encapsulation 

Micro-encapsulation is the process of packing solid particles or liquid droplets 
of a PCM by surrounding them with a coating of another substance (named shell). 
The central capsule part containing the micro-encapsulated PCM (referred as 
mPCM) is called capsule core.  

The resulting microcapsules have a diameter that ranges approximately from 
0.05 µm to 5000 µm. Micro-encapsulation can be obtained by means either of 
physical or chemical processes. Extensive literature reviews on the 
microencapsulation methods can be found in [60–62]. Micro-encapsulation 
processes were developed above all by pharmaceutical industries. Various micro-
encapsulation methods are available, such as in-situ polymerisation and interfacial 
poly-condensation [63]. The purposes of micro-encapsulation are to protect PCMs 
from harmful interaction with the environment, to provide structural stability, and 
to make materials easier and/or safer to handle. Furthermore, the thermal 
diffusivity is enhanced by increasing the heat transfer surface and allowing the 
material to be easily mixed or included in matrices of other conductive materials 
(e.g., water or metal matrices), thus increasing the global thermal conductivity. In 
buildings, mPCM can also be used by mixing them with other traditional 
materials allowing the thermal capacity of the final mixture to be increased 
without the stability problems occurring in direct incorporation or immersion. The 
main disadvantages of mPCM are related to the microcapsules' shells. Firstly, the 
mass fraction of PCM - and hence the total heat storage capacity - is limited by 
the shell's thickness, which has to provide mechanical strength to avoid rupture of 
the capsules. Secondly, the shell materials (usually polymeric films or silica) are 
characterised by reduced thermal conductivity and severely affect the overall 
performance of the material.  

 

 
Figure 7. Overview of a micro-encapsulated PCM. 
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2.2.5 Phase Change Material slurries 

In the last decade, a new technique of PCM usage has been proposed, tested, 
and adopted. It consists of forming a two-phase fluid, from the mixture of a carrier 
fluid and a dispersed PCM. Water (or water with antifreeze, such as glycol) is 
generally used as the carrier fluid. This choice is due to water high thermal 
conductivity, considerable specific heat, compatibility with PCMs, easiness in 
handles, cheapness and safety for the environment [64]. The resulting two-phase 
fluid is called PCM slurry. The main advantage of PCM slurries is to conserve the 
high thermal inertia of PCMs, combining it with higher thermal diffusivity, due to 
convection phenomena into the carrier fluid. Furthermore, phase segregation and 
subcooling phenomena are reduced. Thus the resulting two-phase fluid has 
features that match with the requirement of different applications and in particular 
the adoption in active systems, such as latent heat thermal energy storage system, 
heat exchangers and thermal control systems.  

The following five types of PCM slurries were listed in the scientific literature 
[65] and summarised in Figure 8:  

• ice slurries: in which ice particles are dispersed into a water carrier fluid;  
• PCM micro-emulsions: in which the PCM is dispersed in water through an 

emulsifying agent forming a homogenous mixture of PCM and carrier fluid;  
• mPCM slurries: where mPCM capsules are dispersed into a carrier fluid 

(generally water);  
• clathrate hydrate PCM slurries: where the clathrate hydrates are composed 

of water molecules (host molecule) forming a weaved structure where the 
molecules of the other substance (guest molecule) are accommodated; 

• shape-stabilised PCM slurries: mixtures based on shape-stabilised PCM. 
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Figure 8. Schematic drawing of the different types of PCM slurries. This figure 

was adapted from [65]. 
 
Two-phase slurries have almost constant rheological properties, which are not 

concerned about the phase change occurrence. Therefore, PCM slurries always 
remain liquid, although with a high viscosity, and they can be pumped regardless 
of the state of the PCM component of the mixture. For this reason, PCM slurries 
can be used either as static thermal storage materials or pumped heat transfer 
fluids. Refs. [65] and [66] highlighted possible advantages offered by PCM 
slurries compared to similar solutions: 

• high storage capability thanks to the latent heat exploitation;  
• higher thermal diffusivity compared to traditional PCMs, due to the 

exploitation of the higher conductivity of the carrier fluid; 
• possibility to use the same medium either to store energy and as heat 

transfer fluid, reducing in this way heat transfer losses due to heat 
exchanges temperature differences; 

• when used as heat transfer fluid, possibility to realise processes at an 
approximately constant temperature and reduction of mass flow-rates due to 
higher heat capacity; 

• high heat transfer rate due to the elevated ratio surface/volume. 

Furthermore, the thermal energy storage capability is similar to the one of 
traditional pure PCM thanks to a commonly higher material density. Indeed, 
traditional PCMs in the solid state are characterised by high porosity in the 
container (a value that rises to 65 % in some instances [67]) that causes an 
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increase of the volume of the container per unit of energy stored. In the case of 
slurries, the porosity is filled by the carrier fluid that allows the global thermal 
energy storage density to be increased. Furthermore, conventional tanks designed 
for containing fluids can be easily adapted for PCM slurries [65].  

The literature offers numerous extensive and comprehensive reviews 
regarding PCM slurries. These works cover all the various aspects concerning 
these materials from material preparation methods to the definition of thermal and 
rheological properties [64,65,68–70].  

Since the present dissertation deals with the application of a mPCM slurry as 
the heat transfer fluid of a solar thermal system, a significant emphasis on mPCM 
slurries has been undertaken. 

The advantages of using micro-encapsulated PCM (mPCM) slurries in the 
different thermal application were evident since the late ‘90s. The 

microencapsulation prevents the leakage of PCM in the liquid phase, and the 
slurry can be easily pumped, reducing clogging risk and pressure drops. 
Moreover, mPCM slurries have a higher surface to volume ratio than other PCM 
slurries, which maximises the heat exchanged. The market offers various mPCM 
solutions to prepare slurries characterised by different phase change transition 
temperature, which should be accurately selected accordingly with the application 
requirements. Formulations to describe mPCM slurry thermal, heat-exchange and 
rheological behaviour are available in the literature and are extensively discussed 
in the following parts of the thesis. The stability of mPCM slurry should be 
investigated from the thermal, structural and physical point of view. No particular 
drawbacks related to the thermal stability were pointed out for typical PCM slurry 
operating temperatures (some problems may arise at very high temperatures). 
Structural stability mainly concerns the potential rupture of the micro-capsules, 
which can be caused by mechanical shear forces. In case of mPCM used as heat 
transfer fluid the primary cause of shear forces is the pumping power. Different 
studies highlighted how the potential structural and mechanical drawbacks could 
be avoided employing the adoption of low-speed pumps (e.g., peristaltic or 
centrifugal pumps), as well as the adoption of small-sized mPCM or particles 
characterised by large shell thickness. Eventually, the physical stability strongly 
influences the overall heat transfer and thermal energy store properties. In case of 
mPCM slurry physical stability mainly concerns the possible stratification of the 
material (the creaming or sedimentation phenomena, which are caused by the 
density difference between the dispersed mPCM and carrier fluid). During the last 
few years, most of these problems have been studied extensively, and different 
solutions have been proposed to solve these drawbacks [71]. 
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2.3 Applications of Phase Change Materials in buildings 

The use of PCMs has rapidly been increasing in recent years in various 
building applications [72–75]. In general, PCMs are used to increase the thermal 
inertia of building components to reduce heating/cooling peak loads [76–78] or 
reducing temperature swings within the indoor environment. PCMs can be applied 
both as passive strategies when integrated within the building structure or 
envelope (e.g., either in the transparent or in the opaque components), and as 
active strategies, when integrated within the HVAC system. In HVAC systems the 
PCMs are used as a storage medium for renewable energy integration, including 
components of solar thermal systems. For passive application PCMs have been 
proven, by means of both experimental and numerical studies, to be beneficial 
especially in lightweight buildings. 

In both cases, effective use of PCM in buildings requires an appropriate 
selection of PCMs thermo-physical properties, quantity and position according to 
the intended application and to the building location. Therefore, to guarantee the 
proper functioning of the PCM and ensure economic feasibility, optimisation of 
the PCM use can be advisable. In particular, the PCM should be accurately 
selected to have a melting temperature range that perfectly suits the requirements 
and the temperature ranges involved in the specific application. In this selection 
process, all the external disturbances affecting the building thermal behaviour 
(e.g., ambient temperature, solar radiation, wind velocity profiles, occupancy and 
endogenous heat load patterns, etc.) must be carefully taken into account. A broad 
melting temperature range could improve the adaptability of PCMs to the 
temperature variations, but the best achievable energy performance may be 
compromised. Under certain conditions, the adoption of two (or more than two) 
different PCMs with dissimilar phase change ranges may be favourable to 
improve the energy efficiency of buildings during the whole year (e.g., a PCM is 
activated during the cooling season and the other during the heating season) 
[79,80]. 

Peak load reduction strategies through PCMs are performed by the 
exploitation of the intrinsic high storage capabilities of the materials. This led to 
almost isothermal charging (fusion) and discharging (solidification) cycles. For 
instance, during summer periods, melting the PCM during daytime helps to avoid 
(or reduce) overheating risk [36]. Afterwards, the stored heat is realised during 
night time, when conditioning strategies are more efficient (e.g., free cooling or 
night ventilation). If the building location climate is suitable, this process can be 
performed utilising passive strategies only [81]. For winter applications, PCM 
integration in passive buildings was proposed especially within the floor. 
Therefore, the sunlit floor surface can store solar energy during the day and 
release it during the night [82,83].  

Furthermore, peak load reductions can be related to the variation of energy 
prices during the time and the implementation of effective load shifting control 
strategies [51,84]. These are mainly interesting for cooling applications where the 
electricity is the primary energy vector, and it is price can vary sharply during the 
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time (e.g., real-time tariffs or demand response incentives or grids characterised 
by high penetration rates of renewable energy sources). According to the climate, 
the energy saving in peak loads may be more pronounced than the annual energy 
savings. 

 
 

2.3.1 Phase Change Materials integration in building envelope 
components 

PCM can be integrated in building envelope and structures both in opaque 
[50,56] and transparent components, as well as in shutters [85] or even in 
furniture [86]. 

 

2.3.1.1 Phase Change Materials in opaque components 

PCMs can be incorporated into opaque components using macro-
encapsulation (such as inside masonry blocks or sealed in thin polymeric 
pouches), or shape-stabilised panels. Moreover, PCM can be embedded through 
direct incorporation, immersion, or micro-encapsulation in traditional construction 
materials, such as plasters, gypsum boards, PCM-mortar bricks or concrete 
blocks. Since in most of these cases the PCMs are directly integrated into other 
building materials, the construction process does not significantly differ compared 
to traditional buildings [36]. 

Several experimental tests were carried out, gathering measurement both in 
laboratory and in-field, to investigate the effects of PCMs integration in the 
opaque envelope both at a component and whole building scale.  

It was demonstrated that the integration of PCMs in roofs may have a positive 
effect in improving thermal comfort and reducing cooling loads (particularly 
when coupled with cool coatings) [79,87–89]. However, PCM roof applications 
have received less attention than wall and façade applications [36].  

Generally, thin PCM layers showed higher PCM potentialities exploitation 
and cost benefits than thicker layers. The coupling of PCMs with ventilated 
façades was extensively examined by numerical and experimental studies [90,91]. 
Some authors also investigated the potential benefits achievable by the integration 
of PCMs to enhance the performance of thermal insulation components [92–94]. 
However, the most common integration of PCMs in buildings opaque envelope is 
achieved by the adoption of PCM to enhance wallboards or lightweight 
components properties (e.g., PCM-gypsum panels) [95]. Commonly the PCM 
layer is placed on the interior side of the building envelope [36]. The PCM 
activation in internal wallboards is strongly dependent on the convective heat 
transfer taking place with the indoor air, and natural convection heat exchanges 
are considered too low for effective exploitation of the PCMs potential. Possible 
solutions to enhance the convective heat transfer were investigated adopting 



35 
 

narrow cavities where ambient air can circulate [96]. Eventually, for passive 
cooling load reduction in tropical climates, PCMs were found to overperform 
when placed on the external surfaces of the façades [97,98]. 

It was found that the application of PCMs in the opaque envelope is 
particularly favourable in case of retrofitting buildings characterised by low 
thermal inertia [44]. In these cases, wallboards integrating PCM are often used, 
due to their low thickness and ease of installation. These PCM-based wallboards 
can either replace the existing interior finishing or can be placed over it [81]. 

 

2.3.1.2 Phase Change Materials in transparent components 

As well as opaque building components, the PCMs can also be integrated into 
windows and glazing components [85]. In this approach, the interaction with the 
solar radiation represents the most critical driver of the energy storage/exchange 
process and the PCMs act both as a solar shading device and as a heat storage 
medium. The main scope of PCMs integration in glazing systems is the 
improvement of glazing system heat capacity, thus its thermal inertial behaviour. 
This fact leads to smooth the indoor surface temperature of the glazing system and 
provides peak load shifting at a component level. The simultaneous use of a 
thermotropic double glazing unit coupled with a PCM layer filled in the air gap 
showed over performing capabilities in managing the charging/discharging cycles 
of the PCM. 

Several experimental [76,99–101] and numerical [102,103] studies 
investigated the performance of PCM-enhanced glazing components, and they 
were effectively resumed in the review paper [85]. Visual and optical properties 
play a fundamental role in the performance assessment of a transparent and 
translucent component. Nevertheless, PCM-filled glazing units badly influence 
the optical behaviour of such kind of system, being opaque when in solid state and 
translucent when in the liquid state. 

 
 

2.3.2 Phase Change Materials integration in active thermal energy 
storage technologies 

PCMs have been applied in buildings principally to enhance their thermal 
energy storage capabilities. As a consequence, they have found their most 
substantial diffusion in active thermal energy storage units coupled with the 
HVAC system. In the last decades, latent heat thermal energy storages have 
attracted considerable attention due to their proven effectiveness and superiority 
compared to other solutions [104]. In detail, PCM based storages compared to 
sensible heat storages allow higher stored energy densities to be pursued, reducing 
both storage volume and weight. Furthermore, they are less sophisticated and 
more cost-effective than alternative thermochemical solutions. Since PCM active 
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storage solutions have been in the spotlight for years, the scientific literature 
offers numerous review papers about this topic [33,38,54,58,59,105].  

Applications of active latent heat thermal energy storage can be focused on 
the maximisation of renewable energy integration, the reduction of HVAC system 
peak loads and the integration of storage units to enhance free-cooling 
opportunities [51,104,106]. Previous works have covered many topics: from 
understanding the mathematical formulations that describe the behaviour of PCMs 
in the storage unit to assessing the actual influence of an active thermal energy 
storage unit on the entire building and HVAC system. Studies have been both 
theoretical (e.g., investigating the storage behaviour through simulations 
performed using computational fluid dynamic or simplified numerical models) 
and experimental. 

To date, in market applications, the direct use of PCMs for energy storage has 
been still limited principally for the low thermal diffusivity of most PCMs, which 
requires additional efforts to charge/discharge the storage unit. This fact is 
particularly true when PCMs solidify on the heat transfer surface. To solve this 
issue, different solutions were proposed. On the one side, many studies 
investigated the development of optimised solutions for the storage tank. For 
example, PCMs were coupled with traditional storage systems by their insertion in 
dedicated units (e.g., PCM bricks, shell and tube, macro-encapsulated PCM). The 
improvement of PCM features with additives or surfactants was investigated, as 
well as the adoption of PCM slurries with higher thermal conductivity. 
Furthermore, particular heat exchangers were designed and optimised to enhance 
the heat transfer and heat diffusivity in the storage unit [107–109]. Particularly 
promising are the recent solutions that exploit the potentialities offered by 
additive manufacturing to perform topology optimisation [110]. 

 
 

2.3.3 Phase Change Materials integration with solar thermal 
systems  

In the past few years, the use of PCMs has been tested in several different 
types of solar thermal systems. The presence of a PCM leads to an overall annual 
increase in the solar fraction, a higher efficiency of the system and significant 
storage heat capacity. In particular, three different methods have been proposed to 
incorporate PCMs into the systems: the integration of a PCM directly in a layer of 
the solar collectors, the addition of PCM nodes to the primary heat transfer fluid 
solar loop pipes and the addition of PCM elements to the inside of a storage tank 
[111]. A review of this topic has been published by Wang et al. [105]. 

In the first kind of proposed collectors – as shown in Figure 9(a) – the PCM is 
integrated directly into the panel as a layer with storage function. In the most 
common configuration, the PCM-integrated solar collector eliminates the need for 
conventional storage tanks, thus reducing costs and space. For example, in [112], 
the solar energy is stored in a salt-hydrate PCM layer held in the collector and is 
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discharged to cold water flowing through a surface heat exchanger located in an 
upper layer. A similar concept, which proposes a different kind of PCM and layer 
organisation to obtain better energy storage in the collector, has recently been 
introduced in [113,114]. A thermal solar system with PCM slurry storage 
integrated into the collector has also been studied in [115]. The storage-collector 
was filled with different concentrations of PCM with a 60 °C phase transition 
temperature. On the other hand, in [116], a PCM layer has been incorporated in a 
collector which combines photovoltaic electricity generation and solar thermal 
production. This solution is principally adopted to improve the inertia of the 
system and limit the temperature peaks and increase the photovoltaic efficiency 
without wasting energy [117].  

 

 
Figure 9. Examples of PCM integration into solar thermal systems. (a) PCM 
integrated into the storage tank. (b) PCM node between the collector and the 

storage tank. (c) PCM integrated into the solar thermal collector. This figure was 
adapted from [144]. 
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A new system configuration – as shown in Figure 9(b) – has been proposed in 

references [107] and [118]. It has been called SDHW–PCM, and it includes a 
PCM node in the heat transfer fluid primary solar loop of the system. The node is 
combined with a traditional water storage tank, and it represents an additional 
storage unit. It is a compact heat exchanger made of four plates surrounded by 
storage composite material composed of compressed expanded graphite and 
paraffin. The authors showed that, compared to a traditional water-based solar 
thermal system, this configuration leads to increases in the solar fraction (i.e., the 
time during which the solar thermal system can be exploited to produce heat) in 
summer and winter of 8 % and 4 %, respectively. 

The third kind of proposed solar thermal systems – as shown in Figure 9(c) – 
are those that use PCMs directly in the storage tank (see Section 2.3.2). A study 
on the enhancement of solar system performance using sodium thiosulfate 
pentahydrate as the PCM in the storage tank has been made by [119]. They found 
that the storage time was approximately 2.59 – 3.45 times greater than that of 
conventional water-heating systems. Experiments that involved the inclusion of a 
water tank and a PCM module in a complete solar water heating system have been 
conducted in [111] and [120]. In this case, the PCM was placed on several 
cylinders at the top of the water tank. Huang et al. have proposed a storage tank 
for solar water heating with a floor that houses capillary plates and a macro-
packaged PCM layer [121]. Moreover, several studies can be found in literature 
about the introduction and heat transfer optimisation of PCM modules located 
inside a storage tank [122–125]. 

 
 

2.3.4  Application of Phase Change Material slurries in buildings 
and solar thermal applications 

Most of the aforementioned solutions have only considered the improvement 
of a single static component of the solar thermal system. Indeed, these 
technologies used water or water-glycol as the heat transfer fluid in the primary 
loop of the solar collector. However, the heat transfer fluid plays a very 
significant role in a solar thermal system. It absorbs energy in the collector and 
transfers it to the storage tank and the end users’ terminal units. If heat exchangers 
are used, this strategy implies fixed temperature differences between the heat 
transfer fluid flowing inside the solar collector loop and the PCM storage, as well 
as between the storage and the heat transfer fluid flowing to the terminal units. 
These heat exchanges introduce irreversibility and energy-losses. Moreover, in 
recent years, the thermal capacity of heat transfer fluid – that is the amount of heat 
transported by a unit of flow rate of heat transfer fluid – has also been considered 
a critical problem. Many thermal-energy systems have long piping sections to 
convey the heat transfer fluids from the source to the sink heat exchangers. In 
such conventional systems, thermal energy is transferred as the sensible heat of 
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the heat transfer fluid, and it is proportional to the difference between the source 
and the sink temperatures. If the temperature difference is small (as in the case of 
many renewable energy sources), the single-phase fluid must be pumped at high-
volume flow rates. As a result, the system consumes a significant amount of 
pumping power. 

During the ‘80s, the aforementioned problems led Kasza and Chen [126] to 
propose a system that directly uses Phase Change Material slurries as heat transfer 
fluids capable of exploiting the advantages offered by isothermal latent heat 
exchange. PCM slurries could be used for this purpose as an enhanced heat 
transfer fluid in the primary loop of solar collector systems. Nevertheless, during 
the ‘80s, some technological limitations arose, due to the possible solidification of 
the slurry in the pipes during its phase transition. Currently, due to the 
advancements in PCM slurry technologies, an alternative solution could be 
conceived.  

In particular, mPCM slurries are those seems to be more promising for a 
broad application and market penetration. The advantages of using mPCM slurries 
in different thermal applications have been evident since the late ‘90s [127,128]. 
They showed reduced problems of clogging in the pipes and reduced production 
costs of the material [111,127].  

Different experimental tests and models were carried out to investigate 
mPCM slurries behaviour and achievable advantages [64,65,68]. A mPCM slurry 
was used as turbo-chiller integrated storage to mitigate the decreased energy 
capacity due to refrigerant substitution in Narita Airport of Tokyo [129]. The 
mPCM slurries were also involved as heat transfer fluid in active building cooling 
system through chilled ceilings [130].  

As previously discussed, the primary benefit of mPCM slurries is the 
increased heat transfer rate compared to traditional PCM technologies. Indeed, the 
mPCM slurry enhances the heat transfer capacity of the PCM and still retains the 
characteristic of high-energy storage density over a small temperature range. This 
led mPCM slurries to be considered suitable heat storage media in static storage 
technologies. The recent review paper [131] showed how the adoption of mPCM 
in thermal energy storages is a topic that has generated an increased interest in the 
last decade [132–135]. For instance, in [136,137] mPCM slurries were used as 
media for cold energy storages. In [115,138], a mPCM slurry thermal energy 
storage was coupled with a residential solar heating energy system.  

A second significant benefit of mPCM slurries is the fact that they always 
guarantee the circulation of the mPCM slurry in pipes. Indeed, the two-phase fluid 
has almost constant rheological properties, and the phase-change only takes place 
inside the core of the microcapsules. A mPCM slurry always remains liquid, even 
though it has a high viscosity, and it can be pumped regardless of the state of 
aggregation of the microcapsule core. For this reason, the same mPCM slurry 
medium can be used to both transport and store energy, hence reducing the exergy 
and heat transfer losses due to the irreversibility of energy exchanges.  

However, the use of mPCM slurries also involves some drawbacks. In the 
first instance - depending on the mPCM concentration in the mixture - the 
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viscosity of the mPCM slurry may be higher than that of water [139]. In 
particular, viscosity could become much higher than water for high concentration 
suspensions, and an increase in the pressure drops could occur [63]. Secondly, the 
mPCM slurry might not remain physically stable under certain conditions. For 
example, some creaming phenomena could occur if the material is not moved 
continuously (e.g., in the thermal energy storage tank) and the pipes could be 
affected by clogging problems [132,140]. Eventually, thermal cycles and 
mechanical stress, (e.g., shear solicitation due to circulating pumps) could 
eventually damage the micro-capsule shells, and the PCM could leak outside the 
micro-capsule.  

This thesis – with the publication of its preliminary works in international 
scientific journals and conferences [144-148] - opens up a new research path in 
this field. Indeed, this work aims to investigate the advantages (as well as the 
disadvantages) achievable by the adoption of a mPCM slurry both as the heat 
transfer fluid and storage media in solar thermal systems installed for building 
applications. Up to now, the previous literature analysis has revealed a lack of 
extensive studies in this field. Fulfil this literature gap has been one of the primary 
goals of the present thesis. For this purpose, a mPCM slurry - a mixture of water 
and micro-encapsulated PCM – was investigated. The material is shown in Figure 
10(a). First of all, this thesis aimed at understanding the material properties to 
correctly design and build a full-scale prototype aiming at investigating the 
system performance. The prototype was named “Solar Heating with Phase 

Change Materials”, with acronym “SolHe-PCM” and it is shown in Figure 10(b). 
 

 
Figure 10. (a) Preparation of the n-eicosane mPCM slurry. (b) the solar thermal 

system (collector + thermal energy storage unit) named SolHe-PCM. 
 
 The work undertaken during the thesis can be somehow compared with the 

recent works of Qiu et al. [141,142] and Liu et al. [143]. Both these studies 
investigated the development of models and prototypes for combined photovoltaic 
and solar thermal (PV/T) system exploiting mPCM slurry as cooling fluid. On the 
one side, Qiu et al. investigations are divided into two papers: the first one 
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presented the theoretical concepts of a mPCM slurry based PV/T collector and a 
1-D numerical model to describe its physical behaviour under different boundary 
conditions. The second paper described the experimental validation of the 
numerical model and the performance assessment of the proposed technology. 
From the author point of view, this numerical model was affected by several 
drawbacks (e.g., it is not clear to me how the Hottel-Willier model was adapted 
for considering the latent heat exchanges occurring in the mPCM slurry; many 
dimensionless parameters – such as the Nusselt coefficients – were referred to 
water as heat transfer fluid; etc.). Experimental evidence showed how the model 
always underestimated the performance of the PV/T system both regarding overall 
efficiency and useful heat produced, even for low mPCM concentrations. On the 
other side, Liu and al. developed a 2-D CFD simulation model to describe the 
behaviour of a PV/T collector exploiting mPCM slurry as heat transfer fluid. 
Simulation results showed an increase in the net efficiency of about 2 %. For the 
real implementation authors were concerned about the durability of the material 
and possible capsule leakages. 

Despite these studies, the aim of obtaining more detailed knowledge and 
understanding of such a technology, required to develop numerical models and 
experimental prototypes of a solar thermal system based on mPCM slurry heat 
transfer fluid. All these aspects are extensively discussed in the next chapters of 
the present work. 
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2.4 Key-findings of the present chapter 

The primary scope of the present chapter has been to provide to the reader a 
state-of-the-art review and summary of recent development in the solar thermal 
system and phase change material. From this survey has emerged that the two 
topics can be related. Indeed, the intermittency of the solar power source and the 
inefficiencies related to relatively high process temperature represent two of the 
main limitations to the solar thermal technology. The adoption of efficient thermal 
energy storage solutions and the reduction of process temperatures are required to 
handle these limitations and enhance the energy-saving opportunities. PCMs have 
demonstrated to be capable of dealing with both these aspects effectively. In the 
present chapter, firstly the primary characteristics and features of PCMs were 
introduced. Secondly, several applications of PCMs to buildings or buildings 
elements and systems were presented and discussed. PCM-based technologies 
proved to be effectively applied both to the building envelope and to the storage 
units of the HVAC systems. Afterwards, the chapter was focused on the 
integration of PCM solutions into solar thermal systems at a building scale. 
Generally, this is the case of the application of a PCM-based element for energy 
storage purposes either into the solar collector directly, into the primary heat 
transfer fluid loop or into the thermal energy storage unit. However, thanks to the 
recent advances in the material science a new configuration can be considered. 
Slurry PCMs are innovative heat transfer fluids that exploit the liquid to solid 
phase transition to enhance latent heat exchange processes without affecting the 
fluid rheological properties. The primary features of slurry PCM were analysed in 
this chapter. Afterwards, the section briefly presented a potential application of 
PCM slurries into a solar thermal system conceived to exploit the latent heat 
exchange directly within the heat transfer fluid. This system is studied in deep in 
the following chapters.    
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Chapter 3 

Solar heating with Phase Change 
Material slurry as the primary heat 
transfer fluid and energy storage 
media (the Sol-He PCM project): 
materials, prototype and numerical 
models 

 
The primary goal of this part is describing the steps undertaken in the 

development of a solar thermal system that adopts PCM slurry as heat transfer fluid 
and storage media. 

Section 3.1 identifies the primary goals of this technology and the concepts that 
are at the basis of its conceiving and design. 

Section 3.2 firstly defines the PCM slurry requirements in terms of physical, 
rheological and thermal features. The end of this part coincided with the selection 
of the PCM slurry considered most suitable for the specific needs of a solar thermal 
system Secondly it reports an experimental and parametrical investigation of the 
actual properties of the PCM slurry chosen for the specific application. On the one 
hand, the results of this part were necessary to design the full-scale prototype 
described in Section 3.3 properly. On the other hand, the material features herewith 
measured and estimated allowed the numerical models developed in Section 3.4 to 
be tailored to in the particular technology. 

Section 3.3 pinpoints the steps that were necessary design and construction of 
a full-scale prototype for the technology. It describes in detail not only the primary 
features of each system element but also the regulation logic adopted within the 
embedded controller of the innovative solar technology. 
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Eventually, Section 3.4 reports the development of a mathematical model 
capable of describing the physical behaviour of a flat-plate solar thermal collector 
and a thermal energy storage unit capable of exploiting latent heat exchanges. 

The results of experimental investigations concerning the PCM slurry 
properties are presented within the present Chapter 3. While the following Chapter 
4 describes the data gathered during the experimental tests carried out on the full-
scale prototype and the simulation results obtained through the numerical models 
herewith described. 

Some portions of the present Chapter were already published in the following 
scientific papers: 

• Design of a low-temperature solar heating system based on a slurry Phase 
Change Material (PCS). Authors: G Serale, E Fabrizio, M Perino. Journal: 
Energy and Buildings 106, 44-58 [1]; 

• Numerical model and simulation of a solar thermal collector with slurry Phase 
Change Material (PCM) as the heat transfer fluid. Authors: G Serale, F Goia, 
M Perino. Journal: Solar Energy 134, 429-444 [2]; 

• Enthalpy-temperature evaluation of slurry phase change materials with T-
history method. Authors: G Buttitta, G Serale, Y Cascone. Journal: Energy 
Procedia 78, 1877-1882 [3]; 

• Experimental measurement and numerical modeling of the creaming of 
mPCM slurry. Authors: X Fan, G Serale, A Capozzoli, M Perino. Journal: 
Energy Procedia 78, 2010-2015 [4]; 

• Potentialities of a Low Temperature Solar Heating System Based on Slurry 
Phase Change Materials (PCS). Authors: G Serale, Y Cascone, A Capozzoli, 
E Fabrizio, M Perino. Journal: Energy Procedia 62, 355-263 [34]. 
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3.1 The concepts behind the SolHe-PCM project 

The previous review of the scientific literature has revealed a lack of evidence 
concerning the advantages (and disadvantages) of the exploitation of solid-to-liquid 
latent heat transition in direct combination with solar collectors for any application, 
and in particular for building-related applications. Therefore, a dedicated 
investigation has been set up, and it is currently ongoing, with the aim of obtaining 
more detailed information and understanding of such a technology. The research 
activity has been developed along various paths, ranging from the conception and 
design of a novel solar thermal system to the construction of a full-scale prototype; 
from the theoretical and experimental investigation of PCM slurry properties to the 
development of mathematical numerical models capable of describing the thermos-
physical behaviour of such a technology.  

A new system solution, based on PCM slurry, has been conceived, designed 
and prototyped to overcome the drawbacks of traditional solar thermal systems. The 
basic idea was to create a system that would be able to directly use a mPCM slurry 
as a heat carrier fluid and as an energy storage medium. The use of the mPCM slurry 
as the heat transfer fluid, instead of traditional aqueous solutions, makes it possible 
to exploit the effect of latent heat, to improve the flexibility of the solar thermal 
system, and to thus increase the efficiency of solar collectors and energy storage 
systems. Compared to other PCM-based solutions that are already available on the 
market the proposed configuration would in principle allow greater flexibility, in 
relation to variations in the boundary conditions or energy demand profiles. 
Furthermore, it would allow the heat transfer inefficiencies between the various 
components to be limited (thus improving the overall energy efficiency of the 
system). This system enables to optimise the heat transfer as well as similar systems 
that exploit latent heat exchanges (e.g., solar assisted heat pumps or heat pipe 
collectors). Moreover, compared to solutions that operate the liquid to vapour phase 
change, the proposed solution allows energy to be stored effectively without a fixed 
temperature difference. 

In the proposed solution, the mPCM slurry has the characteristic of being able 
to remain in motion, regardless of the state of the PCM (solid/liquid). This feature 
makes it possible to store thermal energy directly in the fluid and, therefore, to 
utilise the entire mass of the fluid in the pipes and not only in the thermal energy 
storage tank. The proposed technology, compared to the existing solutions on the 
market, differs as far as the following aspects are concerned: 

• it offers the ability to operate at low thermal levels with satisfactory 
efficiencies (thus improving the manufacturability of the panels); 

• it results in a reduction in heat losses due to transmission toward the ambient, 
thanks to the lower temperature differences; 

• it offers the possibility of using analogous or very similar components to those 
of traditional water systems; 

• it provides the opportunity for relatively small costs of the fluids (in 
comparison to other methods) and easy maintainability; 
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• it offers the possibility of adapting the system for summer cooling. 

The investigated system has been named “Solar Heating with Phase Change 

Material” and identified with the acronym SolHe-PCM. It was developed in the 
framework defined by the International Energy Agency’s Energy in Buildings and 
Communities (IEA-EBC) Annex 59 “High-temperature cooling and low-
temperature heating in buildings” [5]. The system has been conceived to cope with 
relatively low-temperature radiative systems in buildings that deliver energy for 
space heating purposes (e.g., radiant panels, Thermal Activated Building 
Structures).  

In general, two possible system configurations can be adopted for the 
technology SolHe-PCM. The first one, which is represented in Figure 1(a), consists 
of a two open-loop circuit filled with PCM slurry. In this case, both the primary 
solar loop and the space heating secondary loop use PCM slurry as the heat transfer 
fluid. The complete absence of fixed temperature differences between the two 
circuits guarantees the maximum theoretical thermal efficiency from an exergetic 
point of view. The main drawback of this configuration concerns the difficulties 
that arise, from a technological point of view. The PCM slurry is the heat transfer 
fluid which has different rheological properties from water, and it requires 
particular attention during pumping, especially at the users’ side. 

 

 
Figure 1. Schematics of the possible configurations of the SolHe-PCM 

technology: (a) two open-loop circuit filled with PCM slurry. (b) an open-loop 
circuit filled with PCM slurry and a closed-loop circuit filled with water. 
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The system described in Figure 1(b) solves some of these problems by reducing 

the length of the pipes in which the mPCM slurry flows. It consists of a primary 
solar loop filled with a mPCM slurry, coupled with a closed heating system 
secondary loop filled with water. As in the previous solution, the storage tank 
contains a mPCM slurry, and it allows large amounts of energy to be stored. 
However, the temperature difference between the storage tank and secondary water 
loop leads to a slight reduction in efficiency. On the other hand, this system 
guarantees easier technological implementation, and it allows a better evaluation of 
the behaviour of the solar system filled by mPCM slurry only. For these reasons, 
the solution outlined in Figure 1(b) was adopted by the authors as the most suitable 
to set up a full-scale prototype to preliminary test the technology. 

Further system configurations can be conceived starting from these two 
preliminary solutions. For instance, it is possible to employ two different typologies 
of PCM slurries in the different loops served by the same energy storage unit. In 
this case, the transition temperature ranges for the two PCMs employed can differ. 
This fact allows the PCM transition temperature to be suitably selected according 
to the specific requirements of the heat exchange application (e.g., slightly higher 
in the primary collector loop, while slightly lower in the building supply loops). 
Nevertheless, for a sake of conciseness, the investigation of these additional 
configurations has been left to future studies, and the present thesis has been 
focused on the schematic outlined in Figure1(b). 
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3.2 Features of the Phase Change Material slurry  

A PCM slurry is a mixture of a carrier fluid and a dispersed PCM material. The 
PCM slurry can be used both the as heat transfer fluid in the primary loop of the 
solar circuit and as the storage media in the thermal energy storage unit. Some 
essential features are required to be suitable for the specific SolHe-PCM solar 
thermal application. Some of these requirements interest every fluid used as heat 
transfer fluid or storage media (e.g., high specific heat capacity, high thermal 
diffusivity, adoption of non-toxic and non-flammable materials, avoidance of fluid 
freezing, chemical compatibility with the container and pipes, etc.). Other features 
are more specific to a PCM slurry used as heat transfer fluid. The latter are those 
most influenced the selection of the particular PCM used in the slurry when the 
system was conceived and designed.  

 
 

3.2.1 Requirements of the phase change transition range 

The phase change transition should occur in a temperature range suitable for 
the specific application. In order to select the most appropriate transition interval, 
it was necessary to consider that the PCM slurry had to satisfy three primary goals: 

• Convert solar energy into useful thermal energy; 
• Store thermal energy in the thermal energy storage unit; 
• Deliver thermal energy to the secondary heat exchanger serving the building 

space heating system. 

When traditional fluids are used the sensible heat only is exploited. Therefore, 
the specific heat capacity and the fluid density are the main features to be considered 
dealing with the heat transfer fluid used this process. Instead, when PCM slurries 
are adopted most of the heat exchanges involve the latent heat, so the phase 
transition becomes the key-point in the fluid selection. Phase transition must occur 
in a temperature range that is suitable and advantageous for the specific SolHe-
PCM application.  

In general, for the First law of thermodynamics, the lower the heat transfer fluid 
temperature, the higher the energy amount that can be extracted by the system, and 
therefore its efficiency [6]. Since the phase transition temperature influences the 
overall temperatures involved in the process, the lower the phase change occurs, 
the higher the performance of the system. Nevertheless, when exergy issues are 
considered, temperature ranges higher enough to ensure all the heat transfer 
processes are required. This fact introduces some limitations to the minimum phase 
transition temperature allowable in the process. Indeed, to deliver thermal energy 
to the building, the temperature of the storage media must be higher than the supply 
temperature of the heat transfer fluid used in the secondary space heating circuit. In 
detail, if the Sol-He PCM system would be coupled with a low-temperature 
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radiative system (e.g., radiant panels or Thermally Activated Building Structures) 
the minimum supply temperature of the secondary circuit can be considered around 
33 – 34 °C. Considering additional 2 °C of temperature difference due to heat 
exchange inefficiency, the minimum allowable phase transition temperature is in 
the range 35 – 36 °C. For this reason, the n-eicosane paraffin – whose nominal 
transition temperature of the pure material is indicated by the scientific literature 
equal to 37 °C – was chosen as the most suitable material for this purpose. Figure 
2 shows a schematic of the temperatures involved in the process of heat exchange 
in the secondary loop that delivers useful heat to the building. 

 

 
Figure 2. Schematic of the temperatures involved in the process. 

 
 

3.2.2 Fluid rheological requirements  

The PCM slurry had to be selected considering that it should ensure constant 
rheological properties, avoidance of pipes clogging and pump rupture. The PCM 
slurry has to be used either as the thermal storage media and as the heat transfer 
fluid in the primary loop of the solar thermal collector. In general, PCM slurries 
have almost constant rheological properties, which are not concerned about the 
phase change occurrence. Therefore, PCM slurries always remain liquid, although 
with a high viscosity, and they can be pumped regardless of the state of the PCM 
component of the mixture.  

 

 
Figure 3. The phase transition occurs inside the capsule core, not affecting the 

whole fluid mixture rheological properties. 
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The mPCM slurries, based on micro-encapsulated PCM, were considered the 

most suitable solution for ensuring this property. Indeed, the micro-capsule shell 
represents a physical barrier that separates the capsule core – where the phase 
transition occurs – from the carrier fluid, which is in charge of ensuring fluid 
rheological properties (see Figure 3). Moreover, the micro-encapsulation prevents 
the leakage of PCM in the liquid phase, and the slurry can be easily pumped, 
reducing clogging risk and pressure drops. For this reason, the micro-encapsulation 
form of the n-eicosane paraffin was chosen as the mPCM dispersed in the slurry 
mixture. 

 
 

3.2.3 Properties of the micro-encapsulated Phase Change Material 
slurry based on n-eicosane paraffin 

As a consequence, the mPCM slurry used in the SolHe-PCM solar thermal 
application is a mixture of two components: 

• A carrier fluid, which ensures the ability of the liquid to be pumped, enhances 
the thermal diffusivity and has antifreeze properties. A solution of water and 
glycol was selected for this purpose; 

• A dispersed mPCM: which ensures latent heat exchanges without 
compromising the rheological properties of the whole mixture. A micro-
encapsulated n-eicosane PCM was chosen for this purpose. 

The overall mPCM slurry properties (e.g., thermal, rheological and physical 
stability properties) are a function of: 

• The features of the carrier fluid; 
• The features of the dispersed mPCM; 
• The ratio of the dispersed material to the carrier fluid, generally referred as 

the concentration of mPCM capsules in the mixture. In general, this 
concentration is evaluated in weight total (w.t.).  

Technical datasheets retrieved from material producers and data available from 
the scientific literature can provide information about the features of each pure 
material. Furthermore, the previous list highlighted how the overall properties of 
the mPCM slurry are also functions of the relative concentrations of its components. 
Indeed, the concentration of dispersed material influences both the thermophysical 
and rheological properties of the mPCM slurry. The latter shows highly non-linear 
dependence on the concentration. On the one hand, a high concentration of mPCM 
improves the heat storage capabilities of the mPCM slurry. On the other hand, it 
also increases the viscosity of the fluid, thus the pumping energy demand. A 
compromise between these two characteristics should be reached. This compromise 
is a tricky trade-off, since improving one feature may deteriorate the other one. 
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However, it must be taken into account that a higher thermal storage capacity also 
implies a lower flow rate and hence a reduction in the electric energy demand from 
the pump [7]. Once the optimised concentration has been chosen, the properties of 
the whole suspension can be or experimentally evaluated or calculated using 
formulations available in the scientific literature [8,9]. In this thesis, both the 
experimental approach and the theoretical approach were undertaken. The 
properties that mostly influence the solar thermal system behaviour (e.g., 
temperature versus enthalpy curves, specific heat capacities, rheological properties 
and physical stability of the mPCM slurry) were investigated with experimental 
tests; while other features (e.g., thermal conductivity, density, etc.) where 
calculated from the characteristic of each pure material in the mixture. 

 

3.2.3.1 Reference properties of the carrier fluid: water and glycol 
The carrier fluid is a mixture of water and glycol, used as antifreeze. The mass 

percentage of glycol is related to the climate conditions of the location where the 
collector is installed. In this work, a 40 % concentration of glycol was adopted in 
the glycol-water solution for all the simulations. This concentration is the typical 
mean value adopted for traditional panels installed in Central Europe area (2500-
3000 Heating Degree Days). 

Table 1 shows the primary data of the carrier fluid used in the PCM slurry. 
 

Table 1. Details of the water and glycol mixture: carrier fluid. 

Specification Symbol Value m.u. 

Water density ρH2O 1000 kg m-3 

Glycol density ρgl 1110 kg m-3 

Mass percentage of glycol agl 40.0 % 

Carrier fluid (water+glycol) 
density ρH2O+gl 1044 kg m-3 

Carrier fluid (water+glycol) 
specific heat cp, H2O+gl 3600 J kg-1 K-1 

Carrier fluid (water+glycol) 
conductivity 

λH2O+gl 0.369 W m-1 K-1 

Carrier fluid (water+glycol) 
dynamic viscosity @20°C 

μH2O+gl 4.7∙10-3 Pa s 

Carrier fluid (water+glycol) 
dynamic viscosity @40°C 

μH2O+gl 2.4∙10-3 Pa s 

Carrier fluid (water+glycol) 
dynamic viscosity @60°C μH2O+gl 1.5∙10-3 Pa s 
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3.2.3.2 Reference properties of the dispersed mPCM: n-eicosane 
 The suspended material in the PCM slurry is a micro-encapsulated PCM based 

on the paraffin n-eicosane. The two main concerns when it comes to the choice of 
this component are the melting temperature and the latent heat of fusion. The 
temperature range of the phase-change process for n-eicosane is 36 ° - 38 °C. Data 
on this material are available in the literature, and other data have been provided by 
the technical datasheets of the manufacturer [10,11]. The manufacturer of the n-
eicosane mPCM used in this application was the Microtek Laboratories. Wherever 
different values of the same property were found in literature, and their mean value 
was adopted. Table 2 summarises the main thermophysical properties of the n-
eicosane adopted in the SolHe-PCM solar thermal system. These features refer to 
the bulk material contained in the core of the micro-capsules. 

 
Table 2. Thermophysical properties of the chosen mPCM: n-eicosane. 

Specification Symbol Value m.u. 

Mass percentage of the core acore 87.5 % 

Core density (solid/liquid) ρcore 815/780 kg m-3 

Shell density ρshell 1190 kg m-3 

Micro-capsule 
density(solid/liquid) ρmPCM 861/831 kg m-3 

Average particle diameter DmPCM 17-20∙10-6 m 

Conductivity (solid/liquid) λmPCM 0.23/0.15 W m-1 K-1 

Specific heat (solid/liquid) cp_mPCM 1.92/2.46∙103 kJ kg-1 K-1 

Latent heat ∆hlat,mPCM 1.95∙105 kJ kg-1 

Nominal phase change 
temperature θn_mPCM 37 °C 

Nominal phase change 
temperature range 

θinf_mPCM-
θsup_mPCM 35-37 °C 

 
The properties of the mPCM are a function of the characteristic of the PCM 

contained in the micro-capsule core, the material used as micro-capsule shell and 
the ratio of mass percentage of the core. Values of the overall microcapsule can be 
experimentally evaluated or calculated by means of the equations proposed by 
[8,9,12–14]: 

 
𝜌𝑚𝑃𝐶𝑀 = 𝑎𝑚𝑃𝐶𝑀,𝑐𝑜 ∙ 𝜌𝑚𝑃𝐶𝑀,𝑐𝑜 + (1 − 𝑎𝑚𝑃𝐶𝑀,𝑐𝑜) ∙ 𝜌𝑚𝑃𝐶𝑀,𝑠ℎ (3.1) 
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𝑐𝑝,𝑚𝑃𝐶𝑀 =
(𝑐𝑝,𝑚𝑃𝐶𝑀,𝑐𝑜 + 𝑎𝑚𝑃𝐶𝑀,𝑐𝑜 ∙ 𝑐𝑝,𝑚𝑃𝐶𝑀,𝑐𝑜) ∙ 𝜌𝑚𝑃𝐶𝑀,𝑐𝑜 ∙ 𝜌𝑚𝑃𝐶𝑀,𝑠ℎ

(𝜌𝑚𝑃𝐶𝑀,𝑐𝑜 ∙ 𝑎𝑚𝑃𝐶𝑀,𝑐𝑜 + 𝜌𝑚𝑃𝐶𝑀,𝑠ℎ) ∙ 𝜌𝑚𝑃𝐶𝑀
 (3.2) 

 

𝜆𝑚𝑃𝐶𝑀 =
1

𝐷𝑚𝑃𝐶𝑀
∙ (

1

𝜆𝑚𝑃𝐶𝑀,𝑐𝑜 ∙ 𝐷𝑚𝑃𝐶𝑀,𝑐𝑜
+

𝐷𝑚𝑃𝐶𝑀 − 𝐷𝑚𝑃𝐶𝑀,𝑐𝑜
𝜆𝑚𝑃𝐶𝑀,𝑐𝑜 ∙ 𝜆𝑚𝑃𝐶𝑀,𝑠ℎ ∙ 𝐷𝑚𝑃𝐶𝑀

) (3.3) 

 
Where: amPCM,co is the mass percentage of the core material; ρ is the density; cp 

is the specific heat capacity; λ is the thermal conductivity; and D is the diameter.  
The subscript mPCM,co and mPCM,sh refer to the micro-capsule core and shell 
respectively; while mPCM refers to the overall micro-capsule. The values of 
specific heat capacity and thermal conductivity reported in Table 2 were derived 
from the literature data, while the mPCM liquid/solid densities were calculated. 

 
 

3.2.4 Experimental determination of temperature versus specific 
enthalpy curves of the n-eicosane mPCM slurry 

The first significant step for experimentally evaluate the n-eicosane mPCM 
slurry was the determination of the relation interworking between temperature and 
specific enthalpy. These curves allow the heat storage capability of PCMs to be 
determined as a function of its temperature. Indeed, specific enthalpy is a property 
of great importance to accurately predict the behaviour of the material and its 
storage capabilities. The dependency of the storage capacity on temperature can be 
described in terms of specific heat capacity, cp(θ), or concerning specific enthalpy 
variation, h(θ). The relationship between these two quantities is:  

 

ℎ(𝜃) = ∫ 𝑐𝑝(𝜃) ∙ 𝑑𝜃
𝜃2

𝜃1

 (3.4) 

 

𝑐𝑝(𝜃) =
𝑑ℎ(𝜃)

𝑑𝜃
 (3.5) 

 
For this purpose, several experimental procedures can be performed, such as 

Differential Scanning Calorimetry [15], Differential Thermal Analysis, T-history 
method [16], Thermal Gravimetric Analyser [17,18] direct or inverse approaches 
[19], and others [20]. Thermal Gravimetric Analyser is seldom used. Differential 
Scanning Calorimetry and Differential Thermal Analysis are similar methods, even 
though Differential Thermal Analysis is mostly used for qualitative measurements. 
The most appropriate techniques to investigate the enthalpy-temperature curves are 
Differential Scanning Calorimetry and T-History. Both experiments require careful 
preparation and data post-processing. The sample has to be representative of the 
material under investigation, and the specific boundary conditions of the 
experiment should be taken into account when the monitored data are post-
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processed. Gschwander et al. [13] developed general guidelines for referring the 
experiments of PCM characterisation to standard conditions.  

For the mPCM slurry under investigation, experimental tests based on T-
History method were preferred for several reasons. First of all, the simplicity of the 
requested experimental setup. This simplicity is especially useful when the thermal 
properties are not entirely provided by the manufacturer, and the customer company 
do not hold the necessary instrumentation for carrying out sophisticated thermal 
analyses. T-History represents an optimum compromise between the data reliability 
and the lower cost of the experimental set up compared to other methods. Secondly, 
T-History allows samples with a broader volume than different ways to be analysed. 
Indeed, the T-History method is the technique most widely adopted to investigate 
the thermal behaviour of large PCM samples. This fact is particularly advantageous 
for PCM slurries because the representative volume of the sample should be 
comprehensive enough to guarantee the correct mixing of the two substances. 
Furthermore, specific heat capacity in the solid and liquid state, melting temperature 
and latent heat of fusion of several PCM samples can be simultaneously measured. 
Eventually, supercooling can be well characterised with T-History. The T-History 
was proposed by Zhang and Jiang [21] in 1999 as an alternative method to 
Differential Scanning Calorimetry or Differential Thermal Analysis and several 
contributions were subsequently published to improve it [22]. Afterwards, many 
examples where the T-History method was adopted to characterise PCMs and PCM 
slurries can be found in the scientific literature [22]. 

 

3.2.4.1 T-History: methodology 
At least two tubes are required to perform a T-history test. At least one tube 

must be filled with the material under investigation, and one must be filled with 
reference material. The reference material should be a substance with well-known 
thermal properties, such as distilled water. Since the T-history method is based on 
the lumped capacitance model, the characteristics of the tubes should guarantee a 
sufficiently small Biot number (below 0.1) in order to ensure a slight temperature 
gradient within the test material. The Biot number is calculated as follow: 

 

𝐵𝑖 =
ℎ𝑐 ∙ 𝑟

2𝜆
 (3.6) 

 
Where hc is the heat transfer film coefficient of the sample tubes with the 

external environment, r is the radius of the sample tubes, and λ is the thermal 
conductivity. The tubes are preheated above the PCM melting temperature (θpre-heat 
> θm) and afterwards they are cooled down by exposing them to air at ambient 
temperature. During the cooling process, the curves of temperature versus time are 
recorded. Thermal properties can be determined by comparing these curves for the 
PCM and the reference material.  

A horizontal setup should be preferred over a vertical installation to improve 
the measurement accuracy. Indeed, during the experiment, the effect of creaming 
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of the mPCM slurry might be non-negligible. A horizontal setup was also found to 
reduce the discrepancies between freezing and melting enthalpy-temperature 
curves. During our experimental tests, the horizontal setup improved the accuracy 
of the results up to 18 % compared to the vertical position.  

The original T-history method proposed by Zhang et al. was developed for pure 
materials or eutectics. In the following years, several contributions were suggested 
to improve both its mathematical basis and its measuring process. In detail, some 
adjustments were necessary for those materials whose phase change occurs in a 
temperature range – likewise the mPCM slurry under investigation.  Marin et al. 
proposed an improved T-History method that is more suitable for this kind of 
materials. In this updated method, the thermal balance of the tube filled with PCM 
and that of the tube with distilled water are determined. 

The formulations of Marin et al. allow the data gathered during T-history 
experiments to be used to determine the specific enthalpy versus temperature curves 
at different mPCM concentrations. Distilled water was used as the reference fluid. 
Under the hypothesis of equal convection heat transfer coefficient for both tubes, 
the correlations are the following:  
 

∆ℎ𝑃𝐶𝑀(𝜃𝑖) = (
𝑚𝐻2𝑂 ∙ 𝑐𝑝,𝐻2𝑂(𝜃𝑖) + 𝑚𝑡 ∙ 𝑐𝑝,𝑡(𝜃𝑖)

𝑚𝑃𝐶𝑀
) ∙
 𝐴𝑖
𝐴𝑖
′ ∙ ∆𝜃𝑖 −

𝑚𝑡

𝑚𝑃𝐶𝑀
∙ 𝑐𝑝,𝑡(𝜃𝑖) ∙ ∆𝜃𝑖 (3.7) 

 

𝐴𝑖 = ∫ (𝜃𝑃𝐶𝑀,𝑖 − 𝜃𝑎,𝑖)
𝜏𝑖

𝜏0

∙ dτ (3.8) 

 

𝐴′𝑖 = ∫ (𝜃𝐻2𝑂,𝑖 − 𝜃𝑎,𝑖)
𝜏𝑖

𝜏0

∙ dτ (3.9) 

 

ℎ𝑃𝐶𝑀(𝜃𝑖) =  ∑∆ℎ𝑃𝐶𝑀(𝜃𝑖)

𝑛

𝑖=1

+ ℎ𝐻2𝑂 (3.10) 

 
Where h is the specific enthalpy, m is the mass, cp is the specific heat capacity, 

θ is the monitored fluid temperature, τ is the time, A' is the integral of the 
temperature difference between the reference fluid and the ambient temperature, 
and A is the integral of the temperature difference between the PCM slurry fluid 
and the ambient temperature. Both the integrals refer to a period ranging from the 
beginning of the experiment till the end of the phase change transition. The 
subscript H2O indicates the distilled water used as reference fluid, t indicates the 
tube of the sampler, PCM the micro-capsule of PCM, a is the external ambient in 
which the tubes are cooled down, and i is the generic i-th sampling time instant. 

Afterwards, the calculation of the specific heat capacity was possible since it is 
defined as the derivative of the specific enthalpy versus temperature curve. The 
trend of the specific heat can be described as the combination of two Gaussian 
curves, one for the liquid part and the other one for the solid part. 
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𝑐𝑝 = {
𝑐𝑝,𝑠 + (𝑐𝑝,𝑚 − 𝑐𝑝,𝑠) ∙ 𝑒

−(
𝜃𝑚−𝜃

𝜔𝑠
)
2

𝜃 ≤  𝜃𝑚

𝑐𝑝,𝑙 + (𝑐𝑝,𝑚 − 𝑐𝑝,𝑙) ∙ 𝑒
−(

𝜃𝑚−𝜃

𝜔𝑙
)
2

𝜃 > 𝜃𝑚

 (3.11) 

 
In which ω are the width coefficients of the Gaussian curves. While the 

subscribe s refers to the solid state, l to the liquid state, and m to the peak value.  
Thus, starting from the approximation obtained for deriving the specific heat 

capacity of the material, the final equation for an approximated temperature versus 
enthalpy curve results in the following formulation. 

 

ℎ =

{
 
 
 
 

 
 
 
 𝑐𝑝,𝑠 ∙ (𝜃 − 𝜃𝑚𝑃𝐶𝑀,𝑖𝑛𝑓) − (𝑐𝑝,𝑚 − 𝑐𝑝,𝑠) ∙

√𝜋

2
∙ 𝐴 𝜃 ≤ 𝑇𝑝

𝑐𝑝,𝑙 ∙ 𝜃 − (𝑐𝑝,𝑚 − 𝑐𝑝,𝑙) ∙
√𝜋

2
∙ 𝐵 − 𝑐𝑝,𝑠 ∙ 𝜃𝑚𝑃𝐶𝑀,𝑖𝑛𝑓 + 𝜃𝑚 ∙ (𝑐𝑝,𝑠 − 𝑐𝑝,𝑙) 𝜃 > 𝑇𝑝

𝐴 = 𝜔𝑠 ∙ [erf (
𝜃𝑚 − 𝜃

𝜔𝑠
) − erf (

𝜃𝑚 − 𝜃𝑚𝑃𝐶𝑀,𝑖𝑛𝑓

𝜔𝑠
)]

𝐵 = 𝜔𝑙 ∙ erf (
𝜃𝑚 − 𝜃

𝜔𝑙
) + 𝜔𝑠 ∙ erf (

𝜃𝑚 − 𝜃𝑚𝑃𝐶𝑀,𝑖𝑛𝑓

𝜔𝑠
)

 (3.12) 

 

3.2.4.2 T-History: material and method 
The material under investigation was the n-eicosane mPCM slurry obtained by 

a mixture of water and micro-encapsulated n-eicosane. Since mPCM slurry 
thermophysical properties are strictly related to the mass concentration of the PCM 
in the mixture, different weight concentrations must be investigated to determine 
material features. Two sets of experimental tests were carried out. The first set of 
measurements examined higher mPCM mass concentrations performing tests at 
nominal values of 20 % w.t., 30 % w.t., 40 % w.t., and 50 % w.t concentration. The 
second set of measures considered lower mPCM mass concentrations, performing 
tests at nominal values of 5 % w.t., 10 % w.t., and 15 % w.t. concentration. The 
other mPCM characteristics necessary for the experimentation were derived from 
the previous analysis of manufacturer datasheets and data available in the scientific 
literature.  

The experimental setup consisted of: 

• Distilled water, used as reference material, with a specific heat capacity of 
4186 J/(kgK); 

• Scale for sample weighting (sensibility of 0.01 g);  
• 5 Falcon low-density polyethylene tubes with 15 mm diameter, with a specific 

heat capacity of 2300 J/(kgK); 
• 7 T-type thermocouples, previously calibrated using a Pt-100 as a reference; 
• DT85 data-logger with support for multiple SDI-12 sensor networks and 12V 

regulated output to power sensors; 
• Haake F3 thermostatic bath for sample heating (temperature accuracy of 0.02 

°C, operative range of -20/150 °C); 
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• Insulated thermostatic chamber for sample cooling (1 °C internal temperature 
control accuracy); 

• Ventilated oven and a webcam as auxiliary devices. 

The mPCM slurry was obtained by accurately mixing distilled water and micro-
encapsulated n-eicosane. The concentration was verified during sample preparation 
and after the experiment. First, samples at different concentration were prepared by 
weighing the material samples on the scale. Afterwards, a gravimetric test was 
performed drying the samples in the oven until constant weight to double check the 
mass concentration of the samples. The samples were labelled according to their 
theoretical mass concentration from preparation on the scale. However, the 
concentrations resulting from the gravimetric tests slightly differ. Table 3 reports 
these values. 

 
Table 3. Sample weight concentration resulting from gravimetric tests. 

Sample label Actual mass 
concentration 

Standard 
deviation 

PCM slurry 5 % w.t. mPCM 
concentration 

4.9 % w.t. ± 0.1 % w.t. 

PCM slurry 10 % w.t. mPCM 
concentration 9.2 % w.t. ± 0.2 % w.t. 

PCM slurry 15 % w.t. mPCM 
concentration 14.8 % w.t. ± 0.5 % w.t. 

PCM slurry 20 % w.t. mPCM 
concentration 20.1 % w.t. ± 0.7 % w.t. 

PCM slurry 30 % w.t. mPCM 
concentration 29.2 % w.t. ± 1.0 % w.t. 

PCM slurry 40 % w.t. mPCM 
concentration 

39.5 % w.t. ± 1.1 % w.t. 

PCM slurry 50 % w.t. mPCM 
concentration 

49.1 % w.t. ± 0.9 % w.t. 

 
For each concentration, four tubes were filled with the PCM slurry sample, and 

a fifth tube was filled with distilled water. The thermocouples were stably fixed in 
the middle of each tube.  After sample preparation, all the tubes were placed in the 
thermostatic bath (Figure 4). Two additional thermocouples further monitor edits 
temperatures. The bath temperature was set at 60 °C, which is a higher temperature 
than the nominal melting temperature of the PCM slurry. When the thermodynamic 
equilibrium was reached, the tubes were moved into the thermostatic chamber 
(Figure 5). The temperature of the thermostatic chamber was set at a constant value 
of 18 °C to cool the samples below their melting temperature. The thermocouples 
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previously used for measuring the water temperature in the thermostatic bath were 
used to measure the air temperature within the chamber. The data were recorded by 
the data logger every 5 seconds. The preliminary temperature versus time curves 
were obtained in this phase. A webcam programmed with Matlab snapped a picture 
every 15 minutes to monitor how the experiment was progressing and the effects of 
the creaming phenomenon on the samples. 

 

 
Figure 4. The thermostatic bath used to heat up to 60 °C the samples. 

 

 
Figure 5. The samples cooled down in the thermostatic chamber and monitored 

with thermocouples in the centre of the tube 
 

3.2.4.3 T-History: results and discussion 
The elaboration of the results can be roughly divided into three steps. The first 

one is plotting the raw acquired data of temperature versus time. The second step is 
the application of the Marin et al. correlations to define the enthalpy versus 
temperature curves from the gathered data. Eventually, the third step consists in the 
derivation the specific heat capacities from the enthalpy data. Within the phase 



67 
 

transition range, the specific heat capacities assume fictitious values, which merge 
the effects of specific heat capacity and latent heat capacity. 

Figure 6 reports two example of curves obtained with raw data of temperature 
versus time. In detail data of 20 % w.t. concentration is shown in Figure 6(a), while 
data of 50 % w.t. in Figure 6(b). In this stage, it was possible to understand if there 
is one or more sample affected by errors (e.g., whose data are not comparable with 
the one of other samples at the same concentration). In case of a single sample 
diverging, its data were discarded, while in case of recurrent errors the tests were 
repeated for the concentration affected by this drawback. It can be observed that the 
temperature data reported in Figure 6 were comparable for both experiments within 
all the fours samples.  

 

 
Figure 6. T-History raw data: time versus temperature versus time curves. 
(left) 20 % w.t. mass concentration. (right) 20 % w.t. mass concentration. 

 
First of all, the enthalpy values were calculated for each sample employing 

Marin et al. correlations. The temperature 28 °C was chosen as the reference value 
to set the 0 kJ/kg for calculating the enthalpy differences. The choice of this value 
is completely arbitrary and does not completely affect the final results. Secondly, 
average enthalpy values were calculated for each concentration. Figure 7 and 
Figure 8 show the average enthalpy versus temperature curves that resulted from 
these elaborations of the measured data. The two figures refer to the two sets of 
measurements that were carried out. In the first one the concentrations at 20 %, 30 
%, 40 %, and 50 % w.t. were investigated (Figure 7), while in the second set the 
concentrations at 5 %, 10 %, and 15 % w.t. were considered (Figure 8).  

Considering that the latent heat involved in the transition process is lower for 
small mPCM concentrations, Figure 8 shows a smaller temperature range (0.1 °C 
against 0.2 °C) compared to Figure 7 in order to better highlight the effects of PCM 
latent heat exchanges. It can be inferred from both figures that the transition process 
occurs in a temperature range that was slightly shifted to lower values (around 34 – 
36 °C) compared to the nominal range values (35 – 37 °C). This fact was probably 
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due to hysteresis of the material since the melting temperature was provided by the 
manufacturer whereas the T-history measured the solidification temperature. 
Furthermore, a small amount of phase change enthalpy, which is due to rotator-
crystal transition [11], appeared in the temperature interval below 30 °C (not shown 
in the figure). As it was expected, the latent heat related to higher concentrations 
was significantly higher than the one of lower concentrations.  

 

 
Figure 7. Enthalpy versus temperature curves for 20 %, 30 %, 40 %, and 50 % 

w.t. 
 

 
Figure 8. Enthalpy versus temperature curves for 5 %, 10 %, and 15 % w.t. 

  
The measured values were compared with the theoretical ones to determine the 

reliability of the test results. The latter were obtained by applying the Equations 
3.18 and 3.19 described in Section 3.2.7 with the micro-encapsulated n-eicosane 
thermal properties reported in Table 2. In particular, the experimental and 
theoretical values of the specific enthalpy difference in the range 30 °C – 40 °C 
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were evaluated. The Mean Absolute Percentage Error (MAPE) was used to assess 
the prediction accuracy of the experimental method. 

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∙∑|

∆ℎ𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − ∆ℎ𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

∆ℎ𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
| (3.13) 

 
Where n is the number of samplings in the considered range and ∆h is the 

specific enthalpy difference. Table 4 reports the results of this comparison of 
theoretical and experimental results. These results are in accordance with the 
theoretical values, and the discrepancy between the values is included in the 
uncertainty typically observed in T-History experiments. Lower concentrations 
were affected by the higher uncertainty of the results. This discrepancy is mainly 
attributable to the accuracy of the experimental setup. Indeed, the lower the 
concentration the lower the magnitude of the measured variables (e.g., sample 
weight, enthalpy difference). So that, even if the absolute error due to experimental 
apparatus uncertainty is the same, lower concentrations are more sensitive to the 
relative error, likewise MAPE. 

 
Table 4. Comparison between theoretical end experimental specific enthalpy 
differences in the range 30 – 40 °C of the mPCM slurry for various concentrations 
of mPCM in the mixture.  

Concentration w.t. 
Theoretical 

specific enthalpy 
difference  

Experimental 
specific enthalpy 

difference 
MAPE 

 [kJ/kg] [kJ/kg] [%] 

5 % 50.5 57.1 9.9 

10 % 59.1 54.2 9.1 

15 % 67.8 61.6 9.9 

20 % 76.4 80.9 5.5 

30 % 95.0 94.8 1.3 

40 % 110.7 110.1 0.6 

50 % 132.4 128.7 2.9 

 
The instability of the PCM slurry due to creaming (see Section 3.2.5) could 

partially affect the results of the T-History tests. Indeed, the variation of 
concentration gradient during time could due to the creaming strongly affect the 
local thermophysical properties of the PCM slurry and thus the reliability of the 
temperature data monitored by the thermocouple placed inside the samples. For this 
reason, PCM sedimentation was observed during the experiments through a 
webcam. No visible separation between water and mPCM occurred within the 
duration of the tests (about one hour). Preliminary results show that creaming 
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becomes to be visible after three hours. Experimental tests showed how the lower 
the concentration, the sooner the creaming appearance, thus worst MAPE values 
for lower concentrations can be partially explained by the occurrence of actual 
concentration variation within the samples. 

 

 
Figure 9. Creaming monitoring through web-cam during the T-History tests. (a) 
samples after 3 hours; (b) samples after 6 hours; (c) samples after 9 hours; (d) 

samples after 12 hours. 
 

3.2.5 Investigation of n-eicosane rheological properties 

It is fundamental to assess the rheological properties in order to evaluate the 
performance of a heat transfer fluid. Indeed, the rheological properties – and the 
viscosity in particular – affect the shear rate of the fluid. Thus the pumping power 
needed to ensure the flow-rates required by a system. In detail, before proceeding 
with the design and construction of the solar thermal prototype based on an 
innovative heat transfer fluid, it was necessary to assess: 

• If the mPCM slurry causes clogging or other drawbacks, when pumped in 
pipes of the same type of those used in solar thermal collectors and systems; 

• The additional pressure drops, compared to traditional heat transfer fluids 
based on water and glycol, due to the increased viscosity of the mPCM slurry. 

In detail, several tests of pressure drop have been carried out using different 
concentrations of mPCM before the real scale prototype system was set up. The 
primary concern was understanding the rheological behaviour of the mPCM slurry 
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in pipes of real systems. Dedicated experimental setup and experimental tests were 
necessary for this purpose. 

 

3.2.5.1 Investigation of rheological properties: material 
The experimental setup consisted of: 

• The pipe circuit shown in Figure 10, used to perform the tests. This scale 
circuit was made up of similar copper pipes to those used in flat-plate solar 
collectors. The inner diameter of the pipes was 8 mm, and the external 
diameter is 10 mm. The circuit was composed of two straight pipe sections 
and two 90° curves. The height difference between the upper and the lower 
part of the circuit was 0.5 m. Four transparent piezometer pipes (named A, B, 
C, and D) were placed in the circuit to monitor the pressure drops. The 
difference of fluid height between piezometers A and B or C and D was used 
to determine the distributed pressure drops. The distance between these 
piezometers is 6 m. The difference of fluid height between piezometers B and 
C was used to calculate the concentrated pressure drops due to the two 90° 
curves; 

• A programmable Verderflex Scientific AU UV 3000 HD peristaltic pump, 
whose main features are summarised in Table 10; 

• Two plastic buckets; 
• A scale for measuring the fluid flown in the circuit (thus the flow-rate) with 

a sensibility of 10 g and a measuring range between 0 and 5 kg; 
• A precision scale for sample weighing (sensitivity of 0.01 g) and a ventilated 

oven. They were used for the gravimetric tests to determine the exact mixture 
concentration;  

• The heat transfer fluids to be tested: water and glycol, and mPCM slurry. 
 

 
Figure 10. The pressure drops testing circuit. 

 
The samples of mPCM slurry were obtained by accurately mixing water and 

glycol with micro-encapsulated n-eicosane. Six different concentrations were tested 
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according to Table 5. The concentration was verified during sample preparation and 
after the experiment. First, samples at different concentration were prepared by 
weighing the materials on the scale. Afterwards, a gravimetric test was performed 
drying the samples in the oven until constant weight to double check the mass 
concentration of the samples. The samples were labelled according to their 
theoretical mass concentration from preparation on the scale. 

Table 5. Sample concentrations during the various tests. 
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Water + 

glycol  

mPCM 
slurry 

25 % w.t. 

mPCM 
slurry 

30 % w.t. 

mPCM 
slurry 

35 % w.t. 

mPCM 
slurry 

40 % w.t. 

mPCM 
slurry 

48 % w.t. 

 

3.2.5.2 Investigation of rheological properties: method 
A schematic of the experimental procedure is shown in Figure 11. The heat 

transfer fluid was pumped from a plastic bucket to the testing circuit through the 
peristaltic pump. The pressure drops were measured reading the height differences 
of the fluid within the various piezometers. At the end of the circuit, the fluid flowed 
into the second plastic bucket, which was placed on a scale. Measuring the second 
plastic bucket weight variation over a time span (fixed equal to 1 min) allowed the 
flow-rate passing in the circuit to be evaluated (in kilograms per minute). Buckets 
and piezometers were preferred to digital devices for various reasons. First of all, 
one of the scopes of the investigation of the rheological properties was the 
verification of the capability of the PCM slurry to flow in circuits. For this reason, 
electronic sensors placed within the pipes were eluded to avoid any potential pipe 
clogging due to their presence. Secondly, since the PCM slurry is a bi-component 
fluid – with solid particle suspended – it was not clear to the author if sensor 
designed for measuring traditional fluids (like water) would be able to provide 
reliable measures. Finally, the adoption of the weighing buckets method allowed 
the mass flowing in the circuit to be measured directly, without passing through a 
measurement of volumetric flow rate and a density.  

Firstly, the circuit was tested using water with glycol to simulate the typical 
heat transfer fluid used in solar thermal systems. Secondly, the tests were performed 
with various mPCM slurry concentrations according to Table 5.  
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Figure 11. Schematic of the experimental procedure. 

 

3.2.5.3 Investigation of rheological properties: results 
Figure 12, Figure 13 and Figure 14 show the outcomes of distributed and 

concentrated pressure drop tests respectively. Experiments were carried out for 
different volume flow-rates and concentrations of mPCM in the slurry. The results 
obtained for the pressure drop of the water and glycol fluid were equal to reference 
literature values. It is possible to infer from the figures how the pressure drops 
showed a linear increase with the flow-rate and a non-linear increase with the 
concentration. In particular, concentrations over 35 % w.t. are characterised by a 
non-Newtonian behaviour that causes further non-linearities. It was not possible to 
pump the mPCM slurry for higher concentrations than 50 % w.t., while the mPCM 
slurry pressure drops resulted in being similar to those of water for mPCM 
concentrations lower than 30 % w.t. 
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Figure 12. Distributed pressure drops measured on the test-bed circuit. 
(left) Pressure drop versus flow-rate at various concentrations in weight total for 

the “clean” circuit. (right) Pressure drop versus flow-rate at various 
concentrations in weight total for the “dirty” circuit.  

 
 

 

 
Figure 13. Distributed pressure drops measured on the test-bed circuit.  

(left) Pressure drop versus concentration at various flow-rates in weight total for 
the “clean” circuit. (right) Pressure drop versus concentration at various flow-

rates in weight total for the “dirty” circuit. 

 

 
Figure 14. Concentrated pressure drops measured on the test-bed circuit for the 

concentration 35 % w.t. of mPCM. 

 
An interesting outcome from these tests was that the monitored pressure drop 

varies in time. In fact, after 12 hours of continuous monitoring, the material showed 
a completely different behaviour compared to initial tests, with less noticeable 
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pressure drops. This fact led to distinguish the two configurations highlighted in 
Figure 12 and Figure 13. “Clean” circuit indicates the measurements carried out at 

the beginning of the tests, while “dirty” circuit the measurements after 12 hours of 

monitoring. The higher the mPCM concentration in the slurry, the more significant 
this phenomenon. This behaviour was principally due to the appearance of the 
creaming effect even within pipes. Creaming caused the division in layers of the 
mPCM slurry with different micro-capsules concentrations.  

It was possible to derive an apparent viscosity of the fluid starting from the 
pressure drop measurements. First of all, it was necessary to convert the pressure 
drops from differences of height (metres of water column per meters of pipe) to 
differences of pressure (Pascal per meter of pipe). This calculation was possible 
with the formulation:  

 

∆𝑝 = ∆𝐻 ∙ 𝑔 ∙ 𝜌 
(3.14) 

 
 
Where ΔH is the difference of fluid height in two subsequent piezometers; g is 

the standard acceleration due to gravity assumed equal to 9.81 m/s2; and ρ is the 
fluid density (see Section 3.2.6 for the calculation of mPCM slurry density at 
various concentrations). Secondly, it was possible to derive the apparent fluid 
viscosity according to the following expression: 

 

∆𝑝 =
∆𝑝 ∙ 𝜋 ∙ 𝐷𝑖

4

8 ∙ 𝑉̇
 (3.15) 

  
Where Di is the inner diameter of the circuit pipes, equal to 0.008 m; and V̇ is 

the volumetric flow-rate. Figure 15 reports the results of these viscosity 
calculations. Since the viscosity is a property of the material itself, it is not 
influenced by the flow-rate variation. An exception was made for higher 
concentrations where the non-Newtonian properties of the material influenced its 
shear rate, showing a pseudo-plastic behaviour (the higher the solicitation, the lower 
the apparent viscosity). The average apparent viscosities were plotted for each 
concentration in Figure 16. 
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Figure 15. Dynamic viscosity versus flow-rate. (top) “clean” circuit. 

(bottom) “dirty” circuit. 
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Figure 16. Dynamic viscosity variation at various mPCM concentrations. 

 

3.2.6 Investigation of n-eicosane creaming phenomenon 

One of the possible drawbacks related to the adoption of PCM slurries is the 
creaming phenomenon [23], which caused by the density differences between the 
suspended mPCM and the water and glycol carrier fluid. The creaming is the 
movement of the suspended particles towards the superior part of the suspension as 
a result of gravity [24,25]. After a period of tie depending on the material, the two 
phases of the PCM slurry are likely to show separation. This kind of process is quite 
common in mPCM slurries, and it usually takes hours or even days to overcome. In 
the case of the n-eicosane mPCM slurry, a layer of more concentred mPCM layer 
appears in upper part of the mixture.  

As discussed in the following Sections, the creaming drawback can strongly 
affect the performance of the material in the SolHe-PCM prototype. Indeed, the 
creaming phenomenon occurs whenever the fluid is not kept in motion – for 
example when the mPCS slurry is in the thermal energy storage tank or pipes during 
the off periods. This phenomenon can cause severe problems in the functioning of 
the prototype. The stratification in the storage tank causes on the one side non-
homogenous energy storage, on the other side it affects the concentration of the 
material pumped in the primary loop of the solar thermal system. Furthermore, the 
occurrence of creaming in the pipes can cause severe clogging.   

However, very few studies on this phenomenon are available in the literature. 
Up to now, no quantitative analysis about it has been done. A detailed qualitative 
investigation on the physical stability of PCM slurries was carried out by Delgado 
et al. [23]. In general, creaming can be solved by reducing the mPCM capsule size 
or by adding surfactants [25]. Al-Shannaq et al. [26] increased the stability of a 
PCM slurry with a polymethyl methacrylate shell using mixed surfactants, such as 
sodium dodecyl sulphate and ploy vinyl acrylate. Zhang & Zhao [27] dealt with the 
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problem of mPCM slurry creaming by adding multi-walled carbon nanotubes. The 
mPCM slurry showed excellent stability and no visible creaming or sedimentation 
were observed two months after the addition of the nanotubes. A study on a mPCM 
slurry conducted at the Fraunhofer Institute for Solar Energy Systems has been 
reported in [26]. In this case, a thickener was added to the mixture, and this slowed 
down the separation speed. 

The goal of the experimental tests herewith reported was to carry out 
quantitative results aiming at better understanding the creaming phenomenon. In 
particular, it was possible to define a physical law, which reproduces the dynamical 
evolution during the time of the creaming phenomenon. 

 

3.2.6.1 Investigation of creaming phenomenon: material 
The mPCM slurry was tested at different concentrations to investigate how the 

presence of mPCM in the mixture affects the creaming phenomenon. Table 6 
reports the volumetric and mass concentrations of the sampled used in these 
experimental tests. The samples were obtained by accurately mixing distilled water 
and micro-encapsulated n-eicosane. The concentration was verified during sample 
preparation and after the experiment. First, samples at different concentration were 
prepared by weighing the materials on the scale. Afterwards, a gravimetric test was 
performed drying the samples in the oven until constant weight to double check the 
mass concentration of the samples. The samples were labelled according to their 
theoretical mass concentration from preparation on the scale. 

Table 6. Mass and volumetric concentrations of the samples used for the 
investigation of the creaming phenomenon. 

Sample Mass Concentration Volumetric Concentration 

A 25 % w.t. 28.0 % 

B 30 % w.t. 33.4 % 

C 35 % w.t. 38.6 % 

D 40 % w.t. 43.8 % 

 
The experimental setup consisted of: 

• Four 50mL conical Falcon tubes of low-density polyethylene were used to 
hold as many samples of the different concentrations; 

• A metallic support was selected to carry the tubes, keeping them vertically 
without interfering in the visual field; 

• A webcam was placed 50 cm in front of the samples. It was programmed with 
Matlab to snap a picture every 5 minutes for monitoring how the creaming 
phenomenon evolved; 
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• A 40 x 12 cm OLED was put back the samples to maintain a constant apparent 
illuminance to use as a reference in post-processing elaborations.  

Figure 17 shows a schematic diagram of this experimental setup. All these 
devices were placed inside an insulated thermostatic chamber (1°C internal 
temperature control accuracy) to maintain the samples at a constant temperature 
(20° C). This fact avoids that the temperature variations influence on the system. 
An electronic scale (sensibility of 0.01 g) and a ventilated oven were used as an 
auxiliary device to determine the exact sample concentration. 

 

 

Figure 17. Experimental setup for investigation of the creaming phenomenon. 

 

3.2.6.2 Investigation of creaming phenomenon: method 
The method used for investigating the creaming phenomenon was 

straightforward. It consists of continuously monitoring the creaming event in some 
tubes filled with samples of the mPCM slurry at different concentrations. The 
continuous monitoring was possible by snapping pictures with a webcam every 5 
minutes for a global period of 2800 minutes.  

 

3.2.6.3 Investigation of creaming phenomenon: results 
The photos shown in represent the results of the continuous monitoring through 

the webcam. From the time sequence, it can be inferred the evolution of the 
creaming of the mPCM slurry two components. In particular, it was found that the 
material concentration is directly related to the illuminance of the background 
transmitted through the tubes and the samples within contained. On the one hand, 
the water is almost transparent to the light radiation, while on the other hand, the 
PCM slurry becomes opaque. For this reason, the higher the illuminance passing 
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through the samples, the lower the mPCM concentration. The amount of light 
radiation flux through the samples varies at different height during the time, 
according to the concentration changes due to the creaming phenomenon. It is clear 
to observe that after almost 1000 minutes the process reaches a quasi-steady state 
and seemingly the conditions remain practically constant until the end of the 
experiment. The correlation between background light and concentration allows the 
data to be automatically processed through Matlab Image Processing Toolbox. 

As shown in Figure 19, the creaming process was reduced to a one dimensional 
advection-diffusion problem in a cylinder with a variable cross-sectional area 
Atube(z), and the mPCM concentration amPCM was considered as constant across each 
horizontal cross-section, (i.e., it varies according the tube height and time amPCM = 
amPCM (z, τ)). Using the model similar to Refs. [28,29], the equation which describes 
the creaming is given by: 

 
𝜕a𝑚𝑃𝐶𝑀
𝜕𝜏

+
1

𝐴𝑡𝑢𝑏𝑒(𝑧)
∙
𝜕

𝜕𝑧
[𝐴𝑡𝑢𝑏𝑒(𝑧) ∙ 𝑢0 ∙ a𝑚𝑃𝐶𝑀 ∙ (1 − a𝑚𝑃𝐶𝑀)

𝐶] 

=
1

𝐴𝑡𝑢𝑏𝑒(𝑧)
∙ {
𝜕

𝜕𝑧
[𝐴𝑡𝑢𝑏𝑒(𝑧) ∙ 𝐷0 ∙ (1 − a𝑚𝑃𝐶𝑀)

𝐶 ∙
𝜕a𝑚𝑃𝐶𝑀
𝜕𝑧

]} 
(3.16) 

 
Where u0 is the terminal velocity of a single particle of mPCM, C is the 

Richardson and Zaki index, z is the tube height coordinate, Atube is the cross-
sectional area of the sample tube, amPCM is the concentration of micro-capsules in 
the mixture, and D0 is the diffusion coefficient [30]. The parameters used in the 
model relative to the mPCM slurry are listed in Table 7. In this model, the initial 
and boundary conditions were set equal to: 

• amPCM (z, 0) = amPCM,0; 
• 0 ≤ z ≤ h (where h is the maximum height of the tube); 
• zero-flux boundary conditions at two tube conclusions.  

The generalised upwind finite volume method is used to solve the previous 
equation and simulate the dynamical evolution of the system during the time. The 
simulation results are shown in Figure 20. Results are strongly in accordance with 
the experimental data. The creaming phenomenon reaches a quasi-steady state after 
1000 minutes regardless of different initial concentrations. 

 

Table 7. Parameters used in the model and numerical simulations. 

Water 
density 

Acceleration 
of gravity 

Diffusion 
coefficient 

Richardson 
and Zaki 

index 

Terminal velocity of single 
mPCM particle 

ρH2O g D0 C U0 
kg/m3 m/s m2/s - - 

1000  9.81 10-8 4.65 𝑔 ∙ (𝜌𝑚𝑃𝐶𝑀 − 𝜌𝐻2𝑂) ∙ 𝐷𝑚𝑃𝐶𝑀
2/(18 ∙ 𝜇) 
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Figure 18. Photos of the evolution of the creaming phenomenon in samples of 
PCS with different concentrations, from 0 minute to 2800 minute. (a) 0 minutes; 

(b) 50 minutes; (c) 100 minutes; (d) 200 minutes; (e) 500 minutes; (f) 1000 
minutes; (g) 1500 minutes; (h)2000 minutes; (i) 2800 minutes. 

 
 
 

 

Figure 19. (a) Photo of a tube containing mPCM slurry; (b) Diagram for the 
reduction of the problem to a one-dimensional numerical model. 
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Figure 20. The simulated volume concentration of mPCM slurry at different 

height and time-steps. (a) 20 % w.t. sample; (b) 25 % w.t. sample; (c) 30 % w.t. 
sample; (d) 40 % w.t. sample. 

 
 

 
Figure 21. Simulated volume concentration of different scenario to reduce the 

creaming effect. (a) 10 % of current micro-particle mean size; (b)1000% of 
current viscosity; (c) 10% of current density difference. 

 
The creaming of mPCM slurry is undesirable, therefore it is important to reduce 

or slow down its occurrence. Since the previously presented model has been 
validated with data of the experimental tests, it was possible to use it as a tool to 
evaluate possible solutions to reduce the creaming phenomenon. Numerical 
simulation of three different scenarios were conducted to this purpose. The first one 
analysed the effect of reduction of the mPCM micro-particles size to 10 % of its 
current size. The second scenario investigated the increasing of the carrier fluid 
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viscosity to 1000 % of the actual water viscosity. Eventually the last scenario is to 
decrease the density difference of mPCM and carrier fluid to 10 % of the current 
value. The simulated results are shown in Figure 21. It is easy to observe that 
decreasing the mean micro-particle size, increasing the viscosity of the carrier fluid 
and decreasing the density difference between the two parts of the mixture can 
reduce the creaming. In detail, decreasing the mean micro-particle size is the more 
effective of all the three methods. These investigated scenarios give a theoretical 
guide for manufacturing the mPCM in the future. 

 
 

3.2.7 Features of n-eicosane based mPCM slurry at different 
mPCM concentration 

The overall mPCM slurry properties are a function of the features of the water 
and glycol used as the carrier fluid, the features of the dispersed mPCM, and the 
concentration of mPCM capsules in the mixture evaluated in weight total (w.t.).  
Therefore, the assessment of the overall mPCM slurry features requires a set of 
suitable auxiliary equations that consider all the properties of the various 
components and the concentration of the mPCM.  

The properties of the mPCM slurry suspension have been calculated employing 
the following equations [8,9,12–14]: 

 
𝜌𝑚𝑃𝐶𝑀𝑠 = 𝑎𝑚𝑃𝐶𝑀 ∙ 𝜌𝑚𝑃𝐶𝑀 + (1 − 𝑎𝑚𝑃𝐶𝑀) ∙ 𝜌𝐻2𝑂 (3.17) 

 

𝑐𝑝,𝑚𝑃𝐶𝑀𝑠 =
𝑐𝑝,𝑚𝑃𝐶𝑀 ∙ 𝑎𝑚𝑃𝐶𝑀 ∙ 𝜌𝑚𝑃𝐶𝑀 + (1 − 𝑎𝑚𝑃𝐶𝑀) ∙ 𝜌𝐻2𝑂 ∙ 𝑐𝑝,𝐻2𝑂

𝜌𝑚𝑃𝐶𝑀𝑠
 (3.18) 

 
∆ℎ′𝑙𝑎𝑡,𝑃𝐶𝑀𝑠 = ∆ℎ𝑙𝑎𝑡,𝑚𝑃𝐶𝑀 ∙ 𝑎𝑚𝑃𝐶𝑀 + 𝑐𝑝,𝐻2𝑂 ∙ (𝜃𝑠𝑢𝑝,𝑚𝑃𝐶𝑀 − 𝜃𝑖𝑛𝑓,𝑚𝑃𝐶𝑀) ∙ (1 − 𝑎𝑚𝑃𝐶𝑀) (3.19) 

 
Where amPCM is the concentration in weight total of the mPCM in the mixture; 

ρ is the density; cp is the specific heat capacity ∆hlat,mPCM is the specific latent heat 
capacity of phase change; and θsup,mPCM and θinf,mPCM are the higher and the lower 
temperature limits of the phase change range respectively. The subscripts mPCM 
and H2O refer to the mPCM and the carrier fluid (water and glycol) respectively; 
while mPCMs is related to the overall mPCM slurry. Different density and specific 
heat capacity values were calculated for solid and liquid mPCM. It can be inferred 
that Δh’lat,mPCS is a fictitious latent heat, which includes the mPCM latent heat and 
the sensible heat of the water-glycol carrier, in the phase change temperature range. 
A parametric analysis can be performed to assess the variation of each feature at 
the various concentrations under investigation. Since the T-History tests showed 
small differences between experimental data and data retrieved by the scientific 
literature and datasheets, the latter were considered reliable and used in this 
parametric analysis. Table 8 summarises the results obtained considering the values 
defined in Table 1 and Table 2 within the previous equations. 
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Table 8. mPCM slurry density, specific heat capacity and fictitious latent heat 

capacities (solid and liquid mPCM) at various mPCM concentrations in weight 
total. 

Material 
concentration 

ρmPCMs 

liquid 
mPCM 

ρmPCMs 

solid mPCM 

cp,mPCMs 

liquid 
mPCM 

cp,mPCMs 

solid mPCM 
Δh’lat,mPCS 

[-] [kg/m3] [kg/m3] [kJ/(kg∙K)] [kJ/(kg∙K)] [kJ/kg] 

5 % 1033 1035 3.55 3.53 16.95 

10 % 1023 1026 3.51 3.46 26.70 

15 % 1012 1017 3.46 3.39 36.45 

20 % 1001 1008 3.41 3.31 46.20 

30 % 980 989 3.31 3.16 65.70 

40 % 959 971 3.20 3.00 85.20 

50 % 937 953 3.09 2.84 104.70 
 
The results summarised in Table 8 are also shown in Figure 22. It can be 

inferred that the higher the mPCM concentration, the higher the reduction of both 
the mPCM slurry density and the mPCM slurry specific heat capacity. This fact 
affects the mPCM slurry capacity to store sensible heat. Indeed, this feature is 
strongly influenced by the product of these two variables (the so-called ρ∙cp 
product). Figure 22(d) compares this feature with the water one (assumed at a fixed 
value of 4186 kJ/m3K). It is possible to understand from the figure that the specific 
heat capacity reduction can be up to 73 % respect to the water one. Therefore, it 
becomes crucial to make sure that the mPCM slurry operates mainly in the 
transition range where it can store up to 10 times the thermal energy of water. 

The mPCM slurry dynamic viscosity is influenced by the heat transfer fluid 
temperature and the volumetric concentration of mPCM in the mixture. The Vand’s 

model [31] is used to calculate this property, which considers that the temperature 
dependence influences the carrier fluid only. The Vand’s equations are formulated 

as follows: 
 

𝜇𝑚𝑃𝐶𝑀𝑠 = 𝜇𝐻2𝑂(𝑇) ∙ (1 + 𝜑 + 𝐴 ∙ 𝜑
2)2.5 (3.20) 

 
 

𝜑 = 𝑎𝑚𝑃𝐶𝑀 ∙
𝜌
𝑚𝑃𝐶𝑀𝑠

𝜌
𝑚𝑃𝐶𝑀

 (3.21) 
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Figure 22. Parametrical analysis of mPCM features versus concentration. (top-

left) Density at various concentrations. (top-right) Specific heat capacity. 
(bottom-left) Fictitious specific latent heat capacity. (bottom-right) Reduction of 

sensible heat storage capability (ρ∙cp product). 

 

 
Figure 23. Dynamic viscosity as a function of mPCM concentration and mixture 

temperature. 
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Where μH2O(T) is the carrier fluid dynamic viscosity that varies according to the 
temperature (see Table 1 for details); φ is the volumetric concentration of the 
mPCM calculated in function of the material density and mass concentration; and 
A is a coefficient influenced by particle diameter (equal to 3.4 for particle size 
around 17-20 μm [31]). Nevertheless, Vand’s correlations do not take into account 

the non-linearities due to the onset of non-Newtonian behaviour at higher mPCM 
concentrations. For this reason, it can be considered reliable up to 30 % w.t. 
concentration. Figure 23 reports the results of the calculation of the mPCM slurry 
dynamic viscosities at different mPCM concentrations and different mixture 
temperatures. 

The thermal conductivity of the mPCM slurry varies in case of stationary 
material (e.g., the fluid used as storage media in the thermal energy storage unit) or 
flowing material (e.g., the mPCM slurry flowing in the primary collector loop of 
the solar thermal system). In the case of a stationary fluid, the thermal conductivity 
λmPCMs,st of the mPCM slurry can be calculated as a function of the features of the 
two components of the mixture and their concentration with the following 
Maxwell’s relation:  

 

𝜆𝑚𝑃𝐶𝑀𝑠,𝑠𝑡 = 𝜆𝐻2𝑂 ∙
2 +

𝜆𝑚𝑃𝐶𝑀

𝜆𝐻2𝑂
+ 2 ∙ 𝜑 ∙ (

𝜆𝑚𝑃𝐶𝑀

𝜆𝐻2𝑂
− 1)

2 +
𝜆𝑚𝑃𝐶𝑀

𝜆𝐻2𝑂
− 𝜑 ∙ (

𝜆𝑚𝑃𝐶𝑀

𝜆𝐻2𝑂
− 1)

 (3.22) 

 
In the case of flowing mPCM slurry an increase in the thermal conductivity 

must be considered due to the interaction of the mPCM micro-capsules with the 
carrier fluid. The increase of thermal conductivity is function of the mPCM 
volumetric concentration and the Peclet number and can be expressed as follows: 

 

𝜆𝑚𝑃𝐶𝑀𝑠,𝑓𝑙 = 𝜆𝑚𝑃𝐶𝑀𝑠,𝑠𝑡 ∙ (1 + 𝐵 ∙ 𝜑 ∙ 𝑃𝑒
𝑚) (3.23) 

 

 
Figure 24. mPCM slurry thermal conductivity in stationary conditions according 

to the variation of mPCM concentration. 
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In this equation, the coefficient B and the exponent m are functions of the Peclet 
number. They are equal to 3 and 1.5, respectively, when the Peclet number is lower 
than 0.63, and are equal to 1.8 and 0.18 when the Peclet number is in the 0.63 to 
250 range, while they are equal to 3 and 0.09 for Peclet numbers higher than 250. 
Considering circular pipes involved in the heat exchanges the actual Peclet number 
assumes different values at different polar coordinates r due to the fluid velocity 
variation along the radius v(r):  

 

𝑃𝑒(𝑟) =
16 ∙ 𝑟 ∙ 𝑣𝑚𝑃𝐶𝑀𝑠(𝑟) ∙ 𝑅𝑚𝑃𝐶𝑀

2

𝛼𝐻2𝑂 ∙ 𝑅𝑝𝑖𝑝𝑒𝑠
2  (3.24) 

 
Where r is the polar coordinate; RmPCM is the average radius of the mPCM 

micro-capsules (assumed equal to 10 μm); αH2O is the thermal diffusivity of the 
carrier fluid (water and glycol); and Rpipes is the internal radius of the pipes in which 
the mPCM slurry is flowing (that is 1/2” for the pipes of the primary collector loop 
of the solar thermal system). This formulation can be appropriately integrated to 
obtain an average Peclet number, which is assumed constant in the whole section. 

 

𝑃𝑒̅̅̅̅ =
8 ∙ 𝑣̅𝑚𝑃𝐶𝑀𝑠 ∙ 𝑅𝑚𝑃𝐶𝑀

2

𝛼𝐻2𝑂 ∙ 𝑅𝑝𝑖𝑝𝑒𝑠
=
8 ∙ 𝑚̇𝑚𝑃𝐶𝑀𝑠 ∙ 𝑐𝑝,𝐻2𝑂 ∙ 𝑅𝑚𝑃𝐶𝑀

2

𝜋 ∙ 𝜆𝐻2𝑂 ∙ 𝑅𝑝𝑖𝑝𝑒𝑠
3  (3.25) 

 
Where cp,H2O and λH20 are the water specific heat capacity and thermal 

conductivity respectively. Their values are assumed constant and are shown in 
Table 1. The ṁmPCMs is the mass flow rate of the mPCM slurry and varies during 
time according to the control logic implemented. The mass flow rate assumes values 
in the range 0 – 120 kg/h for the entire primary loop circuit and in the range 0 – 15 
kg/h within the riser pipes of the solar thermal collector. 

Eventually, the stationary mPCM slurry thermal diffusivity, αmPCMs, can be 
calculated for various mPCM concentrations. This parameter is particularly 
important to enhance the thermal energy storage capabilities. Figure 26 reports the 
variation of the stationary thermal diffusivity of solid and liquid PCM according to 
the concentration variation. From Figure 26 it can be inferred that the thermal 
diffusivity – at temperatures out of the phase transition range –  remains in the range 
± 10 % of the water and glycol thermal diffusivity. 

 

𝛼𝑚𝑃𝐶𝑀𝑠 =
𝜆𝑚𝑃𝐶𝑀𝑠,𝑠𝑡

𝑐𝑝,𝑚𝑃𝐶𝑀𝑠 ∙ 𝜌𝑚𝑃𝐶𝑀𝑠
 (3.26) 
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Figure 25. Thermal conductivity of the flowing slurry mPCM at various flow 
rates. (top-left) Solid PCM - main system pipes. (top-right) Liquid PCM - main 
system pipes. (bottom-left) Solid PCM - collector pipes. (bottom-right) Liquid 

PCM - collector pipes. 
 

 
Figure 26. Stationary thermal diffusivity of mPCM slurry at various 

concentrations. 
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3.2.8 Lesson learned from the evaluation of the slurry mPCM 
material properties 

A preliminary investigation of the material properties was necessary to better 
understand the suitability of the mPCM slurry for being used as heat transfer fluid 
and storage media within solar thermal systems. This investigation followed the 
indications pinpointed from the scientific literature review undertaken in Chapter 2. 
The three main mPCM slurry features that affect the system performance are: 

• Rheological properties (e.g., viscosity, pipe clogging, etc.); 
• Thermal properties (e.g., specific heat capacity, latent heat capacity, thermal 

conductivity, heat storage capability, etc.); 
• Physical stability (e.g., the occurrence of creaming phenomenon). 

In detail, the primary concern when the SolHe-PCM project was conceived was 
the issue “can the slurry mPCM flow in the pipes of a solar thermal system?”. The 

primary result of the rheological tests was a qualitative answer to this issue. The 
material, at weight concentration up to 45 %, can be straightforwardly used in the 
solar thermal system without particular pumping problems. For higher 
concentrations, problems may arise due to a stronger non-Newtonian behaviour and 
increased viscosity of the slurry. The pressure drop tests allowed quantitative results 
to be carried out and used for more detailed evaluations. In particular, the 
parametrical analysis undertaken in Section 3.2.6 showed how the maximum 
dynamic viscosity increase (occurring at 50 % w.t. concentration and 20 °C) do not 
overcome 10 times the dynamic viscosity of water and glycol (and it is less than 3.5 
times the water one). Moreover, higher temperatures further reduce this difference. 

Regarding the thermal properties, the T-History tests allowed to measure the 
specific and latent heat capacity of the mPCM slurry as a whole. The results were 
used to calibrate further parametrical analysis. This studies highlighted how the 
material significantly overperform the water within the phase change range, while 
the density and specific heat capacity reduction can negatively affect the mPCM 
slurry performance out of this range (with a decrease of the material storage 
potential up to 27 %). This fact highlights how – when a phase change is involved 
– it is crucial to correctly design the system (and its controller) in order to work 
mainly at operative temperatures contained in the transition range. Eventually, the 
material showed a certain physical instability due to the occurrence of creaming. 
This phenomenon was studied qualitatively and quantitatively. From the very first 
tests, the creaming appearance seems to be the most annoying drawbacks of the 
system because it can affect storage uniformity and cause pipe clogging. Several 
configurations of the system were tested (and are described in Section 3.3) to deal 
with this material shortcoming. 
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3.3 Design and construction of a full scale prototype of 
solar thermal system adopting micro-encapsulated Phase 
Change Material slurry as heat transfer fluid and thermal 
energy storage media 

Since the most suitable mPCM slurry to be used as the heat transfer fluid was 
identified and its properties investigated, it was possible to properly define and 
build a full-scale prototype to test the proposed technology. Starting from the 
schematics and concepts outlined in Section 3.1, various steps were necessary to 
design and build the system correctly. Firstly, each component of the system (i.e., 
solar collector, piping and pumping system, thermal energy storage unit) must be 
adequately defined. Secondly, a monitoring system must be devised to gather the 
data necessary to assess the system performance and automatically regulate its 
functioning Finally, to be able to test the system under realistic operative 
conditions, a heating demand-side simulator was conceived and built. 

The present Section is focused on the description of the various features of each 
component constituting the SolHe-PCM solar thermal system. Furthermore, control 
logic to manage the innovative PCM slurry based technologies is herewith 
presented. The hydraulic components were developed with the aid of the company 
Teknoenergy, an Italian producer of solar thermal systems. While the monitoring 
and control system was devised using LabView programming language on an 
embedded controller developed with the aid of the company Teseo, an Italia 
company dealing with automatic industrial regulation and control systems. An 
overall schematic of the prototype and its monitoring control system is outlined in 
Figure 27. Figure 28 shows the Visual Interface (VI) of the LabView code used to 
monitor and regulate the system.  

 

 
Figure 27. Schematic of the SolHe-PCM prototype. 
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Figure 28. LabView Visual Interface of the monitored and controlled prototype. 

 

3.3.1 The solar thermal collector 

The specifications of the panel were chosen after the rheology tests, which 
demonstrated that the mPCM slurry could flow in the pipes of flat-plate solar 
collectors up to a specific viscosity. In future development of the system, the 
optimisation of the hydraulic circuits could be considered. At present, thanks to the 
fact that the rheological properties of the fluid used for the prototype are not so 
different from those of a typical glycol-water solution, a commercial solar thermal 
collector has been adopted for the measurement campaign. The collector is 
equipped with a curtain (or shutter) that can shade the absorber plate to avoid 
overheating processes. The curtain is controlled by a stepper motor that can be 
manually operated by the electric cabinet or automatically regulated. In case of 
automatic control, two possible states only were considered (δi: shutter fully 
opened, and δii: shutter fully closed), as shown in Figure 29.  

 

 
Figure 29. The solar thermal collector used in the full-scale prototype. 
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The main features of the chosen collector are summarised in Table 9: 

 
Table 9. Specification of the solar thermal collector. 

Specification Symbol Value m.u. 

Panel length L 2.1 m 

Panel width l 1.1 m 

Panel thickness s 0.20 m 

Number of heat exchanger 
pipes Npipes 8 - 

Distance between heat 
exchanger pipes Wpipes 0.13 m 

External diameter of pipes Dex,pipes 8∙10-3 m 

Inner diameter of pipes Din,pipes 7.6∙10-3 m 

Plate thickness splate 2∙10-4 m 

Plate absorbing coefficient αplate 0.95 - 

Plate emissivity εplate 0.05 - 

Plate conductivity λplate 385 W m-1 K-1 

Bond width lbond 2∙10-4 m 

Cavity thickness scavity 0.025 m 

Cover thickness scaover 4∙10-3 m 

Cover extinction coefficient Kcaover 16.10 m-1 

Air refraction index n1 1 - 

Cover refraction index n2 1.526 - 

Cover emissivity εcover 0.8 - 

Thickness of the bottom 
insulation sins_bot 0.05 m 

Thickness of the edge 
insulation sins_edg 0.02 m 

Insulation conductivity λins 0.04 W m-1 K-1 
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3.3.2 Thermal energy storage unit 

Many examples of PCMs based thermal energy storage tanks for solar systems 
can be found in the literature (see Section 2.3.2). As it can be inferred from Figure 
27, the thermal energy storage unit is characterised by a primary open loop with the 
heat transfer fluid (the mPCM slurry) that is used both flowing in the solar thermal 
collector and as storage media. The secondary loop, which aims to deliver the space 
heating to the end users, is connected with the thermal energy storage unit with a 
spiral heat exchanger made by a copper pipe (the so-called demand-side heat 
exchanger in Figure 27). The volume of the storage tank was selected in accordance 
with the collector size and the space heating requirements. Two different thermal 
energy storage units were used during the present thesis. The first design was not 
able to mitigate the mPCM slurry creaming occurrence. Thus the storage tank was 
substituted during Summer 2017. 

 

3.3.2.1 Thermal energy storage unit: version 1 
 The primary thermal energy storage unit adopted was a steel made inertial tank 

with an internal volume of 200 l and a maximum operating pressure of 3 bar. The 
thermal dispersions of the storage tank were limited to an insulation layer of 8 cm 
realised with fibreglass. The thermal energy storage unit is shown in  

 

 
Figure 30. (a) Overall view of the thermal energy storage unit installed in the full-

scale prototype of the solar thermal system. (b) Overview of the interior of the 
thermal energy storage tank (with a focus on the copper heat exchanger and the 

internal partitions).  
 
In this configuration, the demand-side heat exchanger has many by-pass 

possibilities to choose the heat exchange surface (whole storage tank, upper part, 
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lower part). Specific measures concerning the geometric optimisation of the tank 
may be adopted in the future.  

As aforementioned the central issue regarding the PCM slurry based solar 
thermal system is the occurrence of instability and stratification of the material due 
to the creaming effect. This aspect is particularly true when the material is not 
moved, likewise in thermal energy storage unit. Twelve transparent inspection 
openings were made in the thermal energy storage tank at different heights to have 
visual control of this phenomenon. Moreover, the mPCM slurry was continuously 
kept in motion in the storage tank, even during the off periods. This feature was 
made possible through the use of partitions in the storage tank - which can be seen 
in Figure 30(b). Furthermore, a bypass circuit, with a secondary peristaltic pump, 
is switched on when the main pump of the primary loop is stopped. This process 
causes additional energy consumption and makes the pumping system more 
complicated. Furthermore, if the mPCM slurry is mixed continuously, the heat 
transfer fluid in the storage tank cannot stratify, and the heat transfer to the 
secondary loop becomes worst. However, at this stage, the adoption of a bypass 
circuit was chosen because it was the easiest and cheapest way to overcome the 
creaming phenomenon. Indeed, it would have been possible to find a chemical-
physical solution for the creaming problem. Nevertheless, such a study was beyond 
the scope of this work, although it may be dealt with in the future before the system 
is pushed on the market. Furthermore, it should be noted that, on the one hand, the 
electric energy consumption of the auxiliary recirculation pumps is expected to be 
very low (as the speed of the fluid is kept quite low to avoid the creaming process). 
On the other, the control strategies of the system will be aimed at optimising the 
exploitation of the latent heat of the system. Therefore, for most of the time, the 
fluid will be roughly isothermal, and stratification in the storage tank will not take 
place. 

Nevertheless, the measures adopted to monitor and contrast the creaming 
phenomenon proved to be insufficient. In detail: 

• Since the internal layer of the tank was not realised in stainless steel, rust 
appeared affecting both the composition of the heat transfer fluid used as 
storage media and the clearness of the twelve inspection openings used to 
monitor the creaming phenomenon; 

• The experimental tests undertaken during the Winter season 2016-2017 
demonstrated that the flow rates in the thermal energy storage unit guaranteed 
by the secondary peristaltic pump and the tank partitions were not sufficient 
to oppose the creaming phenomenon. Indeed, the mPCM slurry was mixed 
slower than the creaming occurrence. This problem caused significant 
uncertainty in the results due to a gradient in the concentration of the heat 
transfer fluid. 
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3.3.2.2 Thermal energy storage unit: version 2 
A new version of the thermal energy storage tank was designed to overcome 

the previously mentioned drawbacks. In detail, was chosen a solution with the 
following characteristics: 

• Envelope material composed of a material that does not cause rust formation 
and has chemical compatibility with the mPCM slurry; 

• Envelope material transparent or translucent to enhance the visual inspection 
possibilities; 

• Presence of a mechanical mixer of adequate power to contrast the creaming 
occurrence. 

To address these specifications a new thermal energy storage unit was installed. 
In detail, it consisted of a plastic tank of 300 l volume made by high molecular 
density polyethylene. The variation in volume – compared to the previous 200 l 
version – was due to manufacturer product availability. The envelope colour is 
translucent white, which allows visual inspections to be undertaken effectively. The 
plastic tank is equipped with a vertical mixer of thermoplastic material. An 
electronic inverter and an external timer activate the mixer at constant time 
intervals, in order to mix the mPCM slurry and contrast the creaming phenomenon. 
A spiral 2.5 kW copper-made heat exchanger was inserted in the tank as the 
demand-side simulator. The tank cover was appropriately drilled with holes that 
allow various thermocouples to be added at different heights of the storage unit. 
The same fibreglass layer adopted for the previous version of the storage tank can 
be additionally used as envelope insulation. It is worth to mention that are still valid 
the considerations discussed in the prior storage version, concerning the drawbacks 
caused by the additional energy consumption due to the mixing system and the 
absence of storage media stratification. 
 

 
Figure 31. (a) The second version of the thermal energy storage unit installed in 

the SolHe-PCM full-scale prototype. (b) A blueprint of the thermal energy storage 
tank and its mechanical mixer. 
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3.3.3 Pumps, valves and pipes 

As well as for the solar collector, the rheological tests demonstrated that the 
mPCM slurry could smoothly flow in traditional piping systems used for hydraulic 
purposes. For this reason, copper pipes with a diameter of 1” were selected for the 

primary loop of the solar thermal collector. 
Rupture of the mPCM microcapsules can cause several problems to the system. 

In particular, leakage of the PCM from the capsule could induce clogging of the 
pipes and a change in the thermal properties of the heat transfer fluid. Damage and 
cracking of the capsules are usually due to mechanical stress induced by the pumps 
[32] or the valves.  

Valves were necessary for the primary loop of the solar thermal system to 
realise the by-pass tee highlighted in Figure 32. This measure was appropriate to 
contrast the creaming phenomenon. Indeed, when there is not sufficient solar 
radiation, and the mPCM slurry should not be flowing in the primary collector loop, 
the creaming can occur even in the pipes of the primary loop causing the appearance 
of mPCM high concentration rates in the upper part of the piping system, which 
leads to clogging the pipes. For this reason, the material must be continuously kept 
in motion by the primary pump also in the primary collector loop. However, to 
avoid heat dispersions toward the ambient, this recirculation must be separated from 
the one interesting the material contained in the storage (with higher exergy 
content). Therefore, solenoid valves were chosen to by-pass the thermal energy 
storage unit when necessary (in Figure 27 and following schematics, these valves 
are indicated with the acronyms V1 and V2). Ball solenoid valves were adopted for 
this purpose since producers ensured that this valve typology causes lower 
mechanical stress on the fluid compared to other typologies (e.g., piston solenoid 
valves).  The valves V1 and V2 have only two operating modes: (δi) fully allow the 
heat transfer fluid to flow in the thermal energy storage tank; (δii) by-pass mode.  

 

 
Figure 32. Recirculation of the mPCM slurry. The by-pass tee allows the fluid in 

the primary collector loop to be recirculated by the primary pump; while the 
secondary pump (or the mixer) recirculates the material in the storage unit. 
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A consequence of this configuration – with a bypass tee where the fluid is 
continuously kept in motion –  is an additional energy demand due to the pumping 
power. However, this extra-consumption has to be considered proper of the 
prototype only and not attributable to the final SolHe-PCM technology. Indeed, the 
recirculation of the fluid in the primary loop is an attempt of attenuating the 
creaming phenomenon occurring in the storage tank. The scientific literature has 
shown various possible solutions to overcome this shortcoming (see Section 2.2.5) 
mainly with the use of surfactants in the mixture. It is expected that the creaming 
problem will be solved in the final version of the SolHe-PCM technology. 
However, this research topic involves mainly material science studies, and they are 
not included among the scopes of the present thesis. For this reason, additional 
speculations on this topic have been neglected and are left to future works. 

Centrifugal pumps do not induce capsule rupture, and only a small number of 
microcapsule shells has been damaged or destroyed during long-term operations 
[64, 65]. However, peristaltic pumps were adopted to further reduce the possible 
risks due to such problems. These pumps offer the advantage of not having any 
moveable parts in direct contact with the fluid that flows inside the pipe. Therefore, 
there are fewer mechanical actions than in any other kind of pump. The main pump 
of the primary loop – which is a programmable Verderflex Scientific AU UV 3000 
HD, whose main features are summarised in Table 10 – is shown in Figure 7. In the 
schematic of Figure 27, this pump is indicated with the acronym P3. 

 
Table 10. Specifications of the Verderflex Scientific AU UV 3000 HD pump. 

Specification Value m.u. 

Power consumption 5-55 W 

Protection rating IP66 - 

Speed control 
4-20 mA 

0-10 V 

Speed range 10-250 RPM 

Standard tube material verderprene - 

Standard tube inner diameter size 8∙10-3 M 

Standard tube inner diameter thickness 3.2∙10-3 M 

Nominal flow rates 5.82-145.50 l/h 
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Figure 33. (a) The peristaltic pump that regulates the primary loop of the solar 
thermal system. (b) the peristaltic recirculation pump that was present in the 

initial version of the thermal energy storage tank. 
 

The main characteristics of the recirculation pump of the storage bypass loop, 
which is a Verderflex OEM M3000, are summarised in Table 11. In Figure 27 this 
pump is indicated with the acronym P2. The recirculation pump was removed when 
the initial version of the storage tank was substituted with the secondary version 
that integrates a vertical mixer. 
 
Table 11. Specifications of the Verderflex OEM M3000 pump. 

Specification Value M.u. 

Power consumption 55 W 

Protection rating IP66 - 

Speed control set - 

Speed possibilities 55 or 125 or 240 RPM 

Standard tube material verderprene - 

Standard tube inner diameter sizeFigure 
27 9.6∙10-3 M 

Standard tube inner diameter thickness 3.2∙10-3 M 

Nominal flow rates 46.9 or 106.5 or 
204.5 l/h 

 
 

3.3.4 Demand-side simulator 

A suitable demand-side simulator was designed to be able to test the prototype 
under realistic boundary conditions. The demand-side simulator consists of a 2.5 
kW spiral heat exchanger made of copper and in the actuators necessary to modulate 
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the space heating demand. Indeed, a controlled water flow rate is used in the spiral 
heat exchanger to extract, at a controllable rate, the thermal energy stored in the 
tank. Aqueduct water was used as heat transfer fluid in the demand-side simulator. 
The aqueduct water was preheated by mixing with the warm water supplied by the 
thermal energy storage unit. This configuration was adopted to be able to extract 
the desired thermal energy from the storage tank with a water flow rate whose 
temperature is similar to the return temperature of a real radiant panel heating 
system. The control logic necessary to adequately control the demand-side 
simulator is described in Section 3.3.6, while Figure 34 shows the actuators used 
to implement this control logic. In detail: 

• The solenoid 2-way valve V3 controls the water flow rate, to meet the 
required heating demand. V3 allows a proportional regulation through Pulse 
Width Modulation (PWM). 

• The solenoid 3-way valve V4 adjusts the water temperature at the storage 
inlet (TC17) to simulate the return temperature of a real radiative space 
heating system operating at low temperatures. V4 allows a proportional 
regulation through Pulse Width Modulation. 

• The pump P1 compensate the pressure drops occurring in the demand-side 
simulator piping circuit to enable the recirculation of the water supplied by 
the thermal energy storage unit. 

 

 

Figure 34. Schematic of the demand-side simulator used to extract energy from 
the thermal energy storage unit, thus simulate typical profiles of space heating 

demand with low-temperature radiative systems. 

 
 

3.3.5 Data gathering system 

The core of the monitoring and control system is a National Instrument 
compactRIO (or cRIO). It is a real-time embedded industrial controller, whose 
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configuration can be easily custom made with the addition of reconfigurable I/O 
modules (e.g., thermocouple module, voltage or current I/O module), 
communication modules (e.g., Ethernet output) or data storage modules (e.g., SD 
card module). Figure 35 shows the electrical cabinet hosting the embedded 
controller that regulates the SolHe-PCM full-scale prototype. 

The National Instrument compactRIO allows both the control of the system and 
the monitoring of the system parameters. The controller was programmed 
employing LabVIEW and can be accessed with a Visual Interface through an 
Ethernet cable. The users can set the data acquisition time according to their specific 
requirements. Even if this kind of controller allows minimal frequency rate of 
acquisition to be established, in general for thermodynamic processes dynamics are 
relatively slow and the acquisition time can be higher than 1 min. Data are stored 
on an SD card embedded in a module of the controller. Data gathering is made 
possible by the use of specific sensors:  

 

 
Figure 35. The electrical cabinet designed and installed to control the full-scale 

prototype. 

 
• An IME static wattmeter in the electric cabinet. This component is used to 

measure the electrical power absorbed by the circulation pumps in the PP1 
and PP2 primary loops. It has an accuracy of “cl.1”, according to the EN/IEC 

62053-21 standard, with a resolution of 0.1 kWh. The acquisition frequency 
is 50 Hz, and it communicates with the rest of the control system using an M-
Bus. 

• Twenty armoured TERSID MTS-15101-T-300 thermocouples. These are T 
type copper/constantan thermocouples, which are used to monitor and control 
the temperatures in the different loops of the system. The thermocouples are 
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highlighted in Figure 27 with the acronym TC and follow a progressive 
enumeration from 1 to 20. 

• A SITRANS FC flow-meter. This element is a Coriolis flow-meter composed 
of a flow-rate sensor (MASS 2100) and an electronic transmitter (MASS 
6000IP67). This sensor is used to monitor the water mass flow rate in the 
demand-side simulator. The advantage of using a Coriolis flow meter is that 
it directly returns a mass flow rate, and it allows the uncertainty pertaining to 
the density to be neglected. The nominal declared sensitivity is better than 
0.1% of the mass flow rate, and the accuracy of the density is equal to 5∙10-4 
gcm-3. The MASS 6000IP67 transmitter is combined with the sensor, and it 
delivers exact multi-parameter measurements (i.e., mass flow, volume flow, 
density, temperature and fraction). The flow-meter is highlighted in Figure 
27 with the acronym FM1. 

• A Campbell Scientific LP02 pyranometer. This component was placed next 
to the panel with the same tilt, in order to monitor the solar incident radiation 
on the tilted surface. The spectral selectivity is from 305 nm to 2000 nm (+/- 
5 %), and the sensitivity is 10-40 μVW-1m-2. The pyranometer is highlighted 
in Figure 27 with the acronym SM1. 

 
 

3.3.6 Development of control logic for the solar thermal system 

The real-scale prototype needs to be controlled using appropriate strategies. 
Two sets of control logic have been identified:  

• Control 1 (or alternatively Control 1’), Control 2, and Control 3 regulate the 
primary loop of the solar collector; 

• Control 4, Control 5, and Control 6 manage the discharge of the energy stored 
in the storage tank, thus the demand-side simulator.  

The overall control logic was uploaded on the compactRIO embedded 
controller and can be activated/deactivated individually through the Visual 
Interface of the controller. 

The first set of control logic is a combination of Rule-Based Controllers (RBC) 
that regulates the primary loop of the solar collector. It deals with the pump P3 
flow-rate regulation and complies with the physical or technological limitation of 
the system.  As it can be inferred from the subsequent description, constraints and 
pump management are included in different control formulations (i.e., Control 1 
regulates the pump, while Control 2 and 3 manage the system constraints). 
Furthermore, the set-point chosen for Control 1 were defined with the expertise 
accumulated over years of regulation of traditional solar thermal systems. 
Therefore, during the definition of this set of control logic regulating the primary 
loop of the solar system emerged the necessity of going further, looking for 
innovative control logic capable of completely enhance the benefits offered of such 
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new technology. This need led to investigate the model-based predictive 
controllers, described in Chapter 5 of the present thesis. 

The latter set of control logic has the goal of regulating the demand-side 
simulator to analyse the performance of the overall solar system during actual 
operative conditions. It can be used or to remove a constant heat flux from the 
thermal energy storage unit or to reproduce the time profile of space heating 
demand. When a relatively high constant heat flux is removed (more than 2 kW) 
the amount of energy stored in the thermal energy storage unit is minimised; and 
the collector can be tested under almost steady boundary condition. Otherwise, a 
time-series vector of required heat fluxes can be used as input to simulate a typical 
space heating demand profile over time. This profile can be defined by means of 
dynamic thermo-energetics simulations (white-box methods) or derived from the 
analysis of real monitored data (inverse or data-driven methods).  

The following Table 12 summarises the control logic used to regulate the full-
scale prototype of SolHe-PCM. 

 

Table 12. Summary of the control logic of the SolHe-PCM system 

Name Input Output Typology Scope 

Control 1 SM P3 RBC Regulate 
flow rate 

Control 1’ TC7 P3 PI Regulate 
flow rate 

Control 2 TC7 V1, V2 RBC Contrast 
creaming 

Control 3 storage temp. V1, V2, SH1 RBC Ensure safety 

Control 4 TC17 V4, P1 RBC, PI Regulate 
supply temp. 

Control 5 TC16, TC17 V3 PI Regulate 
flow rate 

Control 6 TC16, 
storage temp. V3 RBC Regulate 

flow rate 
 

3.3.6.1 Control 1 and Control 1’ 
This control logic represents the central controller for the primary loop that 

includes the solar collector. Two different versions of this controller were 
developed, and their schematics are reported in Figure 36.  

Control 1 – defined in Figure 36(a) – is an open-loop controller on the solar 
radiation measured by the pyranometer SM1. It is based on the assumption that the 
higher the solar thermal radiation, the higher the collector production. The pump 
P1 is regulated consequently with more rounds per minute speed – thus flow-rates 
– when high solar radiation levels occur. This assumption was necessary to reduce 
the temperatures involved in the solar thermal collector heat exchanges. 
Nevertheless, since open-loop control does not ensure direct feedback on the 
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controlled variable, this solution is not recommended when closed-loop solutions 
can be implemented. 

For this reason Control 1’ – defined in Figure 36(b) – was developed with a 
closed-loop regulation.  Control 1’ uses feedback on the temperature at the outlet 
of the panel θout, which is monitored by the thermocouple TC7. The fundamental 
idea of this solar system is to exploit the latent heat as much as possible, in order to 
maximise the overall energy efficiency of the system. For this reason, the optimal 
working condition of the solar collector is the one in which the mPCM slurry 
concludes its transition phase precisely at the collector outlet. In this way, it is 
possible to maintain the lowest possible average operating temperature of the solar 
panel (thus minimising the losses) while still optimising the thermal energy storage 
(since the heat for the isothermal phase change is fully exploited). From a practical 
point of view, this situation occurs when the temperature of the heat transfer fluid 
at the outlet of the solar thermal collector is equal (or slightly above) to the higher 
temperature of the melting range.  

 
𝜃𝑜𝑢𝑡 = 𝜃𝑇𝐶7 ≅ 𝜃𝑠𝑢𝑝 (3.27) 

 
Therefore, the logic that drives this controller is as follows: the temperature of 

the heat carrier fluid is detected at the outlet of the solar collector and is used as 
input in a Proportional Integral Derivative (PID) system that adjusts the rounds per 
minute speed of the peristaltic pump P1 in order to keep such a temperature as close 
as possible to the set point fixed. The set-point temperature was chosen equal to 40 
°C (e.g., 3 °C higher than the nominal melting temperature of the mPCM) in the 
full-scale prototype. The user can adjust the set-point value using the Visual 
Interface of the controller. Since this control can be affected by wind-up drawbacks 
(mainly due to Integral error accumulation during night time when the set point 
cannot be tracked) anti wind-up filters had to be implemented. Otherwise, PD 
formulations, which neglect the Integral error term, resulted in over perform PID 
regulation. A further discussion of this Control 1’ logic can be found in Section 

3.4.3 where this controller is implemented in the Simulink numerical model of the 
solar thermal system. 
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Figure 36. (a) Schematic of the sensors and actuators involved in the Control 1. 

(b) Schematic of the sensors and actuators included in the Control 1’. 

 

3.3.6.2 Control 2 
This control logic it is used to manage the coupling between the solar collector 

and the thermal energy storage tank. It aims at achieving a physical constraint of 
the system. Specifically, it avoids the necessity of feeding the thermal energy 
storage unit with a heat transfer fluid that is colder than the storage media contained 
in the thermal energy storage unit. For this reason, the average temperature (θ̄st) of 
the seven thermocouples located inside the storage unit (TC9, TC10, TC11, TC12, 
TC13, TC14 and TC15) is measured and compared with the temperature at the 
collector outlet, which is measured by TC7. If the average storage temperature is 
higher than the panel outlet temperature, the circulation between the collector and 
the thermal energy storage unit is stopped, and valves V1 and V2 are set in by-pass 
mode. A criterion must also be chosen to define the condition of return at the 
previous system state. In order to avoid excessively rapid switching between the 
by-pass and the normal mode, the circulation between the collector and the storage 
is only restored when θout  (θavg + 5 °C). The two criteria can be expressed with 
the following formulations: 

 
𝑖𝑓 𝜃𝑜𝑢𝑡 = 𝜃𝑇𝐶7 < 𝜃𝑠𝑡̅̅ ̅̅  𝑡ℎ𝑒𝑛 (𝑉1 = 𝜎𝑖𝑖 𝑎𝑛𝑑 𝑉2 = 𝜎𝑖𝑖) (3.28) 

 
𝑖𝑓 𝜃𝑜𝑢𝑡 = 𝜃𝑇𝐶7 > 𝜃𝑠𝑡̅̅ ̅̅ + 5 𝑡ℎ𝑒𝑛 (𝑉1 = 𝜎𝑖 𝑎𝑛𝑑 𝑉2 = 𝜎𝑖) (3.29) 
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Figure 37. (a) Schematic of the sensors and actuators involved in the Control 2.  

 

3.3.6.3 Control 3 
This control logic pertains to a safety constraint for technological reasons. In 

order to avoid problems due to the decay of the material properties, the mPCM 
slurry must be kept at a temperature that does not exceed 65 - 70 °C. Moreover, 
some of the components of the storage tank are designed for a maximum 
temperature of about 65 °C. Therefore, the control C3 switches on if one of the 
seven thermocouples inside the storage tank (TC9, TC10, TC11, TC12, TC13, 
TC14 or TC15) reaches a temperature equal or above 65 °C. When C3 is activated, 
the curtain of the solar collector comes down and valves V1 and V2 are set in the 
by-pass mode. In this way, the hot heat transfer fluid no longer flows in the storage 
unit and the temperature in the storage tank decreases. The normal working 
conditions are restored when all the temperatures recorded by the thermocouples 
inside the storage tank are lower than a safety value of 60 °C. The two criteria can 
be expressed with the following formulations: 

 
𝑖𝑓max|𝜃𝑠𝑡| ≥ 65°𝐶  𝑡ℎ𝑒𝑛 (𝑉1 = 𝜎𝑖𝑖 𝑎𝑛𝑑 𝑉2 = 𝜎𝑖𝑖 𝑎𝑛𝑑 𝑆𝐻1 = 𝜎𝑖𝑖) (3.30) 

 
𝑖𝑓 max|𝜃𝑠𝑡| ≤ 60°𝐶  𝑡ℎ𝑒𝑛 (𝑉1 = 𝜎𝑖 𝑎𝑛𝑑 𝑉2 = 𝜎𝑖𝑎𝑛𝑑 𝑆𝐻1 = 𝜎𝑖) (3.31) 

 

 
Figure 38. Schematic of the sensors and actuators involved in the Control 3. 
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3.3.6.4 Control 4 
This control logic is used to simulate the behaviour of the prototype under 

realistic conditions when the solar system is coupled to a heating system with 
radiant panels. In this context, Control 4 operates so to keep the water temperature 
at the inlet of the heat exchanger in the storage tank (the demand-side simulator) at 
a temperature of about 28 – 30 °C. This value is the typical return temperature of a 
real radiant panel heating system. In general, the temperature difference between 
the supply and return heat transfer fluid used in radiant panel systems is 5 °C. For 
this reason, the supply temperature at the inlet of the panel is almost 33 – 35 °C, a 
value that is entirely compatible with the solar energy system under investigation. 
Such control is implemented employing the proportional regulation of a three-way 
solenoid valve (V4), which allows a variable recirculation rate of the water at the 
outlet of the demand-side simulator. The PID regulates the position of valve V4. 
The goal is to keep the temperature of the water measured at the inlet of the storage 
tank (using the thermocouple TC17) at the set point value defined by the user 
through the Visual Interface of the controller (generally in the range 28 - 30 °C). 
The pump P1 is also activated when V4 allows the demand-side simulator fluid to 
fluid in the recirculation tee. 

 

 
Figure 39. Schematic of the sensors and actuators involved in the Control 4. 

 

3.3.6.5 Control 5 
This control allows the time profile of the heating demand to be reproduced and 

acts on the demand-side simulator. The controlled variable is the enthalpy flux that 
is subtracted from the thermal energy storage tank from the spiral heat exchanger 
that simulates the space heating demand, Q̇need, and the control variable is the water 
mass flow rate, ṁH2O. The shape of the time profiles of the heating demand can be 
chosen freely by the user and implemented in the controller through the Visual 
Interface of the controller.  

The inlet temperature in the thermal energy storage tank (monitored by the 
thermocouple TC17) is kept at a constant nominal value of 28 – 30 °C by means of 
the C4 control. Instead, control C5 adjusts the water mass flow rate in the following 
way: 
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• at each time step, the value of the Q̇need that has to be removed from the 
storage tank is taken from a look-up table (that reproduces the user-defined 
heating demand profiles); 

• based on the knowledge of Q̇need, the water mass flow rate ṁH2O that has to 
flow in the demand-side simulator (to remove Q̇need ) is caculated as: 

𝑚̇𝐻2𝑂 =
𝑄̇𝑛𝑒𝑒𝑑 

𝑐𝑝,𝐻2𝑂 ∙ (𝜃𝑇𝐶16 − 𝜃𝑇𝐶17)
 (3.32) 

 
Where cpH2O is the specific heat capacity of water assumed equal to 4186 

J/(kgK); and θTC16 and θTC18 are the temperatures measured the thermocouples at the 
inlet of the thermal energy storage unit (TC17) and the outlet of the storage tank 
(TC16) respectively. The water mass flow rate ṁH2O is then compared with the 
actual value measured through the Coriolis flowmeter; if an error is found, a PID 
control acts on the two-way solenoid valve V3 to try to rule out this difference. 

 

 
Figure 40. Schematic of the sensors and actuators involved in the Control 5. 

 

3.3.6.6 Control 6 
This control always ensures a positive energy extraction from the thermal 

energy storage tank and avoids cooling of the hot water of the demand-side 
simulator, instead of heating. For this purpose, it is necessary to be sure that the 
temperature of the mPCM slurry in the thermal energy storage tank is always higher 
than that water in the demand-side simulator loop. Control 6 has precisely this task. 
It calculates the average temperature (θ̄st) of the seven thermocouples located inside 
the storage unit (TC9, TC10, TC11, TC12, TC13, TC14 and TC15) and compares 
it with the temperature of the demand-side simulator at the inlet of the storage tank 
(monitored by TC18). If the latter is equal or above the average storage temperature, 
the demand-side simulator loop is stopped.  
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Figure 41. Schematic of the sensors and actuators involved in the Control 6. 

 
The control completely closes the V3 valve and stops the circulating pump P1 

of the demand-side simulator. When a reasonable temperature difference is again 
reached (e.g., a temperature difference of 5 °C between the two considered values), 
the Control 6 restores the normal operation mode. The two criteria can be expressed 
with the following formulations: 

 
𝑖𝑓 𝜃𝑖𝑛,𝑑𝑠𝑠 = 𝜃𝑇𝐶17 < 𝜃𝑠𝑡̅̅ ̅̅  𝑡ℎ𝑒𝑛 (𝑉3 𝑎𝑛𝑑 𝑃1 = 𝑠𝑡𝑜𝑝) (3.33) 

 
𝑖𝑓 𝜃𝑖𝑛,𝑑𝑠𝑠 = 𝜃𝑇𝐶17 > 𝜃𝑠𝑡̅̅ ̅̅ − 5 𝑡ℎ𝑒𝑛 (𝑉3 𝑎𝑛𝑑 𝑃1 = 𝑠𝑡𝑜𝑝) (3.34) 
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3.4 Development of a physical mathematical model of the 
solar thermal system based on Phase Change Material 
slurry 

A mathematical numerical model capable of describing the physical behaviour 
of the solar thermal systems based on PCM slurries was not present in the existing 
literature. For this reason, it was necessary to develop a physical-mathematical 
model capable to describe the dynamical evolution of the SolHe-PCM system. This 
numerical model had a two-fold aim: on one hand, it was used to support the design 
phase of the experimental test rig; on the other hand, it was used as a preliminary 
tool to analyse and test the profitability of the concept by means of comparative 
performance simulations against a conventional, water-based, reference solar 
thermal system. 

Indeed, to better investigate the opportunities offered by the adoption of mPCM 
slurry in the solar thermal system, a numerical model was necessary to perform 
simulation and parametrical analysis. These allowed the system performance to be 
tested under different boundary conditions and climatic parameters. The numerical 
model had to be capable to describe both the sensible and the latent heat exchanges 
occurring in the system. In this way, both traditional water-based and innovative 
heat transfer fluid based on mPCM slurries were tested and the system performance 
compared. 

The developed solar thermal system model is characterised by three key 
elements describing as many system elements:  

• the model for the solar thermal collector;  
• the model for the thermal energy storage unit; 
• the closed loop controller that regulates the pump speed, thus the flow rate 

flowing in the overall system.  

Considering these three elements integrated into a complete model of the 
overall system allowed the performance of the solar thermal system based on 
mPCM slurry to be assessed. Figure 42 reports a schematic of the mutual 
interaction of the three key elements composing the overall numerical model of the 
solar thermal system.   

Both the collector model and the model of the thermal energy storage unit have 
been developed as simplified mathematical models. In particular, in the second 
version of the models, both the collector and the storage unit were identified as 
finite elements thermodynamic systems discretised in lumped nodes. Thus, the 
mathematical modelling is capable to describe the evolution in terms of internal 
energy storage and temperature profile for each node. The complete model has been 
entirely developed by means of Matlab scripts and Simulink flows. The complete 
model can be used to simulate both traditional water-based and solar thermal 
systems exploiting mPCM slurries, such as SolHe-PCM system. The switch 



110 
 

between the two options is possible by adopting different settings of the features of 
the heat transfer fluid and storage media. 

 

 
Figure 42. Schematic of the three key elements of the numerical model of the solar 

thermal system based on mPCM slurry. 

 
The overall model considers the following assumptions: 

• the temperature of the heat transfer fluid at the outlet of the solar thermal 
collector is, unless a negligible error, the temperature at the inlet of the 
thermal energy storage unit (θout,col = θin,st); 

• vice versa, the temperature of the heat transfer fluid at the outlet of the thermal 
energy storage unit is, unless a negligible error, the temperature at the inlet of 
the solar thermal collector (θin,col = θout,st).  

The external disturbances influencing the system are the external weather 
conditions and the space heating energy demand. The external weather conditions 
that mainly affect the system heat exchanges are: 

• the ambient air temperature, θa; 
• the total solar radiation, GT (which can be further divided into the two 

components beam solar radiation, Gb, and diffuse solar radiation, Gd); 
• the angle of incidence of the solar radiation on the collector, γinc; 
• the wind velocity, vw; 
• the radiative temperature of the sky, θsky.  

The thermal energy storage model considers the ambient temperature as unique 
weather disturbance; while the solar thermal collector model is affected by all the 
previous parameters. The space heating energy demand affects the model of the 
thermal energy storage unit only. In particular, it is modelled as the following two 
parameters: 

• the inlet temperature of the demand-side heat exchanger, θhx,in; 
• the thermal energy required by the demand-side heat exchanger, Q̇hx. 



111 
 

Both the model of the collector and the storage unit have been released in two 
versions. The reasons behind this process were different.  

In the case of the collector model the first version of the model was very 
detailed but affected by computational instability and slowness due to the use of 
iterative calculations to solve the thermal balances contained within the model. The 
second version represented the solution to these drawbacks. Furthermore, the 
opportunity to evaluate the temperature profile within the collector was 
implemented in the second release.  

In the case of the model describing the behaviour of the thermal energy storage 
unit, the two version were required by the adoption of two different storage tank in 
the full-scale prototype. The first model version was developed and calibrated to fit 
the behaviour of the first storage tank, while the second model was representative 
of the second tank (the one equipped with a mechanical mixer).  

 
 

 3.4.1 The model for the flat-plate solar thermal collector 
based on the mPCM slurry  

The proposed model of the solar thermal collector was based on the Hottel-
Willier equations [33]. These equations were developed to describe the 
thermophysical behaviour of a flat-plate solar panel that makes use of a single-
phase heat transfer fluid (e.g., a traditional water-based collector). For this reason, 
the model of a solar thermal collector exploiting phase change materials should be 
suitably modified to handle the heat exchange processes that involve the latent heat.  

Two versions of the model describing the thermophysical behaviour of the 
PCM slurry based solar collector were carried out. The first one represents the 
preliminary approach to the problem and it was necessary to formulate the 
equations regulating the latent heat exchanges. Even if this version was accurate 
from the physical-mathematical point of view, when translated in the Matlab-
Simulink programming language, it was affected by some computational 
drawbacks. These affected the model operative effectiveness. Indeed, this first 
version was based on recursive calculations of the length of panel segments 
involved in either sensible or latent heat exchanges. This process can be solved by 
the Simulink solver by numerical iterative calculations. However, on the one hand, 
this way to formulate the problem can strongly increase the computational time 
required to perform simulations. On the other hand, when singularities occur, the 
solutions can be affected by instabilities or result divergences. For this reason, a 
second version of the collector model was carried out. This second version 
represents an evolution of the preliminary attempt. It apriori discretises the collector 
in 10 (or more) segments of the same length and solves a finite element 
thermodynamic problem that assumes constant mPCM slurry properties for each 
segment.  
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3.4.1.1 General assumptions and modelling approach 
Some assumptions and some simplifications were made in the Hottel-Willier 

model to make the physical-mathematical description of the components easier. The 
same assumptions are still valid in the numerical model herewith proposed: 

• quasi-steady-state of the collector components (e.g., glazing cover, absorber 
plate, edge and back insulation casing); 

• forcing parameters and boundary conditions updated at each calculation time-
step; 

• uniform external weather conditions over the whole collector; 
• one-dimensional heat flux (from the top cover to the back insulation); 
• heat losses towards the same heatsink, considered at the outdoor air 

temperature θa. 

All these assumptions have also been adopted in the proposed new model for 
solar thermal collectors based on mPCM slurry. Furthermore, other simplifications 
related to the heat transfer fluid material properties have been taken into account. 
These were necessary to simplify the model and to reduce the number of input data. 
These main additional assumptions were: 

• the phase change occurs completely in the nominal transition range of the 
mPCM, θsup,mPCM – θinf,mPCM; 

• in the phase change range, the contribution of the sensible heat is due to the 
water-glycol portion of the mixture only and it is considered in the fictitious 
latent heat Δh’lat,mPCS. 

It is worth mentioning that the hypothesis of a quasi-steady state regime, 
adopted in the Hottel-Willier model, only applies to the elements that constitute the 
solar collector (i.e., the energy storage in the cover, plate and casing and in the back 
insulation of the collector is assumed negligible). Instead, as far as the heat transfer 
fluid is concerned, both latent and sensible heat are considered and the energy 
storage effects are taken into account. 

 

3.4.1.2 First version  
The basic equation of the Hottel-Willier model has been derived from the 

energy balance equation of the solar thermal collector, which relates the enthalpy 
flux of the heat transfer fluid to several parameters that depend on the 
environmental conditions and thermal panel features. The various heat transfer 
fluxes involved in this thermal balance are highlighted in the scheme shown in 
Figure 43 [2]. 
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Figure 43. Schematic of the heat fluxes involved in a flat-plate solar thermal 

collector. 1. Solar radiation incident on the panel; 2. Optical losses; 3. 
Convective and radiative heat losses through the glass cover; 4. Convective heat 

losses through the edge casing; 5. Convective heat loss through the bottom. 

 
𝑚̇ ∙ 𝑐𝑝,𝐻𝑇𝐹 ∙ (𝜃𝐻𝑇𝐹,𝑜𝑢𝑡 − 𝜃𝐻𝑇𝐹,𝑖𝑛) = 𝑄̇𝑢 (3.35) 

 
Where ṁ is the heat transfer fluid flow rate in the solar thermal collector; cp,HTF 

is the specific heat capacity of the generic heat transfer fluid adopted in the collector 
(i.e., mPCM slurry in the case of the SolHe-PCM system); θHTF,in and  θHTF,out are 
the temperature of the heat transfer fluid at the collector inlet and outlet, 
respectively. The right-hand side of the previous equation is the so-called useful 
heat flux, Q̇u, which can be written as: 

 
𝑄̇𝑢 = 𝐴𝑐𝑜𝑙𝑙 ∙ 𝐹𝑅 ∙ [𝐺𝑇 ∙ (𝜏𝛼)𝑒 − 𝑈𝐿 ∙ (𝜃𝐻𝑇𝐹,𝑖𝑛 − 𝜃𝑎)] (3.36) 

 
The previous equation establishes a balance between the incident solar 

radiation GT, the optical losses (accounted for by means of the (τα)e product) and 
the heat flux lost towards the outdoor environment UL∙(θHTF,in – θa); while Acoll is 
the collector area and FR is the collector heat removal factor. This latter term takes 
into account the different temperatures along the panel surface. Such a temperature 
distribution is due to the so-called “fin effect” (evaluated with parameter F’) and 
the “heat-exchanger effect”.  

The calculation of F’ and UL is not affected by the nature of the heat exchange 
(sensible or latent) that takes place in the heat transfer fluid, but their values are 
functions of the temperature levels at which the fluid operates. Therefore, in the 
proposed model, they have been assessed using the same equations as those used in 
the conventional Hottel-Willier model. On the contrary, changes were implemented 
in order to correctly take into consideration any phase changes that occur in the heat 
transfer fluid during the path of the fluid along the solar collector. In fact, these 
phase changes can determine a considerable modification of the temperature 
distribution over the plate, and can consequently influence the value of the FR factor 
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(which not only depends on the inlet and outlet fluid temperatures but also on other 
parameters).  

The proposed model is still based on the two previous equations to allow a 
simple comparison to be made with the traditional one.  

In a collector that exploits mPCM slurries, the “temperature increase per unit 

of length” of the heat transfer fluid flowing along the panel pipes varies, according 
to whether only sensible heat or both sensible and latent heat are exploited. In 
general, the temperature gradient is much smaller when latent heat is used, in spite 
of the sensible heat. 

If the mPCM slurry temperature is lower than the lowest temperature of the 
transition phase, θinf,mPCM, or higher than the highest temperature of the transition 
phase, θsup,mPCM, only sensible heat exploitation takes place. On the other hand, 
when the mPCM slurry temperature is in the θinf,mPCM – θsup,mPCM range, a 
combination of latent/sensible heat is involved (the effect of this blend is evaluated 
by means of the fictitious latent heat, Δh’lat,mPCS). For these reasons, in a solar 
thermal panel based on mPCM slurry the temperature distribution is very different 
from that of a traditional water-based collector.  

As already mentioned, FR is a function of the temperature distribution along the 
panel. Since only sensible heat is considered in the Hottel-Willier model, just one 
value is calculated for the overall panel surface. On the contrary, in the mPCM 
slurry based solar collector, the value of FR varies over the panel surface, according 
to the state of aggregation of the mPCM slurry. 

In the general case, the mPCM slurry enters the collector at a lower temperature 
(θin) than θinf,mPCM. Therefore, the temperature of the fluid increases along the first 
part of its path inside the panel as it collects solar energy. After reaching the 
temperature level at which the phase change starts, θinf,mPCM, the mPCM slurry starts 
exploiting its latent heat of fusion. When the phase change has been completed 
(θmPCS > θsup,mPCM), the mPCM slurry again starts to only exploit the sensible heat. 
The heat transfer fluid leaves the collector at a higher temperature than θsup,mPCM, 
when and if the mPCM is in a complete liquid state. Figure 44 shows the expected 
temperature profiles along the rising pipes of the collector. 

As it can be inferred from Figure 44 the solar thermal collector can be divided 
into three virtual segments along the flow path (y-axis): 

• Δy1: is the panel segment between the collector inlet and the point at which 
the heat transfer fluid reaches a temperature equal to θinf,mPCM;  

• Δy2: is the segment where the PCM inside the microcapsules undergoes the 
phase change and the mPCM slurry temperature rises from θinf,mPCM to 
θsup,mPCM (transition range); 

• Δy3: is the segment where the temperature of the mPCM slurry increases 
further, sensible heat is once again exploited, and the collector outlet 
temperature θout is reached. 
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Figure 44. Schematic of the temperature profile along the rising pipes of the 

collector in the ideal functioning of a flat-plate solar thermal collector based on 
mPCM slurry. 

 
The lengths of the three virtual segments along the y-axis can be obtained by 

solving the energy balance equations. The length of each segment at each time step 
is calculated using appropriate boundary conditions.  

The length of Δy1 can be obtained by solving the differential equation of the 
heat exchanger [33], reformulated by assuming θout1 = θinf,mPCM as a boundary 
condition. This leads to the following formulation: 

    

∆𝑦1 =
𝑚̇ ∙ 𝑐𝑝,𝑚𝑃𝐶𝑀𝑠,𝑠𝑜𝑙

𝑁 ∙ 𝑊 ∙ 𝐹′ ∙ 𝑈𝐿
∙ 𝑙𝑛 [

𝜃𝑖𝑛 − 𝜃𝑎 −
𝐺𝑇∙(𝜏𝛼)𝑒

𝑈𝐿

𝜃𝑖𝑛𝑓,𝑚𝑃𝐶𝑀 − 𝜃𝑎 −
𝐺𝑇∙(𝜏𝛼)𝑒

𝑈𝐿

] (3.37) 

 
Where cp,mPCMs,liq is the mPCM slurry specific heat capacity in the solid phase; 

N is the number of rising pipes within the collector; W is the distance between two 
rising pipes; and θa is the ambient air temperature considered as the unique heat 
sink interesting the heat losses.  

Similarly, Δy2 can be calculated assuming that the mPCM slurry temperature at 
the end of this segment is θout = θsup,mPCM; the mPCM slurry temperature at the inlet 
of this segment is θin,Δy2 = θinf,mPCM; and that the whole mass of the mPCM has 
melted. In this section, the mPCM slurry mainly exploits the phase change and its 
energy content can be assessed by means of the fictitious latent heat Δh’lat,mPCMs. By 
introducing the mass ratio of the melted PCM over the total mass of PCM, β, it is 
possible to formulate the following equation for the Δy2 segment in which the phase 
change occurs.  

Therefore, it results that: 
 
𝑚̇

𝑁
∙ ∆ℎ′𝑙𝑎𝑡,𝑚𝑃𝐶𝑀𝑠 ∙ 𝑑𝛽 = −𝑊 ∙ 𝐹′ ∙ 𝑈𝐿 ∙ (𝜃𝑦,𝑚𝑃𝐶𝑀𝑠 − 𝜃

∗) ∙ 𝑑𝑦 (3.38) 
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In order to simplify the model, a constant mPCM slurry temperature has been 

considered in segment Δy2, which is assumed to be equal to the mean value of the 
melting range (the smaller the melting range, the better the approximation). 
Furthermore, the boundary condition β = 1 can be imposed, which means that the 
mPCM slurry has melted completely at the end of the Δy2 segment. Under these 
hypotheses, the previous differential equation can be expressed as: 

 

∆𝑦2 =
𝑚̇ ∙ ∆ℎ′𝑙𝑎𝑡,𝑚𝑃𝐶𝑀𝑠

𝑁 ∙ 𝑊 ∙ 𝐹′ ∙ 𝑈𝐿 ∙ [
𝜃𝑠𝑢𝑝,𝑚𝑃𝐶𝑀+𝜃𝑖𝑛𝑓,𝑚𝑃𝐶𝑀

2
−
𝐺𝑇∙(𝜏𝛼)𝑒

𝑈𝐿
− 𝜃𝑎]

 (3.39) 

 
 The length of the third collector segment, Δy3, is obtained from the 

difference between the sum of the two previous segments and the total length of the 
panel: 

 
∆𝑦3 = 𝐿𝑐𝑜𝑙𝑙 − ∆𝑦1 − ∆𝑦2 (3.40) 

 
  After calculating the length of the three effective virtual segments, their 

related areas can be calculated as: 
   

𝐴𝑐𝑜𝑙𝑙,1 = 𝐴𝑐𝑜𝑙𝑙 ∙
∆𝑦1
𝐿𝑐𝑜𝑙𝑙

 (3.41) 

  

𝐴𝑐𝑜𝑙𝑙,2 = 𝐴𝑐𝑜𝑙𝑙 ∙
∆𝑦2
𝐿𝑐𝑜𝑙𝑙

 (3.42) 

 

𝐴𝑐𝑜𝑙𝑙,3 = 𝐴𝑐𝑜𝑙𝑙 ∙
∆𝑦3
𝐿𝑐𝑜𝑙𝑙

 (3.43) 

 
Each of these areas has a different collector heat removal factor, FR, since the 

heat exchange occurs in temperature fields that have different temperature 
distributions. Therefore, it is necessary to calculate the useful heat flux delivered 
by each area of the collector separately. 

The process in Acoll,1 and Acoll,3 only involves a sensible heat exchange, and the 
temperature of the mPCM slurry increases as in a normal, water-based collector. 
The equations are therefore similar to those of the Hottel-Willier model: 

   

𝐹𝑅,1 =
𝑚̇ ∙ 𝑐𝑝,𝑚𝑃𝐶𝑀𝑠,𝑠𝑜𝑙

𝐴𝑐𝑜𝑙𝑙,1 ∙ 𝑈𝐿
∙ (1 − 𝑒

𝐴𝑐𝑜𝑙𝑙,1∙𝑈𝐿∙𝐹′

𝑚̇∙𝑐𝑝,𝑚𝑃𝐶𝑀𝑠,𝑠𝑜𝑙) (3.44) 

 

𝐹𝑅,3 =
𝑚̇ ∙ 𝑐𝑝,𝑚𝑃𝐶𝑀,𝑙𝑖𝑞

𝐴𝑐𝑜𝑙𝑙,3 ∙ 𝑈𝐿
∙ (1 − 𝑒

𝐴𝑐𝑜𝑙𝑙,3∙𝑈𝐿∙𝐹′

𝑚̇∙𝑐𝑝,𝑚𝑃𝐶𝑀,𝑙𝑖𝑞) (3.45) 
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Substituting these values and the mPCM slurry temperature at the inlet of the 
Δy1 and Δy3 segments, on the right-hand side of the equation that expresses the 
useful heat produced as a function of the heat removal factor, one obtains: 

 
𝑄̇𝑢,1 = 𝐴𝑐𝑜𝑙𝑙,1 ∙ 𝐹𝑅,1 ∙ [𝐺𝑇 ∙ (𝜏𝛼)𝑒 − 𝑈𝐿 ∙ (𝜃𝑖𝑛 − 𝜃𝑎)] (3.46) 

 
𝑄̇𝑢,3 = 𝐴𝑐𝑜𝑙𝑙,3 ∙ 𝐹𝑅,3 ∙ [𝐺𝑇 ∙ (𝜏𝛼)𝑒 − 𝑈𝐿 ∙ (𝜃𝑠𝑢𝑝,𝑚𝑃𝐶𝑀 − 𝜃𝑎)] (3.47) 
 
The mPCM slurry instead shows a rather moderate temperature rise over the 

Acoll,2 area. Therefore, in the proposed model, due to this fairly small variation, its 
value has been assumed to be constant and equal to the average value of the melting 
range.  

Adopting such an approximation, the FR,2 parameter becomes equal to F'. 
Moreover, since complete melting of the mPCM occurs, Q̇u,2 can be simply 
calculated according to:  

 
𝑄̇𝑢,2 = 𝑚̇ ∙ ∆ℎ′𝑙𝑎𝑡,𝑚𝑃𝐶𝑀𝑠 (3.48) 

 
  Eventually, the total useful heat flux delivered by the whole solar thermal 

panel, is obtained as the sum of the contributions from each area of the collector: 
  

𝑄̇𝑢 = 𝑄̇𝑢,1 + 𝑄̇𝑢,2 + 𝑄̇𝑢,3 (3.49) 
 
Once the useful heat flux is known, the efficiency η of the solar thermal 

collector is calculated from the ratio of the useful heat flux delivered by the collector 
and the solar irradiation on the collector cover: 

 

𝜂 =
∫ 𝑄̇𝑢 ∙ 𝑑𝑡

𝐴𝑐𝑜𝑙𝑙 ∙ ∫ 𝐺𝑇 ∙ 𝑑𝑡
 (3.50) 

 
The previously presented equations represent the most general behaviour of a 

solar thermal panel capable of exploiting the latent heat of the mPCM slurry. It is 
worth mentioning that the previous discussion refers to the most general behaviour 
of the system – as shown in Figure 44 – but five other particular cases are also 
possible: 

• Case A: The mPCM slurry enters the panel at a lower temperature than the 
minimum value of the melting range: θin < θinf,mPCM, and the absorbed heat is 
not enough to reach the PCM melting range. Therefore, no phase change 
occurs along the path inside the collector, as shown in Figure 45(a). In this 
case, the PCM remains always solid and the panel only exploits sensible heat 
and works as a traditional collector. 

• Case B: The mPCM slurry enters the panel at a higher temperature than the 
maximum value of the melting range: θin ≥ θsup,mPCM. In this case, the PCM 
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remains always in a liquid state and the panel only exploits sensible heat and 
works as a traditional collector, as shown in Figure 45(a). 

• Case C: The mPCM slurry enters the panel at a lower temperature than the 
minimum value of the melting range: θin < θinf,mPCM. The material then starts 
to melt, but the absorbed heat is not enough to complete the phase change or 
to fully exploit the PCM latent heat, as shown in Figure 45(b). In this case, 
the PCM is only partially melted (β < 1) at the panel outlet and the mPCM 
slurry reaches a temperature lower than the superior limit of the phase change 
range. 

• Case D: The mPCM slurry enters the panel at a temperature that falls within 
the melting range θinf,mPCM < θin < θsup,mPCM. For this reason, the PCM is 
partially melted at the collector inlet (β > 0), the phase change occurs 
completely and the sensible heat is exploited in segment Δy3, as shown in 
Figure 45(c) .  

• Case E: The mPCM slurry enters the panel at a temperature that falls within 
the melting range θinf,mPCM < θin < θsup,mPCM. For this reason, the material is 
partially melted at the collector inlet (β > 0). Moreover, the absorbed useful 
heat is not enough to complete the phase change or to fully exploit the latent 
heat, as shown in Figure 45(d). The PCM slurry at the panel outlet is therefore 
only partially melted (β < 1) and the mPCM slurry reaches a temperature 
lower than the superior limit of the phase change range. The heat exchange in 
the collector occurs completely in the phase-change range. 

In order to take these particular cases into due account, some additional 
equations need to be implemented in the model.  

Where Case A or Case B occur, the mPCM slurry would not reach the lowest 
limit of the PCM phase change, θinf,mPCM, before leaving the collector. In these 
circumstances, the real length of the solar thermal collector along the y-axis, Lcoll, 
is shorter than the virtual segment Δy1. Therefore, the effective length of Δy1,eff needs 
to be introduced to consider this situation: 

   

∆𝑦1,𝑒𝑓𝑓 = min {
∆𝑦1,𝑒𝑓𝑓
𝐿𝑐𝑜𝑙𝑙

 (3.51) 

  
In Case C, even though θinf,mPCM is reached, the mPCM slurry leaves the solar 

collector at a lower temperature than θsup,mPCM. In this situation, a fraction of the 
mPCM remains in a solid state and the phase change does not involve the entire 
mass of the mPCM. For this condition, Δy1 can be assessed by means of the 
traditional equation, Δy3 is zero, and a suitable value, Δy2,eff has to be introduced in 
relation to the second segment: 

    

∆𝑦2,𝑒𝑓𝑓 = min {
∆𝑦2

𝐿𝑐𝑜𝑙𝑙 − ∆𝑦1,𝑒𝑓𝑓
 (3.52) 
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Figure 45. Schematic of the temperature profile along the rising pipes of the 

collector: possible cases considering different boundary conditions. 

 
In this case, it is worth noting that the calculation also needs to be modified, 

since the latent heat of the PCM is not completely exploited. Firstly, the fraction of 
the PCM that has melted, β, (that is, the mass ratio of the melted PCM to the total 
mass of PCM) is assessed as follows: 

   

𝛽𝑜𝑢𝑡 =
∆𝑦2,𝑒𝑓𝑓

∆𝑦2
 (3.53) 

 
The exploited useful heat of the Δy2,eff segment can then be evaluated as: 
    

𝑄̇𝑢,2 = 𝛽𝑜𝑢𝑡 ∙ 𝑚̇𝑃𝐶𝑀𝑠 ∙ ∆ℎ′𝑙𝑎𝑡,𝑚𝑃𝐶𝑀𝑠 (3.54) 
  
In the condition of Case E, the lengths of the first and third segments are equal 

to zero: Δy1 = Δy3 = 0. The length of the second segment is equal to the total 
collector length: Δy2= Lcoll. 

However, the model needs a further input parameter: the mass fraction of the 
melted mPCM at the inlet of the panel. This value can be determined as follows:  
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𝛽𝑖𝑛 =
𝜃𝑠𝑢𝑝,𝑚𝑃𝐶𝑀 − 𝜃𝑖𝑛

𝜃𝑠𝑢𝑝,𝑚𝑃𝐶𝑀 − 𝜃𝑖𝑛𝑓,𝑚𝑃𝐶𝑀
 (3.55) 

 
In this case, the equation to calculate the useful heat produced by the segment 

that evaluates the latent heat exchanges becomes: 
 

𝑄̇𝑢,2 = (𝛽𝑜𝑢𝑡 − 𝛽𝑖𝑛) ∙ 𝑚̇ ∙ ∆ℎ′𝑙𝑎𝑡,𝑚𝑃𝐶𝑆 (3.56) 
 
Case D can be solved by suitably combining the above equations. 
The physical-mathematical model of the solar thermal collector based on 

mPCM slurry has been implemented in the Matlab-Simulink environment. A brief 
description of the Simulink model structure is provided hereafter for the sake of 
completeness. Figure 46 shows the general scheme of the Matlab-Simulink blocks 
in which the sub-systems and the data flow have been highlighted. Diverse elements 
of the code are represented by different colours. 

• Green: input variables of the model. They can be computed using a Matlab 
script, adopting scalars or vectors for parameters that change in time 
(assuming a mean hourly value). These inputs are fluid properties, solar 
thermal panel characteristics, climatic conditions and locations; 

• Yellow: these are the different subsystems that implement the model 
equations. In particular: 

• S1: defines the direct incident radiation normal to the collector 
surface; 

• S2: calculates the (τα)e product that represents the optical energy 
losses of the panel; 

• S3: determines the heat-transfer coefficients that can be used to 
calculate the energy loss the panel, and its outputs are the thermal 
resistance and the corresponding heat losses coefficient, UL; 

• S4: describes the heat exchange between the panel and the heat 
transfer fluid; 

• S5: is the “core” of the model. It allows the following to be 

determined: the FR,1, FR,2 and FR,3 parameters, the various lengths 
Δy1,eff, Δy2,eff, Δy3,eff that identify the various zones of the solar 
collector (see, for example, sections 2.3 and 2.4) and the temperature 
of the heat transfer fluid at the outlet of the panel; 

• S6: gives the cover temperature through an iterative calculation. Its 
output depends on the outputs of sub-systems S3 and S5; 

• S7: provides the main outputs of the model, that is: the useful heat 
flux, Q̇u and the collector efficiency, η.  

• Orange: outputs of the model. The most important ones are the useful heat flux 
and the instantaneous efficiency of the collector. Moreover, it is also possible 
to evaluate some additional information that may be useful for analysis of the 
system, such as the mean heat transfer fluid temperature and the temperature at 
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the outlet of the panel, the critical radiation and the stagnation temperature of 
the collector. 

 
Figure 46. Matlab-Simulink model overview for the solar thermal system based on 

mPCM slurries  

 

3.4.1.3 Second version  
A second version of the model was developed to shorten the computational time 

required to simulate the behaviour of the system. In fact, the first version was based 
on an iterative numerical solution based on recursive calculations that affect the 
computational performance of the model. Furthermore, the first version did not 
allow the temperature profile over the panel length to be determined. Indeed, from 
this formulation, it was possible to derive only the panel segment length where the 
phase transition occurred and not a temperature distribution over the panel to be 
compared with experimental tests.  

Firstly, to reduce the interactions required to solve the thermo-dynamical 
problem, an enthalpy approach, instead of a temperature one, was used to evaluate 
the internal energy of the system. In this way, the energy balance can be directly 
solved without determining the temperature of each panel component with a 
recursive calculation process. Afterwards, it is possible to derive the respective 
temperatures, by exploiting the enthalpy property of being a continuous and 
invertible function of the temperature, h=h(θ). In this way, the problem can be 
readily formulated in Simulink, thanks to the adoption of specific enthalpy versus 
temperature curves defined using “Look-Up table” blocks (Figure 47). These 
“Look-Up table” blocks are based on the temperature versus enthalpy curves 
obtained in Section 3.2.2 with the T-History tests. 
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Figure 47. The Look-Up tables in Simulink used to convert temperature values in 

specific enthalpy values, and vice versa. 

 
Secondly, in the second version of the numerical model, the collector has been 

apriori discretised in 10 segments of the same length to evaluate the temperature 
profile over the panel. Each segment represents a lumped node having constant 
thermodynamic properties (e.g., temperature, specific enthalpy, conductivity, etc.). 
For each segment, an energy balance can be formulated and computed, from the 
previously described modified Hottel-Willier model for solar thermal collectors that 
exploit latent heat exchanges. The outlet of a panel node – concerning heat transfer 
fluid temperature and enthalpy – is the inlet of the subsequent node. Shows a 
schematic of the Simulink formulation of the collector model, which is composed 
by 1 input node, 1 output node and 8 central nodes. In this way, it is possible not 
only to determine the useful heat produced by the panel but also to carry out the 
temperature and the heat fluxes involved in the process of each node [9]. Knowing 
the temperature of the 10 nodes allows the temperature profile of the collector to be 
approximated. 

 

Figure 48. Schematic of the second version of the Simulink model of the flat-plate 
solar thermal collector discretised in 10 nodes. 

 
 

3.4.2 Model of the thermal energy storage unit 

There are three possible approaches to carry out a model of the physical 
behaviour of a thermal energy storage unit: 
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• The fluid-dynamic approach considers the heat exchanges within the fluid 
used as storage media utilising dimensionless parameters (such as the 
Reynolds number or the Grashof number); 

• The exergetic or entropic approach, which is based on the Second Law and 
considers the maximum quantity of useful work that can be produced by the 
system according to a specific outdoor environment (exergy) and the internal 
disorder of the system (entropy).  

• The energetic approach, which is based on the First Law and considers the 
energy exchanges and heat transfer of the storage unit with the external 
environment. 

Since the numerical model under development is mainly devoted to estimating the 
useful heat production of the system, the energetic approach resulted as the most 
suitable. In detail, the energetic multi-node model – introduced by the Institute of 
Thermal Engineering within the Task 32 of the International Energy Agency Solar 
Heating and Cooling (IEA-SHC) – was chosen as a reference. This solution has 
revealed to be particularly suitable for traditional water-based storage units, storage 
units equipped with PCM modules and storage units exploiting PCM slurry as heat 
storage media. 

In this case also, two versions of the numerical model of the storage unit were 
necessary. In this case the two versions were due to the change of the full-scale 
prototype of the storage tank during the experimentations. Indeed, since two 
different storage tanks were adopted, it was necessary to develop and implement in 
Matlab-Simulink two different numerical models. 

• The first storage tank was divided into seven partitions and monitored with 
as many thermocouples. Thus the first version of the numerical model used 
seven lumped nodes to describe the behaviour of the storage unit; 

• The heat transfer fluid within the second storage tank was continuously mixed 
employing the mechanical mixer. Thus a single lumped node model was 
sufficient to evaluate the average thermal energy storage temperature in the 
second version of the numerical model. 

Equations developed in the first version of the multi-node model can be easily 
adapted to the second version with a single node. 

 

3.4.2.1 General assumptions and modelling approach 
Likewise the solar collector model, some assumptions and simplifications were 

have been necessary to make the physical-mathematical description of the thermal 
energy storage unit easier: 

• Quasi-steady-state of the thermal energy storage unit components (e.g., tank, 
insulation layer); 
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• Forcing parameters and boundary conditions updated at each calculation 
time-step; 

• Uniform boundary conditions over the whole thermal energy storage unit; 
• One-dimensional mass flow-rate, from the top upper part (inlet) to the lower 

part (outlet) of the storage unit; 
• Heat losses towards the same heatsink, considered at the outdoor air 

temperature θa; 
• Since in the full-scale prototype the thermal energy storage unit is placed 

narrow to the solar thermal collector, the ambient air is considered at the same 
temperature for both the elements; 

• Pressure drops within the thermal energy storage unit are assumed negligible; 
• The heat storage fluid is considered perfectly mixed and characterised by 

uniform properties (e.g., temperature) within each lumped node of the storage 
unit; 

• The phase change occurs entirely in the nominal transition range of the 
mPCM, θsup,mPCM – θinf,mPCM; 

• In the phase change range, the contribution of the sensible heat is due to the 
water-glycol portion of the mixture only, and it is considered in the fictitious 
latent heat Δh’lat,mPCS. 

 

3.4.2.2 First version 
In this version, the numerical model divides the thermal energy storage unit in 

seven nodes (one inlet, one outlet and five internal nodes). In the full-scale 
prototype, these nodes are represented by the interior partitions of the storage tank 
and the temperature of each node is monitored by a specific thermocouple (Figure 
49).   

Similarly to the second version of the collector model, an approach based on 
the enthalpy was adopted. In this approach, the specific enthalpy is considered as a 
continuous and reversible function of the temperature. For this reason, once the 
curves of temperature versus specific enthalpy of the storage media are known (see 
Section 3.2.2), the energy balance can be formulated for each node of the storage 
unit. Under this assumption, the evolution over time of the storage unit internal 
specific enthalpy can be easily related to its temperature evolution h(τ) → θ(τ). Each 
j-th node of the thermal energy storage unit is an open system, and the energy 
balance of its control volume can be derived as follows: 

  

𝑄̇𝑑𝑝,𝑗 + 𝑄̇ℎ𝑥,𝑗 + 𝑄̇𝑎𝑢𝑥,𝑗 + 𝑄̇𝑐𝑜𝑛𝑑,𝑗 + 𝑄̇𝑙𝑜𝑠𝑠,𝑗 = 𝑚𝑗 ∙
ℎ𝑗(𝑘 + 1) − ℎ𝑗(𝑘)

𝑑𝜏
 (3.57) 

 
Where Q̇dp,j is the open system heat flux associated with the heat transfer fluid 

flowing in or out the control volume represented by the j-th node (this term is also 
known as dual ports heat flux); Q̇hx,j is the heat flux due to a heat exchanger within 
the j-th node (e.g., the demand-side simulator heat exchanger); Q̇aux,j is the heat flux 
due to an auxiliary heater within the j-th node; Q̇cond,j is the heat flux exchanged 
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between two adjacent nodes (this term is also referred as conduction heat flux); 
Q̇loss,j are the heat losses toward the outdoor air heat sink of the j-th node; mj is the 
mass of the storage media contained in the j-th node; and the last term describes the 
evolution over time of the specific enthalpy of the storage media included in the j-
th node of the thermal energy storage unit. 

The heat flux of dual ports is influenced by the PCM slurry flow rate flowing 
in the solar thermal system, ṁPCMs, and can be derived as follows: 

 

{
𝑄̇𝑑𝑝,𝑗 = 𝑚̇𝑃𝐶𝑀𝑠 ∙ (ℎ𝑠𝑡,𝑖𝑛 − ℎ𝑗) 𝑖𝑓 𝑗 = 1

𝑄̇𝑑𝑝,𝑗 = 𝑚̇𝑃𝐶𝑀𝑠 ∙ (ℎ𝑗−1 − ℎ𝑗) 𝑖𝑓 𝑗 ≠ 1
 (3.58) 

 
The node j = 1 represents the storage inlet. The numerical model has been 

developed under the general assumption that “the temperature of the heat transfer 

fluid at the outlet of the solar thermal collector is, unless a negligible error, the 
temperature at the inlet of the thermal energy storage unit (θout,col = θin,st)” and the 

relation temperature versus specific enthalpy is reversible. Thus, the term hst,in  is 
equal to the enthalpy derived from the temperature of the mPCM slurry at the outlet 
of the collector. 

 

 

Figure 49. Technical blueprints of the first version of the thermal energy storage 
tank with highlighted the seven internal partitions. 
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The heat flux due to the demand-side simulator heat exchanger is assumed to 
be equal to the energy required for satisfying the space heating demand Q̇need. In the 
considered storage unit configuration, the inlet (j = 1) and the outlet (j = 7) nodes 
are not interested in this kind of heat exchange. While the energy required for 
satisfying the space heating demand is assumed linearly distributed among the 
remaining nodes: 

 

{
𝑄̇ℎ𝑥,𝑗 = 0 𝑖𝑓 𝑗 = 1,7

𝑄̇ℎ𝑥,𝑗 = 𝑄̇𝑛𝑒𝑒𝑑/5 𝑖𝑓 𝑗 ≠ 1,7
 (3.59) 

 
 
The temperature of the j-th node is influenced by the ones of the adjacent nodes. 

This fact influences the heat exchanges accounted for the conduction phenomenon: 
 

{
  
 

  
 𝑄̇𝑐𝑜𝑛𝑑,𝑗 = 𝜆𝑒𝑓𝑓 ∙

𝐴𝑗
Δz𝑗

∙ (𝜃𝑗+1 − 𝜃𝑗) 𝑖𝑓 𝑗 = 1

𝑄̇𝑐𝑜𝑛𝑑,𝑗 = 𝜆𝑒𝑓𝑓 ∙
𝐴𝑗
Δz𝑗

∙ (𝜃𝑗+1 − 2 ∙ 𝜃𝑗 + 𝜃𝑗−1) 𝑖𝑓 𝑗 ≠ 1,7

𝑄̇𝑐𝑜𝑛𝑑,𝑗 = 𝜆𝑒𝑓𝑓 ∙
𝐴𝑗
Δz𝑗

∙ (𝜃𝑗−1 − 𝜃𝑗) 𝑖𝑓 𝑗 = 7

 (3.60) 

 
Where Aj is the area of the horizontal section of the j-th node; Δzj is the j-th 

node height; and λeff is the fictitious effective vertical thermal conductivity that 
considers the stratification phenomenon within the storage. Its value is assumed to 
be equal to 0.6 W/(mK) for thermal energy storage units without an internal heat 
exchanger, while it is in the range 1 – 1.5 W/(mK) for thermal energy storage units 
with an internal heat exchanger. In this specific case, 1 W/(mK) was assumed to 
consider the effect of interior partitions that allowed a further physical separation 
between the warm and the cold fluid. 

Eventually, the losses toward the ambient air of the j-th node can be evaluated 
with the following expression: 

 
𝑄̇𝑙𝑜𝑠𝑠,𝑗 = 𝑈𝑠𝑡 ∙ 𝐴𝑙𝑜𝑠𝑠,𝑗 ∙ (𝜃𝑎 − 𝜃𝑗) (3.61) 

 
Where Ust is the thermal transmittance of the storage unit; and Aloss,j is the j-th 

node external area losing energy toward the outdoor environment.    
Afterwards, the previous equations were implemented in the Matlab-Simulink 

environment to develop the multi-node energetic model of the thermal energy 
storage unit. As well as the second version of the collector model, the mutual 
correlations between heat transfer fluid temperature and specific enthalpy were 
determined through the use of the Look-Up tables assessed through the results of 
the T-History tests. Figure 50 shows the Simulink formulation of the generic j-th 
node. 
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Figure 50. The generic j-th node as it appears in the Simulink environment. 

 

3.4.2.3 Second version  
The second version of the thermal energy storage unit numerical model was 

developed to simulate the behaviour of improved thermal energy storage tank with 
the internal mechanical mixer. It was reliable to consider a unique average 
temperature value characterised this storage unit. Indeed, the mechanical mixer 
continuously blends the storage media and does not allow the mPCM slurry 
stratification or creaming. For this reason, the model was simplified to a single 
lumped node, which can be described by the following equation: 

 

𝑄̇𝑑𝑝 + 𝑄̇ℎ𝑥 + 𝑄̇𝑎𝑢𝑥 + 𝑄̇𝑙𝑜𝑠𝑠 = 𝑚 ∙
ℎ(𝑘 + 1) − ℎ(𝑘)

𝑑𝜏
 (3.62) 

 
Where Q̇dp is the open system heat flux associated with the heat transfer fluid 

flowing in and out the thermal energy storage unit; Q̇hx is the heat flux due to the 
secondary heat exchanger (e.g., the demand-side simulator heat exchanger) and it 
is equal to the energy need for space heating; Q̇aux is the heat flux due to an auxiliary 
heater; Q̇loss are the heat losses toward the outdoor air heat sink; m is the mass of the 
storage media included in the thermal energy storage unit; and the last term 
describes the evolution over time of the specific enthalpy of the storage media 
contained in the thermal energy storage unit.  

The heat flux associated with the heat transfer fluid flowing in and out the 
thermal energy storage unit can be calculated as follows: 

 
𝑄̇𝑑𝑝 = 𝑚̇𝑃𝐶𝑀𝑠 ∙ (ℎ𝑠𝑡,𝑖𝑛 − ℎ𝑠𝑡,𝑜𝑢𝑡) (3.63) 

 
Eventually, the heat losses toward the outdoor air are evaluated as: 
 

𝑄̇𝑙𝑜𝑠𝑠,𝑗 = 𝑈𝑠𝑡 ∙ 𝐴𝑙𝑜𝑠𝑠,𝑗 ∙ (𝜃𝑎 − 𝜃𝑠𝑡) (3.64) 
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3.4.3 Model of the controllers 

Once the flat-plate collector and the thermal energy storage unit models were 
developed, it was necessary to couple them to simulate the overall SolHe-PCM 
system performance. This fact was possible through the development of a model 
capable of replicating the control logic regulating the full-scale prototype (see 
Section 3.3.6). In detail, Control 1 or Control 1’, Control 2, and Control 3 allow the 

regulation of the primary collector loop, thus the coupling of the panel with the 
thermal energy storage unit. 

On the one hand, the Rule Base Controllers defined on thresholds (i.e., Control 
1’, Control 2, and Control 3) are programmed employing “if then else” rules or 

“Switch” blocks in Matlab-Simulink, using equalities or inequalities appropriately.  
On the other hand, Control 1 is a PID (or a PI) closed-loop feedback controller. 

As illustrated in Figure 51, a closed-loop feedback controller acquires an input 
signal from the controlled plant (system feedback) and compares it with a reference 
value (set-point), calculating the error as the discrepancy between the two values. 
In the case of the numerical model of the SolHe-PCM system, the error is calculated 
for every discrete time instant (k) as the difference between reference set-point – 
equal to 40 °C – and the simulated outlet temperature of the panel: 

 
𝑒(𝑘) = 𝜃𝑠𝑒𝑡−𝑝𝑜𝑖𝑛𝑡(𝑘) − 𝜃𝑝𝑎𝑛𝑒𝑙,𝑜𝑢𝑡𝑙𝑒𝑡(𝑘) (3.65) 

 

 
Figure 51. Schematic of a feedback controller. 

 
From a mathematical point of view, the discrete PID controller processes the 

error signal as follow: 
 

𝑢(𝑘) = 𝐾𝑝 ∙ 𝑒(𝑘) + 𝐾𝑖 ∙ ∫ 𝑒(𝑘) ∙  𝑑𝜏 + 𝐾𝑑  ∙
𝑑𝑒

𝑑𝜏
  (3.66) 

 
Where u(k) is the control signal (also referred as system control input), which 

is based on the summation of three terms: 

• The first term is the Proportional term (P). This value is a function of the 
proportional coefficient Kp, and it is directly proportional to the error. It 
allows the time of reaching the set-point to be reduced, but it is not capable 
itself to eliminate the error when the steady state is reached (asymptotically 
convergence). 

• The second term is the Integral term (I). This value is a function of the integral 
coefficient Ki, and it is directly proportional to the integral during the time of 
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the error. In this case, the controller is discrete. Thus the integral is 
approximated by a summation over time. When steady state is reached the 
Integral terms allows the error to be eliminated, but it increments the time 
required to achieve the steady state. 

•  The third term is the Derivative term (D). This value is a function of the 
derivative coefficient Kd, and it is directly proportional to the instantaneous 
derivative of the error. The Derivative term allows the error fluctuations to be 
anticipated, but it increments the control signal noise. 

The second and the third term can be neglected by considering their coefficients 
Ki and Kd equal to 0. In this case, the feedback controller is referred as P, PI, or PD. 
Since physical actuator constraints exist (e.g., the minimum/maximum flow-rate of 
a pump), some saturation limits should be set to the control signal output. 
Furthermore, in general, limitations exist also on the minimum or maximum 
variation rate of the control signal (e.g., the minimum discrete interval of variation 
of the flow-rate of a pump). 

The Control 1 of the SolHe-PCM system regulates the flow-rate of the primary 
collector loop. PID controllers used to regulate a flow-rate slightly differ from 
traditional closed-loop PID. Indeed, in case of flow-rate regulation, the PID output 
is not correlated directly with the actuator input, but with the variation rate of the 
control signal (also referred as control effort). For instance, when the error signal is 
equal to 0 (e.g., the temperature at the panel outlet has reached the required set-
point), it means that the flow-rate has not to be changed (Δu(k) = 0, while the 
expression u(k) = 0 would not be correct). The controller saturation limits were 
fixed equal to the minimum and the maximum RPM allowed by the peristaltic pump 
P3 (see Section 3.3.3), 10 and 250 respectively. Moreover, the discrete interval of 
the control input variation rate was fixed equal to 1 RPM due to the physical 
limitations of the actuator. Eventually, the derivative coefficient Kd was set equal to 
0, transforming the controller in the PI formulation that follows: 

 

∆𝑢(𝑘) = 𝐾𝑝 ∙ 𝑒(𝑘) + 𝐾𝑖 ∙ ∫ 𝑒(𝑘) ∙  𝑑𝜏 

∆𝑢(𝑘) = max(∆𝑢(𝑘), 1) 
𝑢(𝑘) = 𝑢(𝑘 − 1) + ∆𝑢(𝑘) 
𝑢(𝑘) = min(𝑢(𝑘), 250) 
𝑢(𝑘) = max(𝑢(𝑘), 10) 

 

(3.67) 

Furthermore, the Integral term requires a mechanism to discharge its value 
when it reaches saturation. For instance, in the SolHe-PCM project, during night 
time, it is prevalent that the apparent outlet temperature of the collector (it is defined 
“apparent” because the heat transfer fluid is not in motion) sharply differs from the 
set-point. For this reason, the Integral term can accumulate a considerable 
summation error, which can severely influence the behaviour of the controller 
during the following day. A mechanism called anti-windup was applied to the PI 
controller to avoid this drawback. In detail, the clamping method was used. 
Clamping method interrupts the Integral term summation when a specific value is 
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reached. The Simulink flow programmed to model the PID controller that regulates 
the primary collector loop of the SolHe-PCM system (Control 1) assumes the form 
highlighted in Figure 52. 

 

 
Figure 52. The Simulink flow used to simulate the PID Control 1, regulating the 

primary collector loop of the SolHe-PCM system. 
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3.5 Key-findings of the present chapter 

The present chapter has introduced a solar thermal technology based on PCM 
slurry, named SolHe-PCM. The system uses the slurry as heat transfer fluid in the 
primary loop of the collector and as a storage medium in the thermal energy storage 
unit. The PCM slurry is based on micro-encapsulated n-eicosane, a paraffin 
characterised by a nominal melting temperature around 37 °C. The features of the 
slurry were investigated theoretically and experimentally. In detail, the T-History 
tests used to assess the thermal behaviour of the material have demonstrated its 
potentiality to overperform the storage capacity of traditional heat transfer fluids in 
the PCM phase transition temperature range. Rheological tests demonstrated that 
the material can be readily pumped up to 45 % w.t. concentration. Moreover, for 
the relatively lowest concentrations, the apparent viscosity of the slurry is very close 
to the one of traditional heat transfer fluids. Eventually, the physical stability of the 
suspension was tested, discovering the occurrence of a drawback called creaming 
phenomenon. This shortcoming was qualitatively and quantitatively studied. This 
test was necessary to define a system design configuration capable of coping with 
the additional challenges required to overcome the creaming occurrence. 

Starting from the results of aforementioned investigations, the following of the 
present chapter deals with the design and the realisation of a full-scale prototype of 
the system. The various elements of the system are described in detail. Particular 
attention was given to the explanation of the control logic aiming at regulating the 
system. In fact, since the preliminary design steps, it has emerged that the controller 
of novel technology affects the overall system performance significantly. This 
research part is further discussed in Chapter 5.  

Eventually, the present chapter reported the central assumptions and equations 
constituting a physical-mathematical model capable of describing the thermo-
energetic behaviour of the solar thermal system. This model is divided into three 
sub-models (collector, thermal energy storage unit, and controllers), which were 
described in detail. The development of this model has been beneficial for the 
subsequent steps of the thesis. Indeed, on the one hand, in Chapter 4, the model – 
after calibration and validation – has been used to assess the performance of the 
innovative PCM-based solar thermal system according to several boundary 
conditions. On the other hand, in Chapter 5, these equations have been used as a 
control oriented model to device an innovative Model Predictive Control algorithm 
capable to further enhance the system efficiency. 
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Chapter 4 

Solar Heating with Phase Change 
Material slurry as the primary heat 
transfer fluid (Sol-He PCM 
project): results 

 
The present chapter outlines the results obtained with the adoption of the 

models carried out in Chapter 3 and their integration with experimental data 
retrieved through the full-scale prototype. The chapter is organised as follows. 

The first part (Section 4.1) shows the calibration procedure of the two models 
(collector and storage unit) with the data gathered during the experimental 
monitoring. The models were calibrated separately. Afterwards, a validation of 
the overall model operating in closed-loop was undertaken by a comparison with 
the monitored results. This procedure was concluded successfully. The Key 
Performance Indicators used to evaluate the worthiness of the method outlined a 
maximum discrepancy between experimental and simulated data lower than 12 %.  

The second part (Section 4.2) compares the performance of the SolHe-PCM 
system with a traditional water-based system. Firstly, the analysis was undertaken 
using parametrical simulations, which evaluated how a single variable affected the 
overall system performance. Secondly, a long-term (year-long) performance 
evaluation was carried out for three localities characterised by different climatic 
conditions. The efficiency and useful heat produced by the collector were 
calculated with First law balances for water-based and PCM slurry based solar 
thermal systems. The performance of the storage unit in a closed-loop 
configuration was also evaluated with Second law considerations for the location 
of Turin. Compared to a traditional water-based system, the simulation results 
showed that the SolHe-PCM collector could improve the production of useful heat 
up to 7 % throughout the year and 19 % during the heating season. In terms of 
The second law analysis, simulation outcomes highlighted how the SolHe-PCM 
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system (collector and storage unit) could reduce the entropy generation rate up to 
17 %.  

The last part of the chapter (Section 4.3) describes the attempts of long-term 
monitoring of the technology. This parts strongly influenced also the previous 
Section 3.3 which describes the full-scale prototype design and construction. 
Indeed, the system performance was optimised with a trial-and-error procedure 
(typical of each new technology), which consisted in re-defining the design of a 
single system element when shortcomings show that better solution are necessary. 
This fact was particularly true for the thermal energy storage tank, where the 
physical instability – referred as creaming – affected the experimental campaign.  

Some portions of the present Chapter were already published in the following 
scientific papers: 

• Numerical model and simulation of a solar thermal collector with slurry 
Phase Change Material (PCM) as the heat transfer fluid. Authors: G Serale, 
F Goia, M Perino. Journal: Solar Energy 134, 429-444 [20]; 

• Characterization and energy performance of a slurry PCM-based solar 
thermal collector: a numerical analysis. Authors: G Serale, S Baronetto, F 
Goia, M Perino. Journal: Energy Procedia 48, 223-232 [21]. 
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4.1 Preliminary monitoring campaign to calibrate the 
physical-mathematical model 

In the first instance, it was necessary to calibrate the physical-mathematical 
numerical model. Indeed, on the one side, a calibrated numerical model allows 
reliable simulations to be performed. On the one side, these simulations can be 
used to tune the controller parameters in closed-loop scenarios (e.g., the tuning of 
the PID coefficients, the definition of the thresholds in RBC). On the other side, 
the simulation allows studying the performance of the systems also with different 
contexts and boundary conditions. These calibrated simulations lead to realise 
parametrical analyses and obtain performance results of more general validity. 

The calibration process means to accurately identify the model parameters 
that allow simulated results to best-fit the actual performance of the monitored 
system prototype. This procedure is also often referred as system identification. 
The scientific literature is full of methods that can be adopted for calibration 
purposes [1–3]. In 2015, Fabrizio and Monetti for example stated that it is quite 
common to use “trial and error” methods to calibrate thermos-energetic models of 
buildings and their systems. Since these models can be very complex assumptions 
are necessary. For this reason, to handle the model complexity during calibration 
properly, the tuning process of the model parameters requires domain experts’ 

knowledge [22]. Most commonly, the statistical methods based on regressions and 
Bayesian inference are used for this purpose. These methods are based on the fact 
that any physical model has some parameters that cannot be a-priori stetted, 
because their values are affected by inherent uncertainty (e.g., the liminar 
coefficients of a thermal models, the air change rates of indoor environments, 
etc.). These uncertain model parameters can be adjusted between some boundaries 
and under constraints of physical validity. This process can be driven by using a 
dataset of real monitored records. Section 5.2.5 analyses in details the system 
identification methods normally used for building application purposes. 

 
 

4.1.1 Methodology used for calibration 

In general, the calibration procedure aims to select the combination of model 
parameters that reduce the discrepancies between simulation results and the 
dataset of recorded data. This discrepancy is evaluated referring to a key 
performance indicator or a biased error. A model is considered calibrated when a 
selected key performance indicator or biased error underlies or overlies specific 
prefixed values (e.g., the error between real and simulated date must not exceed a 
fixed threshold). It is clear how optimization procedures and statistical analyses 
can positively intervene in this operation. There are several actors that have 
developed guidelines and methodologies to establish a measure of the accuracy of 
these models. In case on energy simulations referred to the whole building 
performance the most widely recognised – according to a study of Ruiz and 
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Bandera [23] – are ASHRAE Guidelines 14-2014 [24], the International 
Performance Measurement and Verification Protocol (IPMVP) [25], and the 
Federal Energy Management Program (FEMP) [26]. 

Since the system identification and the calibration procedure is not a primary 
concern of the present thesis, a simplified model calibration based on parametrical 
analyses was carried out. It consists of four steps: 

• Individuate the parameter most affected by uncertainty in the numerical 
model through a sensitivity analysis; 

• Define a set of possible (technologically and physically realistic) values that 
this parameter may assume; 

• Compare the monitored data and the simulation results by varying the 
parameter affected by uncertainty through the entire set of possible values; 

• Individuate the solution for which simulations best fit the recorded dataset, 
following a key performance indicator. 

It was necessary to separate the effects related to the variation of the heat 
transfer fluid into the prototype from the calibration of the model itself. Indeed, 
since it is based on physical principles, the numerical model must be valid for 
both traditional heat transfer fluids (water and glycol), and each concentration of 
the innovative mPCM slurry. For this reason, it was chosen to calibrate the 
parameters referring to the system itself only, and not those related to the heat 
transfer fluid. Since under these hypotheses the calibration procedure is not fluid 
dependent, the calibration tests were undertaken using water and glycol (40 % 
w.t.) as heat transfer fluid and storage media. Thus the experimental tests with the 
mPCM slurry were used to validate the model performance afterward. 

Furthermore, to avoid overfitting, the calibration procedure was undertaken 
separately for the solar thermal collector model and the thermal energy storage 
unit models. In this procedure the real data were gathered from the full-scale 
prototype that was operating normally in closed-loop. In the case of the collector 
model calibration, the inlet temperature of the panel was considered know and 
equal to its real measured value. In the case of the storage unit model calibration, 
the inlet temperature of the storage unit was considered know and equal to its real 
measured value.  The two calibrated models have merged only afterwards, and the 
performance of the overall system model was evaluated and validated. 

ASHRAE guidelines 14-2014 [24] defined calibration as the: “process of 
reducing the uncertainty of a model by comparing the predicted output of the 
model under a specific set of conditions to the actual measured data for the same 
set of conditions.” Three different key performance indicators were considered to 
evaluate the model calibration: Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE) and Mean Absolute Percentage Error (MAPE) [4]. All these indices 
measure the distance between the model estimated values ŷi and the actual 
recorded observations yi. If the model results are all under the experimental 
evidence, the distance between these two values is equal to 0 and ŷi= yi. It is a 
very unrealistic scenario since uncertainties (in the models or the measurements) 
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always affects the results. Each indicator is affected by pros and cons; thus their 
combination can be useful to understand the problem better [5,6]. The recent 
study of Ruiz and Bandera [23] highlighted the most common errors caused by a 
misinterpretation of the key performance indicators typically used in building 
energetics applications. 

On the one hand, RMSE (also referred as Root Mean Square Deviation) is a 
simple distance function differentiable, symmetric, and quadratic (all these 
features are useful when optimal solution search is performed to define the 
solution that better calibrate the model). On the other hand, RMSE is very 
sensitive to outliers. Therefore, very few extreme values can ultimately affect its 
accuracy. After a discrete number n of i observations, the RMSE can be calculated 
as follows: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖

𝑛
 (4.1) 

 
The MAE (also referred Normalised Mean Bias Error) as has a physical 

significance, and it represents the average discrepancy between real and simulated 
data by definitions. However, since this discrepancy is not normalised on the 
magnitude of the monitored data, it cannot be used to assess the effectiveness and 
the reliability of the estimation directly. MAE is defined as:  

 

𝑀𝐴𝐸 =
1

𝑛
∙∑ |𝑦̂𝑖 − 𝑦𝑖|

𝑛

𝑖
 (4.2) 

 
Eventually, the MAPE (also referred as Mean Absolute Percentage Deviation) 

represents the error calculated by MAE, normalised on the recorded observation 
and multiplied per one hundred to obtain a percentage error:  

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∙∑ |

𝑦̂𝑖 − 𝑦𝑖
𝑦𝑖

|
𝑛

𝑖
 (4.3) 

 
The main drawback of the MAPE is its being biased. Indeed, it is bounded on 

the lower-end – the minimum error is 0 % – but is unbounded on the upper-end – 
the maximum percentage error can be infinite. This is a particular problem if the 
denominator is small or zero. For example, this condition happens when the 
model is attempting to forecast the power production of the collector when small 
or null solar radiation occurs. 

 
 

4.1.2 Model calibration and validation 

The model calibration and validation process lasted 5 days in total (from May 
25th to May 30th). In this period the behaviour of the full-scale prototype was 
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continuously monitored under the variation of the climatic disturbances. Firstly, 
the solar thermal collector and the thermal energy storage were calibrated as 
stand-alone elements with separate procedures. To calibrate the panel model, the 
collector inlet temperature (influenced by the storage unit outlet temperature) was 
considered known and equal to the data gathered experimentally. To calibrate the 
storage unit model, the thermal energy storage unit inlet temperature (influenced 
by the collector outlet temperature) was considered known and equal to the data 
gathered experimentally. Afterwards, the two calibrated models were merged and 
validated through simulation of the closed-loop behaviour of the system. The 
following Figure 1 highlights the profiles of solar radiation and ambient 
temperature during the calibration period.  

 

 

 

Figure 1. (top) Solar radiation. (bottom) Ambient air temperature. 

 
It can be inferred from the figure how the very first three days and a half were 

sunny days, while the last two days were cloudy. The full-scale system under 
investigation was equipped with the first version of the thermal energy storage 
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unit (multi-partition thermal energy storage). For this reason, this calibration 
process refers to the first version of the numerical model of the thermal energy 
storage unit. Contrariwise, it was adopted the computationally more robust second 
version of the collector numerical model. 

It was necessary to separate the effects due to the regulation of the system 
from its thermo-dynamical evolution. Thus, the calibration procedure was 
undertaken under constant control conditions. In particular: 

• The set-point of primary peristaltic pump of the collector loop circuit (P3) 
was set equal to 70 RPM, corresponding to a flow-rate equal to about 55 l/h 
(1.5∙10-2 kg/s); 

• The demand side simulator was configured to cool down the thermal energy 
storage continuously, setting a constant flow-rate equal to 410 kg/h and an 
inlet temperature of 15 °C. 

 
4.1.2.1 Calibration of the solar thermal collector numerical model 

The calibration of the numerical model of the solar thermal collector was 
carried out under the assumptions previously mentioned. The real monitored 
weather conditions were used as solicitations of the Matlab-Simulink model. 
Furthermore, the collector inlet temperature was set equal to the actual 
temperature value recorded by the thermocouple TC1.  

The collector outlet temperature was used to assess the reliability of the 
simulation results with the experimental data. Assumed known the flow-rate 
flowing in the panel and the collector inlet temperature, the uncertainty on this 
value is the one that affects the useful thermal power production of the system. 

The parameter individuated to calibrate the panel is the optical/thermal 
transmission, and absorption coefficient of the glazing cover of the solar thermal 
collector. This parameter is generally identified with the expression (τα)e product, 
introduced by Duffie and Beckman [7]. This value depends on the glazing cover 
typology, and it is influenced by the angle of incidence of the solar radiation, so 
its value varies during the daytime. The gazing cover used in the SolHe-PCM 
prototype is an extra-clear single glass. However, there were not experimental 
evidence or technical data-sheets to characterise its (τα)e product property. For this 
reason, the (τα)e product was affected by substantial uncertainty. To perform the 
simulations, (τα)e was calculated starting from the curve of (τα) vs. the angle of 
incidence of the solar radiation, γ, provided by the WINDOW| Windows and 
Daylighting software of LBNL [8] for an extra-clear single glass.  

To obtain the (τα)e product from the abovementioned curve it was necessary 
to multiply these curves for a coefficient e that accounts the additional optical 
losses due to the accumulation of dirtiness on the panel cover. Moreover, for the 
specific SolHe-PCM prototype, the coefficient e has to consider also the further 
optical losses due to the metal frame of the panel curtain system. To perform the 
parametrical model calibration, it was supposed that the coefficient e does not 
affect the shape of the (τα)e product curve. Thus, it assumes values constant for 
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each possible angle of incidence of the solar radiation, γ, and the expression of 
(τα)e can be formulated as:  

 
(𝜏𝛼)𝑒 = (1 − 𝑒) ∙ (𝜏𝛼)(𝛾) (4.4) 

 
The coefficient e is entirely empiric. Thus, it may assume any value in the 

range between 0 (no dirtiness/frame effects) and 1 (no radiation through the 
glazing system due to dirtiness/frame effects). The parametrical analysis for 
calibration purposes was performed with the values of the coefficient e ranging 
between 0 (used as a reference for a completely clear glazing cover) and 0.25. The 
following Figure 2 shows the variation of (τα)e curves according to the different 
parametric values of the coefficient e. 

 

 
Figure 2. Variation of the (τα)e curves according to different values of the 

coefficient e, that considers panel dirtiness and curtain frame shading. 

 
Simulations were performed, parametrically varying the e coefficient. The 

difference between real and monitored values of the collector outlet temperature 
was used to evaluate the model effectiveness. Results concerning key 
performance indicators are reported in Table 1.  From that table, it can be inferred 
as the most reliable results are those referring to the (τα)e curve derived with e 
coefficient equal to 0.10. Indeed, they overperform the others according to every 
indicator used to evaluate the model reliability. 

Figure 3 highlights the collector outlet temperature behaviour during one day 
of monitoring (red curve) and simulations (black and grey curves). It allows the 
discrepancies between the results obtained with different e coefficients to be also 
visually appreciated.  
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Table 1. Trends of the error indicators during the parametrical calibration. 

 e = 0 e = 0.05 e = 0.10 e = 0.15 e = 0.20 e = 0.25 

MAE 0.54 °C 0.41 °C 0.39 °C 0.53 °C 0.70 °C 0.89 °C 

MAPE 2.37 % 1.95 % 1.88 % 2.31 % 2.87 % 3.48 % 

RSME 0.71 °C 0.50 °C 0.50 °C 0.71 °C 1.01 °C 1.35 °C 

 
The following Figure 3, Figure 4, and Figure 6 shows the comparison 

between simulated and recorded data along the weekdays of the calibration 
procedure.  Figure 4 refers to the collector outlet temperature, which is the most 
critical parameter since it is the one used to calculate the error indices for 
calibrating the model. Figure 5 reports the overall temperature profiles along the 
10 nodes in which the panel was discretised. Eventually, Figure 6 shows the 
patterns of useful thermal power production.  

 

 
Figure 3. Comparison between the real monitored data and the simulated results, 

overview of a day for different (τα)e curves relative to different e coefficients. 

 
From Figure 6, it can be inferred how the significant discrepancies between 

real and monitored data occur only during night-time or when the useful thermal 
power production is shallow. Therefore, they can be considered negligible. These 
discrepancies can be explained with the following consideration. The model has 
been developed on the basis of the Hottel-Willier model that was tailored to 
capture the dynamics of a solar thermal collector producing useful heat. In this 
case, the primary variable influencing the system heat exchange is the Sun 
shortwave radiation. During the night time, the primary heat exchange dynamics 
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influencing the system are others, i.e., the ambient air and the longwave radiation 
towards the sky. The model is less sensitive to capture these dynamics and, for 
this reason, a slightly larger discrepancy between monitored and simulated data 
may occur. 

 

 
Figure 4. Comparison between the real monitored data and the simulated results 

of the collector outlet temperature, after the calibration of the model with the 
adoption of the (τα)e curve relative to the coefficient e = 0.10. 

 
Figure 5. Simulated results of the temperature profile of the heat transfer fluid 
over collector length, after the calibration of the model with the adoption of the 

(τα)e curve relative to the coefficient e = 0.10. 
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Figure 6. Comparison between the real monitored data and the simulated results 
of the collector thermal power produced, after the calibration of the model with 

the adoption of the (τα)e curve relative to the coefficient e = 0.10. 

 

4.1.2.2 Calibration of the thermal energy storage unit numerical 
model 

The thermal energy storage unit model was calibrated in the meanwhile of the 
solar collector model. The real monitored weather conditions were used as 
solicitations of the Matlab-Simulink model. Furthermore, the inlet temperature of 
the thermal energy storage unit was set equal to the actual temperature value 
recorded by the thermocouple TC8. Both the full-scale prototype and the model 
allows monitoring the trend of the temperature of the energy storage media in the 
seven partitions of the storage tank. Therefore, the experimentally recorded values 
of the thermocouples TC9, TC10, TC11, TC12, TC13, TC14, and TC15 were 
used to be compared with the simulation results data.  

From a sensitivity analysis, the U-value of the thermal energy storage unit 
was individuated as the parameter affected by the uncertainty that most influences 
the reliability of the results. Indeed, this value is affected by the uncertainty due to 
the internal liminar coefficient (of the layer combining the storage fluid with the 
tank envelope) and the external liminar coefficient (of the layer combining the 
tank envelope with the ambient air). For this reason, the U-value of the thermal 
energy storage unit was varied parametrically and used to calibrate the numerical 
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model. The U-value of a cylindrical element – as the storage tank is – is defined 
as follows: 

 

𝑈𝑠𝑡 = (
1

ℎ𝑖𝑛𝑡
+
𝑅𝑠𝑡,𝑖𝑛
𝜆𝑡𝑎𝑛𝑘

∙ ln (
𝑅2

𝑅𝑠𝑡,𝑖𝑛
) +

𝑅𝑠𝑡,𝑖𝑛
𝜆𝑖𝑛𝑠

∙ ln (
𝑅𝑠𝑡,𝑒𝑠𝑡
𝑅2

) +
𝑅𝑠𝑡,𝑖𝑛
𝑅𝑠𝑡,𝑒𝑠𝑡

∙
1

ℎ𝑒𝑠𝑡
)

−1

 (4.5) 

 
Where hint and hest are the internal and external liminar coefficient 

respectively; Rst,int , Rst,est, and R2 are the thermal energy storage unit inner radius, 
external radius, and radius of the layer in between tank envelope and the 
insulation layer (see Figure 7 for details); and λtank, and λins are the thermal 
conductivity of the tank envelope (iron) and the insulation layer (fiberglass) 
respectively. Except for the radii, all these features influencing the storage unit 
conductivity are affected by some uncertainty. Table 2 summarises the values 
assumed in first approximation for this features. 

 

 

Figure 7. Radii characterising the thermal energy storage unit. 
Table 2. Features of the thermal energy storage influencing its thermal 

conductivity. 

Specification Symbol Value m.u. 

Inner radius Rst,int 0.222 m 

External radius Rst,est 0.222 m 

Tank-insulation radius R2 0.325 m 

Tank conductivity (iron) λtank 50 W m-1 K-1 

Insulation conductivity 
(fiberglass) λins 0.04 W m-1 K-1 

Internal liminar coefficient hint 500 W m-2 K-1 

External liminar coefficient hest 10 W m-2 K-1 
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According to these features, the U-value of the thermal energy storage tank 
resulted equal to 0.47 W/(m2K). This value was assumed as the first 
approximation for the parametrical calibration of the model. Afterwards, it was 
increased or decreased by a percentage value to calibrate the model 
parametrically. The following Table 3 summarises the U-values considered in the 
parametrical calibration.  

 

Table 3. Parametric variation of the thermal conductivity for calibration 
purposes. U-values are expressed in W/(m2K). 

-15% -10 % -5 % - +5% +10 % +15% 

0.40 0.43 0.45 0.47 0.50 0.52 0.54 

 
 
Simulations were performed, parametrically varying the U-value. The 

difference between real and monitored values of the collector outlet temperature 
was used to evaluate the model effectiveness. Results concerning key 
performance indicators are reported in Table 4.  From that table, it can be inferred 
as the most reliable results are those referring to the U-value increased of 10 %.  

From Table 4 it is possible to infer that the variation of U-value only slightly 
affects the reliability of the model. Indeed, the heat losses toward the ambient air 
affect only marginally the dynamical evolution of the system, if compared to the 
magnitude of the heat exchanges occurring with the primary collector loop and the 
demand side simulator. Nevertheless, the accuracy and reliability of the model are 
still very high, as the low error indicators highlight. 

 

Table 4. Trends of the error indicators during the parametrical calibration 
procedure. The results referring to the e coefficient 0.10 overperform the others 

according to every indicator used to evaluate the model reliability. 

U-value 
[W/(m2K)] 

0.40 0.43 0.45 0.47 0.50 0.52 0.54 

MAE 1.87 °C 1.86 °C 1.86 °C 1.86 °C 1.86 °C 1.85 °C 1.86 °C 

MAPE 10.06% 10.05% 10.04% 10.05% 10.02% 10.01% 10.01% 

RSME 1.66 °C 1.65 °C 1.64 °C 1.64 °C 1.64 °C 1.63 °C 1.64 °C 

 
 
Figure 8 and Figure 9 highlight for one day the resulting temperature profiles 

over the various storage unit partitions. They show the comparison between 
monitored (red curves) and simulated data (black curves). From these figures, it is 
possible to appreciate how the numerical model well estimates the temperature 
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trends of the upper partitions (Figure 8), while it tends to anticipate the 
temperature rising during daytime in the lower partitions (Figure 9). This time 
shift can be charged to the complex dynamics of the fluid flowing into the storage. 
Indeed, the simplified multimode lumped model could not be able to capture 
complex rheological phenomenon occurring between the partitions of the storage 
(e.g., vortex formation, interactions between convection dynamic and flow 
dynamics).  However, these drawbacks caused a temperature difference between 
recorded and simulated data no more significant than 1.5 °C. 

 

 
Figure 8. Daily profiles of the storage media internal temperature (upper 

partitions). 

Eventually, Figure 10 shows the temperature profiles of the various partitions 
for the entire week during which the calibration process was undertaken. The 
higher and the lower partitions are highlighted with black lines to indicate that are 
those mostly influence and are influenced by the primary loop of the collector. 
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Figure 9. Daily profiles of the storage media internal temperature (lower 

partitions). 

 

 
Figure 10. Weekly temperature profiles into the different thermal energy storage 

partitions resulting from the simulations after the calibration procedure. 
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4.1.2.3 Validation of the calibrated model by the comparison of the 
experimental and simulation results referring to the overall solar 
thermal system 

In the calibration processes discussed above, the boundary conditions 
referring to the inlet temperatures of the storage or the collector were assumed 
known. They were set equal to the monitored data. In the case of closed-loop 
simulations this is not valid anymore. Indeed, the inlet temperature of the panel is 
the influenced by the outlet temperature of the storage. Vice versa, the inlet 
temperature of the storage is affected by the outlet temperature of the collector. 
For these reasons, the closed-loop validation introduces an increasing of the 
possible causes of error in both models. Nevertheless, error indicators obtained 
after the validation process in closed-loop simulations remained still small, as it 
can be observed in Table 5.  

The goodness of the results – thus the reliability of the model – can be 
observed in the following Figure 11, Figure 12, Figure 13, and Figure 14. 

 
Table 5. Error indicators obtained during the validation process in closed-loop 

simulations of the solar thermal system model. 

 MAE MAPE RSME 

Solar collector 2.19 °C 8.05 % 2.10 °C 

Thermal storage 0.38 °C 11.79 % 0.83 °C 

 

 
Figure 11. Validation in closed-loop simulations. Comparison between the real 

monitored data and the simulated results of the collector outlet temperature. 
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Figure 12. Validation in closed-loop simulations. Comparison between the real 
monitored data and the simulated results of the panel thermal power produced. 

 

 
Figure 13. Validation in closed-loop simulations. Comparison between the real 

monitored data and the simulated results of the storage media temperature in the 
higher and the lower partitions. 
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Figure 14. Validation in closed-loop simulations. Weekly temperature profiles 

into the different thermal energy storage partitions. 

 

From the former Figure 11, Figure 12, Figure 13 and Figure 14 it is possible to 
point out how the numerical model is able to effectively capture the dynamics of 
the system operating in closed-loop condition. This fact is also underlined by the 
worthy results obtained by the key performance indicators used to assess the 
reliability of the estimated results. The small discrepancies between simulated and 
monitored data show that the model slightly underestimates the actual values and 
there is a small time lag in the simulated data, particularly during the peak 
periods. The large part of this small shortcomings are attributable to the thermal 
inertia of the collector that has not been modelled in the Hottel-Willier equations. 
Since this thermal inertia is very small it does not affect the results dramatically 
but its influence is not negligible. Future works may include also this variable in 
the numerical model to further improve the worthiness of the simulation results. 
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4.2 Calibrated numerical model: simulation results 

The validated numerical model was used to carry out simulation results. 
These outcomes led to investigate the benefits in terms of energy efficiency 
achievable by the adoption of the SolHe-PCM technology. The simulations were 
carried out for various boundary conditions (e.g., different weather conditions, 
various concentrations of mPCM in the mixture). A traditional solar thermal 
system using water and glycol as the heat transfer fluid and storage media was 
used as a baseline for comparisons reference. 

The numerical simulations considered either the solar collector only or the 
overall solar thermal system (collector, storage and controller). Concerning the 
collector two different types of evaluation were performed: 

• Parametrical evaluations, which tested how the variation of several 
boundary conditions affects the system performance; 

• Year-long numerical simulations, which investigated the efficiency of the 
system set in three locations with various configurations. 

The parametrical evaluations are a great tool to assess the instantaneous efficiency 
under different boundary condition. The instantaneous efficiency assumes a 
significant relevance in the case of the standalone collector element, where the 
influence of the thermal inertia on the component performance is negligible. 
Contrariwise, regarding the thermal energy storage unit, it is crucial to be focused 
on its dynamical evolution to assess its performance. In fact, in this case, the 
thermal inertia of the element plays an essential role. For this reason, only the 
year-long simulations were performed to estimate the performance of the overall 
system. 

 
 

4.2.1 Parametrical evaluations of the performance of the solar 
thermal collector based on mPCM slurry  

The instantaneous collector performance was parametrically investigated for 
various PCM concentrations in the mixture. In detail, concentrations of 10 % w.t., 
20 % w.t., 30 % w.t., and 40 w.t. were considered. For the sake of briefness, 
results herewith reported referring to the 30 % w.t. concentration only. Indeed, a 
sensitivity analysis underlined that 30 % w.t. was the concentration that ensures 
the best trade-off between improvement of the material thermal features and 
worsening of the fluid viscosity. The collector was considered tilted at 45° for the 
entire simulation set. 

Concerning weather disturbances, the Hottel-Willier model of the panel 
highlighted how ambient temperature and solar irradiance on the tilted surface are 
the two parameters that most influence the component performance. Particularly 
the latter is the variable that primary determines the useful thermal power 
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delivered by the collector. For this reason, the parametrical evaluations considered 
different levels of solar irradiance. In detail, simulations were performed 
assuming the global solar irradiance on the tilted surface (45°) equal to 200 W/m2, 
400 W/m2, 600 W/m2, and 800 W/m2. The variation of the ambient temperature 
had to be investigated likewise. However, for providing reliable results, it might 
be statistically related to the solar irradiance. For this purpose, firstly, Turin was 
chosen as the reference location for instantaneous parametrical evaluations. This 
assumption is due to the fact that the numerical model was calibrated on the data 
gathered by the SolHe-PCM prototype installed in Turin. Secondly, the 
International Weather file for Energy Calculation (IWEC) for Turin was 
examined.  The maximum and minimum temperature occurring in correspondence 
of o a certain range of average hourly global solar irradiance on the tilted were 
individuated processing the IWEC data of Turin. The irradiance ranges selected 
were the representative bounds of the parametrically investigated irradiance 
levels. Table 6 reports these values.  

 
Table 6. Individuation of the maximum and minimum temperatures recorded in 

the IWEC file for different solar radiation thresholds. 

GT [W/m2] 101-300 301-500 501-700 >701 

Min [°C] -3.0 0.7 4.1 12.0 

Max [°C] 30.3 30.7 31.0 30.7 

 
The following caption is valid for Figure 15, Figure 16, Figure 17, and 

Figure 18. Red lines refer to PCM at 30 % w.t., while black lines refer to water 
and glycol as the heat transfer fluid used in the collector.  

 
 

 
 
 
The results of the first instantaneous parametrical simulations aimed at 

investigating how the flow-rate flowing in the collector affects the useful thermal 
power produced. The heat transfer fluid temperature at the collector inlet was 
considered equal to 35 °C (around the lower phase change limit of the material).  
The ambient temperature was set equal to either the minimum or the maximum 
temperature recorded in correspondence of each solar irradiance range listed in 
Table 6. Results are shown in Figure 15 and Figure 16 respectively. 
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Figure 15. Instantaneous parametrical evaluations. Useful thermal power 

produced by the collector vs. heat transfer fluid flow-rate. Minimum ambient 
temperature. 

 
Figure 16. Instantaneous parametrical evaluations. Useful thermal power 

produced by the collector vs. heat transfer fluid flow-rate. Maximum ambient 
temperature. 
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From the results illustrated in Figure 16, it was possible to define the 
radiation thresholds used in the open-loop version of the controller (see Section 
3.3.6.1) regulating the flow-rate of the peristaltic pump P3. Indeed, this control 
logic is a Rule-Based Controller (RBC) that associates a certain flow-rate of the 
heat transfer fluid to a specific level of global solar irradiation monitored on the 
tilted plane of the solar thermal collector. Table 7 summarises this RBC control 
logic.  

 
Table 7. Pump flow-rates, baseline controller irradiance thresholds and related 

electric power consumptions. 

Flow-rate Irradiance thresholds Power 

[l/h] [m3/s] [W/m2] [W] 

0 0 0 - 50 0 

10 2.8∙10-6 50 - 225 5 

60 1.7∙10-5 225 - 500 25 

90 2.5∙10-5 > 500 55 

 
 
The radiation thresholds of Table 7 were used to define the flow-rates of the 

subsequent parametrical analyses. Findings of the following evaluation are 
reported in Figure 17. They correlated the panel instantaneous efficiency with the 
ambient temperature. The vertical black dashed lines reported in the figure 
indicate the reference ambient temperature for heating design calculations (-
8.0 °C) and the yearly average ambient temperature (12.4 °C) in Turin.  The 
vertical grey dashed lines indicate the lower temperature threshold in 
correspondence to a specific solar irradiance level (see Table 6). The lower the 
solar irradiance level, the more left the vertical grey dashed line. Also in this case, 
the collector inlet temperature was again assumed equal to 35 °C. 

Figure 18 shows the outcomes of the parametrical evaluation about how the 
useful thermal power produced by the collector is affected by varying the 
collector inlet temperature. The ambient temperature was assumed constant and 
equal to the yearly average ambient temperature in Turin, 12.4 °C. The phase 
change transition range can be appreciated in the figure. Furthermore, the chart 
highlights once again as the control of the temperatures is crucial for a technology 
that exploits the latent heat. Indeed, as long as the collector inlet temperature is 
maintained equal or lower to the lower phase change temperature the collector 
based on mPCM slurry overperforms the traditional water-based one. Once the 
upper limit of phase change is exceeded, the lower specific heat capacity of the 
mPCM slurry negatively affects the behaviour of the heat transfer fluids. The 
performance of the panel drops consequently. 
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Figure 17. Instantaneous parametrical evaluations. Useful thermal power 

produced by the collector vs. ambient temperature. 

 

 
Figure 18. Instantaneous parametrical evaluations. Useful thermal power 

produced by the collector vs. collector inlet temperature. 



155 
 

 
 
 

4.2.2 Year-long numerical simulations 

 4.2.2.1 Definition of the boundary conditions 
Climatic data were necessary to perform the simulations through the 

numerical model correctly. In detail, they were retrieved from the International 
Weather for Energy Calculation (IWEC) files of Department of Energy of United 
States. The performance of the solar thermal system based on mPCM slurry has 
been assessed for three different climates to understand the impact of different 
climatic conditions on the performance of the system. These three selected 
locations are representative of different climates and cover a large mid-latitude 
region. They are Turin (North Italy), Princeton-Trenton (United States), and Oslo 
(Norway). Data about the location and climate classifications are given in Table 8. 
A time step of 1 hour was selected for the simulations, according to availability of 
hourly climatic data of the IWEC datasets. 

Table 8. Climate characteristics and optimal tilt angle for different locations. 

Location Latitude Köppen climate 
classification 

Annual 
solar global 
horizontal 
radiation 

Heating 
degree 
days 

Optimal 
tilt (for 
heating 

demand) 

   [kWh/m2] [DD] [°] 

Turin 45° 04’ N Cfb 1294 2617 53 

Trenton 40° 30’ N Cfa 1323 2859 48 

Oslo 59° 57’ N Dfb 879 4714 68 

 
While the panel azimuth (γ) was kept constant (south) for all the climates, the 

tilt (β) angle was changed in order to obtain the optimal performance in each 
latitude – (the energy output of the solar thermal panel is affected to a great extent 
by the tilt angle). Many investigations can be found in literature on the estimation 
of the optimal tilt angle for systems with different boundary conditions – e.g., Ref. 
[9] and Ref. [10]. Different “rules of thumb” have been suggested to design the tilt 
of panels but, in general, the values for the optimal tilt angle - for the entire year, 
for summer or for winter – are correlated to the latitude. For instance, Lewis [9] 
suggested to adopt the following rule: 

 
𝛽𝑜𝑝𝑡 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ± 8° (4.6) 
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Where “+” stands for winter, and “-” for summer. In the simulations, a tilt 

angle equal to the latitude (β = latitude) was chosen to define more generic 
results, valid for the overall year productivity.  

The climatic data listed in Table 8 represent a first indication of the weather 
conditions characterising the different locations. Further information can be 
derived from the evaluation of ratio of the difference between the heat transfer 
fluid mean temperature (θ̄f) and the ambient temperature (θa) to the incident solar 
radiation on the tilted surface (GT). This index assumes great importance in the 
evaluation of the conventional panel efficiency according to the Italian and 
European standard UNI EN 12975 [11]. In formula: 

 
𝜃𝑓̅̅ ̅−𝜃𝑎

𝐺𝑇
 (4.7) 

 
Referring to a heat transfer fluid mean temperature equal to the nominal 

melting temperature of the material, the frequency distribution of occurrence of 
this parameter was calculated for the three location under investigation. In Figure 
19 the value on the x-axis represents exactly the variable expressed by Equation 
4.7 (where dT represents the temperature difference at the numerator, while I is 
the hourly solar irradiation, that is the hourly integration of the variable GT at the 
denominator).  

 

 



157 
 

 

 
Figure 19. Frequency distribution of the parameter most influencing the 

performance of a solar thermal system for the three locations. 

 
From Figure 19, it can be inferred how the outdoor climate can potentially 

influence the system in different ways for the three locations under investigation. 
On the one side, Turin and Trenton present a similar shape of the frequency 
distribution. However, the Trenton one is characterised by a more significant 
number of the smallest values (almost double than in Turin). This frequency 
difference can be referred to the moments in which the temperatures are low, but 
the solar radiation is high. Indeed, as can be derived from Table 8 Trenton is 
characterised by a higher amount of solar radiation but a colder climate compared 
to Turin. On the other side, Oslo has a curve more flattened due to its stiffer 
climate and lower solar radiation levels. 

Since the SolHe-PCM system was conceived for space heating production 
evaluations referring to the heating season only are significant. For instance, the 
conventional heating season of Turin lasts from November 15th to April 15th. 
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4.2.2.2 Solar thermal collector 
Year-long simulations were performed to assess the performance of the 

proposed technology. The preliminary simulations regarded the solar thermal 
collector as a stand-alone element. The flow-rate was controlled with the open 
loop version of the Control 1, based on the thresholds individuated in Table 7. 
The temperature at the panel input was set equal to 35 °C. The simulations were 
performed for various concentrations of mPCM slurry (10 % w.t., 20 % w.t., 30 % 
w.t, and 40 % w.t.) and compared with the results obtained with a traditional 
water-based collector. Detailed results were reported for the 30 % w.t. 
concentration only. 

Table 9. Results of the year-long simulation in terms of useful heat produced by 
the panel referring to mPCM slurry at 30 % w.t concentration. 

 Turin Oslo Trenton 

 Water mPCM Water mPCM Water mPCM 

 [kWh] [kWh] [kWh] [kWh] [kWh] [kWh] 

Heating season  390 410 128 149 441 443 

Year 1200 1240 718 751 1242 1315 
 

Figure 20 reports the comparison between the results obtained in term of 
cumulated useful heat production increase with the various concentration of 
mPCM in the heat transfer fluid. A traditional water-based solar thermal system 
was used as the baseline. The performance increasing was evaluated with a 
percentage calculated as follow: 

 

∆𝜂 =
∑ 𝑄̇𝑢𝑠_𝑤𝑎𝑡𝑒𝑟 −∑ 𝑄̇𝑢𝑠_𝑤𝑎𝑡𝑒𝑟

∑ 𝑄̇𝑢𝑠_𝑤𝑎𝑡𝑒𝑟
 (4.8) 

 
The summations were extended in one case to the entire year and in the other 

case to the heating season only. For all the locations the heating season was 
considered extended from November 15th to April 15th. 

Several considerations can be carried out by observing the various scenarios 
defined by the results of the simulation and highlighted by the bars plots of Figure 
20. First of all, as it was expected, the higher the concentration on mPCM the 
higher the efficiency of the collector. For all the locations, the efficiency increases 
more during the winter time. This is due mainly to the reduced operating 
temperatures of the innovative technology that improves the First law efficiency 
mostly when the ambient temperature is lower. This is particularly true for 
locations where the winter conditions are stiff, but characterised by elevated levels 
of solar radiation (e.g., in Trenton). Since the system was mainly conceived for 
space heating purposes, the improved efficiency during winter time was a 
desirable feature. 
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The effects of the collector inlet temperature on the panel performance were 
also investigated. In detail, for the location of Turin, year-long simulations were 
performed again considering an inlet temperature of 25 °C (versus an initial value 
of 35 °C). Results are reported in Table 10. It can be inferred how there is only a 
slight increase of the collector useful heat production by lowering the panel inlet 
temperature. This is mainly due to the reduction of the number of moments in 
which the heat transfer fluid in the collector overcomes the upper limits of phase 
change. Nevertheless, since the variation of results was small, the effects on the 
open-loop simulation of the collector inlet temperature were considered 
negligible. 

 

 
Figure 20. Increase of the useful heat produced by the solar thermal collector 

based on PCM slurry compared to water based collectors. 
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Table 10. Collector inlet temperature vs. increase in the useful heat produced. 

   10 % 
w.t. 

20 % 
w.t. 

30 % 
w.t. 

40 % 
w.t. 

Heating season 
simulation 

Tin = 25 °C 1.5 % 3.4 % 5.0 % 7.0 % 

Tin = 35 °C 1.5 % 3.4 % 4.9 % 6.9 % 

Yearly simulations 
Tin = 25 °C 0.9 % 2.0% 2.9 % 4.2 % 

Tin = 35 °C 0.8 % 1.9 % 2.8 % 4.0 % 
 
Hourly distributions of the useful thermal power produced by the collector are 

reported in Figure 21 for two typical winter days in Turin (February 7th and 
February 8th). The subsequent set of figures shows the energy delivered daily on a 
monthly basis for the collector exploiting the two different heat transfer fluid in 
Turin. 

These figures further highlights how the system based on mPCM slurry 
improves the amount of useful heat produced mostly during the colder months. 
This is particularly desirable for a system designed for deliver space heating. Thus 
whose efficiency must be maximised during the winter period. The daily and 
hourly useful heat production distributions showed similar profiles also for the 
location of Trenton and Oslo. For a matter of conciseness, they were not reported 
in the present work.  

 

 
Figure 21. Two significance winter days (February 7th and February 8th) hourly 
profiles of useful thermal power produced by the panel. Simulations are referred 

to the location of Turin and constant panel inlet temperature of 35 °C. 
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Figure 22. Daily energy production by the collector on monthly basis.  
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4.2.4 Overall solar thermal system  
The literature analysis undertaken in Chapter 2 highlighted how the PCMs 

had been principally used to exploit their large storage capacity. For this reason, it 
is clear that several of the SolHe-PCM system benefits are directly related to the 
thermal storage potentialities offered by this technology. Notwithstanding, if it is 
relatively easy to carry out performance indicators to assess the efficiency of a 
solar thermal panel, to define the storage performance is not a trivial process. 

On the one hand, the collector efficiency can be evaluated by a First law 
analysis based on the instantaneous useful thermal power production. On the other 
hand, for a thermal energy storage unit, it is more interesting to evaluate its 
dynamical evolution during the time. This process is based on the differential 
equations presented in Section 3.4.2. Since the solution of this differential 
equations depends on the property of the storage media itself, the thermo-
dynamical evolution of mPCM slurry-based and water-based storage units follow 
two different paths, due to the unique features of the materials (e.g., specific heat 
capacity, material density, etc.). These different ways strongly affect the 
possibility of a normalised evaluation of performance indicators to compare the 
two technologies.  

 

 
Figure 23. Factors affecting the dynamical evolution of the thermal energy 

storage unit. 

The concepts mentioned above can be better explained with the schematic 
illustrated in Figure 23. The thermo-dynamical behaviour of the thermal energy 
storage unit is mainly influenced by the uncontrolled external disturbances (e.g., 
the climatic conditions and the user power demand profiles), the useful thermal 
power delivered by the solar thermal collector, and the control logic regulating the 
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overall system. Even if the uncontrolled disturbances and the control logic are the 
same for the water-based and the mPCM slurry-based circuits, the evolution over 
time of the system would be influenced by the different performances of the two 
configurations. Indeed, thermal energy storage unit temperature, θst, affects inlet 
temperature of the solar thermal collector; thus it affects its efficiency (see Figure 
18). Different panel efficiencies cause different amounts of useful thermal power 
supplied to the thermal energy storage. The thermal energy storage temperature 
varies as a consequence of the useful thermal power provided. Therefore, this 
continuous interaction affects the long-term performance of the overall system. 
For instance, starting with the same initial conditions, assume that a panel A 
initially produced double useful thermal power than a panel B. After a while, the 
temperature of the thermal energy storage unit serving the panel A will reach 
higher values than those of the tank related to the collector B. This temperature 
rising reduces the panel A relative efficiency. Thus, the evolution of the two 
systems takes two completely different paths, and the comparison of key 
performance indicators is not trivial.  

Nevertheless, long-term simulations can also be performed in the case of 
closed-loop configuration. Similarly to the investigations undertaken in Section 
4.2.3, the International Weather for Energy Calculation (IWEC) [12] files were 
used as climatic disturbances. The control logic adopted is the one discussed in 
Section 3.3.6. The user demand varies according to daily consumption profile and 
external weather conditions. Engineering methods (or withe-box modelling), 
statistical, machine learning or artificial intelligence methods (or black-box 
modelling), or physical-empirical approaches (or grey box modelling) can be 
adopted for prediction or estimation of the user demand profiles over time (see 
Section 5.2.5). This represents a vast topic of investigation, which goes beyond 
out of the goals of the present thesis. In this case, the user demand profiles were 
calculated as follows: 

 
𝑄̇𝑛𝑒𝑒𝑑(𝜏) = 𝐴(𝜏) ∙ 𝐻𝑡𝑜𝑡 ∙ (𝜃𝑖 − 𝜃𝑎(𝜏)) (4.9) 

 
Where Q̇need(τ) is the user demand variation over time τ; Htot is a term that 

relates the building energy demand with the external temperature, it was assumed 
equal to 35 W/K according to typical North Italian buildings design loads for 
space heating; θi is the internal building temperature, equal to 20 °C; θa is the 
ambient temperature retrieved by the IWEC file; and A(τ) is a dimensionless term 
to consider the hourly variation of the energy demand during a day. In this 
specific case, this term was calculated by normalising the daily thermal load 
profile assessed through the method proposed in Ref. [13]. This pattern is 
representative of the space heating demand of a typical residential building in 
Turin. Figure 24 shows the pattern daily profile named A(τ).    

Under these hypotheses, the closed-loop simulations were performed for the 
location of Turin. Since the system was conceived for the satisfaction of the space 
heating demand the simulation time was limited from the November 15th to the 
April 15th (conventional heating season of Turin). Table 11 summarises the most 
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important indicators to assess the performance obtained with the two 
configurations of the system, mPCM slurry 30 % w.t. concentration and water-
based. The term called “useful heat produced” represent the summation of the 
instantaneous useful thermal power delivered by the collector over the time span 
under investigation. The demand was considered unsatisfied when the secondary 
heat exchanger was not capable of supplying thermal power to the demand side 
simulator circuit. In general, this fact occurs when the storage temperature drops 
under 30 °C. Indeed, below this value, a temperature difference significant enough 
to be compatible with the supply temperature of the demand side simulator is not 
ensured. 

 

 
Figure 24. Normalised daily profile of user power demand. 

 

Table 11. Comparison of the performance obtained with a water-based and 
mPCM slurry-based solar thermal system. 

 Water-based mPCM slurry-based 

Useful heat produced [kWh] 401 422 

Hours θs < 30 °C [h/h] 1393/4416 1131/4416 

Demand unsatisfied [kWh/kWh] 153/937 134/937 

 
Figure 25 and Figure 26 show the frequency distribution of the hours in 

which the average thermal energy storage temperature is within ranges of 0.5 °C. 
The comparison between the two figures allows the effect of latent heat storage to 
be quickly highlighted. In fact, the distribution referring to the mPCM slurry 
thermal energy storage unit (Figure 26) is drastically sharpened in the phase 
change range. This point allows the temperature involved in the overall process to 
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be contained. Thus, the dispersions of the thermal energy storage are reduced, and 
the efficiency of the solar thermal collector is increased. 

 
Figure 25. Frequency distribution of the hours in which the thermal energy 

storage temperature is within bin of 0.5 °C. Water-based solar thermal system. 
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Figure 26. Frequency distribution of the of hours in which the thermal energy 
storage temperature is within bin of 0.5 °C. mPCM slurry-based solar thermal 

system. 
4.2.5 Overlook on the next investigation steps requiring simulations 

Two big questions aroused at this stage. The first one was related to the 
control paradigms adopted to manage the two systems. To compare the results of 
the simulations the same regulation logic was assumed for water-based and 
mPCM slurry-based solar thermal system. However, this assumption can be 
misleading. Indeed, using controllers that just adapt the logics used for traditional 
systems can reduce the potential benefit achievable by new technology. For 
instance, control algorithms based on the monitoring of temperatures can be 
misrepresentative of a solar thermal system based on the exploitation of the latent 
heat. This consideration led to the exploration of innovative predictive control 
paradigms capable of performing recursive optimisation. These aspects are 
investigated in deep and the entire Chapter 5 has been dedicated to the Model 
Predictive Control formulation. 

 The second question was related to the indicators adopted to assess the 
performance of such an innovative system. From the results mentioned above, it 
emerged how the First law analysis allowed the potential benefits of the system to 
be just partially explained. Indeed, the reduction of the temperature levels – both 
in the collector and in the thermal energy storage unit – opens up to a Second law 
investigation to better understand the performance benefits achievable by means 
of the SolHe-PCM technology. Second law analysis is an extensive area of 
research, and the present thesis does not aim to cover it in detail. The following 
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Second law analysis should be considered a preliminary investigation that 
provides a methodological framework and an outlook for future more detailed 
studies. 

 

4.2.6 Preliminary Second law investigations 
The Second law of thermodynamics asserts that losses of useful work 

unescapably characterise the operations of real systems. By combining the Second 
law with the First law, it is possible to demonstrate that the destruction of useful 
work is proportional to the entropy generation rate. Therefore, the entropy 
generation quantifies the thermodynamic irreversibility, which destroys the useful 
energy of a system and affects the system performance directly. The Gouy–

Stodola theorem is based on this concept: 
  

𝑊̇𝑚𝑎𝑥 − 𝑊̇ = 𝑇0 ∙ 𝑆̇𝑔 (4.10) 
 

With Ẇmax is the maximum work transfer rate (or maximum power 
transferred), which exists only in the ideal case of reversible operation; Ẇ is the 
effective work transfer rate; T0 is the reference temperature; and Ṡg is the entropy 
generation rate [14]. 

 ̇Entropy generation and work transfer rate depend on the operating conditions 
of the system. In detail, the most influencing parameters are the boundary 
interactions of the system. The performance of a system can be improved by 
conceiving a new design characterised by a lower entropy generation. This 
procedure is called Entropy Generation Minimisation (EGM). It aims at 
minimising the losses of a system subject to a specified set of constraints. In the 
Entropy Generation Minimisation, the crucial point is the definition of the entropy 
generation rate as an objective function that has to be minimised. The critical 
parameters – such as component dimensions or system operating conditions –  are 
chosen as the design variables to minimise the prefixed goals. Contrariwise, an 
alternative approach can also be undertaken. It is based on the identification and 
reduction of the thermodynamic irreversibility. This approach is commonly 
referred as Entropy Generation Analysis (EGA). According to this method, the 
initial configuration of the system is subsequently improved by introducing 
possible design modifications [15].  

In general, both these approaches are based on the application of principles of 
computational fluid dynamics and heat-mass transfer for the construction of a 
realistic model of the system that is under investigation. The model should be 
sufficiently detailed to capture all the phenomena occurring in the system and how 
also small modifications affect the performance. In the scientific literature, two 
different approaches are considered:  

• The entropy generation studies through a black-box approach. In this case, 
the model is drafted as a homogenous sample inside a control volume. 
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Usually, these models are less detailed, but do not require impressive 
computational resources; 

• The entropy generation studies through the continuum theory. In this case, 
the state variables are considered as continuous functions of the space 
coordinates and the time. Each infinitesimal volume of a system is 
considered in thermodynamic equilibrium, although the overall system 
operates irreversibly. It follows that the intensive thermodynamic properties 
(e.g., specific entropy, temperature, pressure, etc.) are locally defined even 
in non-equilibrium situations. 

Several papers have indicated that entropy generation is crucial for the 
performance analysis of the latent heat thermal energy storage units [15]. Both 
Entropy Generation Minimisation or Entropy Generation Analysis can be 
considered to increase the system performance. In Ref. [16], a Second law 
analysis was performed to carefully choose the PCM with the most suitable 
melting temperature for a specific application. A Second law analysis on the 
enhancement of the heat transfer rate of a PCM through the addition of high 
conductive particles was conducted by CFD studies [17]. Ref. [18] used the 
Second law analysis to study the efficiency of the solidification process in 
encapsulated ice thermal energy storage unit with different capsule geometries. 
The study carried out by [19] represents an interesting example on how the results 
of an Entropy Generation Analysis led to design improvements of finned shell and 
tube latent heat thermal energy storage. 

It was possible to conduct a preliminary Second law analysis starting from the 
previously reported simulation results. It was based on an entropy generation 
balance. This formulation should be considered a preliminary results that opens up 
at future more detailed investigation. In particular, it porvides an overlook about 
the problem approach. 

The entropy globally generated in a system is determined as the summation of 
the contributions due to the different heat exchanges in the various system 
components. For this specific case study, these contributions are due to the 
thermal energy storage unit ΔSst, the solar thermal collector ΔScol, the secondary 
heat exchanger supplyng the demand side simulator ΔSneed, and the external 
ambient (or system dispersion) ΔSdis. These four elements were assumed as 
thermostats at a temperature that varies hourly. The storage unit, the collector and 
the heat exchanger were supposed at the average temperatures resulting from the 
model, while the external ambient temperature was retrieved from the weather 
data. The average collector plate temperature was used as a reference for the 
entire panel. Table 12 summarises these features. 

Table 12. Definition of the variables influencing the system entropy generation. 

Component Entropy generation  Reference temperature 

Thermal energy storage unit ΔSst θst 

Solar thermal collector ΔSpa θcol 
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Secondary heat exchanger ΔSneed θneed 

External ambient ΔSdis θa 
 
The entropy balance of the thermal energy storage tank refers to the 

equilibrium of an open system. The storage unit is the most crucial element in the 
overall system since it combines the effects due to all the components considered 
in the balance. The entropy balance of the storage unit can be expressed with the 
following formulation: 

 

𝑚̇ ∙ (𝑠𝑖𝑛 − 𝑠𝑜𝑢𝑡) −
𝑄̇𝑛𝑒𝑒𝑑
𝜃𝑠𝑡

−
𝐴𝑠𝑡 ∙ 𝑈𝑠𝑡 ∙ (𝜃𝑠𝑡 − 𝜃𝑎)

𝜃𝑠𝑡
+ 𝐵𝑖𝑟𝑟 =

𝑑𝑆𝑠𝑡
𝑑𝜏

 (4.11) 

 
Where ṁ is the mass flow-rate of the heat transfer fluid flowing in the solar 

collector loop; sin and sout are respectively the flowing in and out specific entropies 
due to open storage system exchanges; Q̇need is the power exchanged in the 
secondary heat exchanger; θst is the storage unit average temperature; Ast is the 
surface of the thermal energy storage; Ust is the storage unit thermal 
transmittance; θa is the ambient temperature; Birr are the entropy losses due to 
internal irreversibilities; dSst is the storage entropy generation; and dτ is the time. 
If the system is considered stationary for each hour, dSst becomes ΔSst, and the 
transformations can be assumed reversible, thus Birr = 0. As a consequence, the 
previous expression can be rewritten as: 

 

𝑚̇ ∙ (𝑠𝑖𝑛 − 𝑠𝑜𝑢𝑡) ∙ ∆𝜏 −
𝑄̇𝑛𝑒𝑒𝑑
𝜃𝑠𝑡

∙ ∆𝜏 −
𝐴𝑠𝑡 ∙ 𝑈𝑠𝑡 ∙ (𝜃𝑠𝑡 − 𝜃𝑎)

𝜃𝑠𝑡
∙ ∆𝜏 = ∆𝑆𝑠𝑡 (4.12) 

 
All the terms of the previous formulation can be retrieved from the results of 

the previously performed simulations, except for the terms referring to the specific 
entropies of the open system. Since they are intensive variables, for the water-
based heat transfer fluid, some pre-calculated values exist, determined as a 
function of the other intensive thermodynamic properties (e.g., temperature, 
pressure). For the mPCM slurry-based system, these values can be determined 
considering the Gibbs, if the system pressure variations are assumed negligible. 
This assumption is realistic for the SolHe-PCM case study thanks to the presence 
of expansion vessels in the system. For the system exploiting the mPCM slurry 
the previous equation becomes: 

 

𝑚̇ ∙ (
ℎ𝑖𝑛
𝜃𝑠𝑡,𝑖𝑛

−
ℎ𝑜𝑢𝑡
𝜃𝑠𝑡,𝑜

) ∙ ∆𝜏 −
𝑄̇𝑛𝑒𝑒𝑑
𝜃𝑠𝑡

∙ ∆𝜏 −
𝐴𝑠𝑡 ∙ 𝑈𝑠𝑡 ∙ (𝜃𝑠𝑡 − 𝜃𝑎)

𝜃𝑠𝑡
∙ ∆𝜏 = ∆𝑆𝑠𝑡 (4.13) 

 
Where hin and hout respectively are the specific enthalpies at the inlet and the 

outlet of the thermal energy storage unit; while θst and θst respectively are the 
temperature at the inlet and the outlet of the thermal energy storage unit. The 
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entropy balances referred to the other components of the overall SolHe-PCM 
system can be formulated similarly wise: 

 

−
𝑄̇𝑢𝑠𝑒𝑓𝑢𝑙

𝜃𝑐𝑜𝑙
∙ ∆𝜏 = ∆𝑆𝑐𝑜𝑙 (4.14) 

 
𝑄̇𝑛𝑒𝑒𝑑
𝜃𝑛𝑒𝑒𝑑

= ∆𝑆𝑛𝑒𝑒𝑑 (4.15) 

 
𝐴𝑠𝑡 ∙ 𝑈𝑠𝑡 ∙ (𝜃𝑠𝑡 − 𝜃𝑎)

𝜃𝑎
∙ ∆𝜏 = ∆𝑆𝑑𝑖𝑠 (4.16) 

 
Eventually, the entropy balance of the overall system is formulated as: 
 

∆𝑆𝑡𝑜𝑡 = ∆𝑆𝑐𝑜𝑙 + ∆𝑆𝑑𝑖𝑠 + ∆𝑆𝑛𝑒𝑒𝑑 + ∆𝑆𝑠𝑡 (4.17) 
 

From the simulation results discussed above, the total entropy generated 
during the cycle of a typical heating season day was 2.78 kJ/K in the case of 
water, while 2.30 kJ/K in the case of the mPCM slurry. This results highlighted 
how the SolHe-PCM system can lead to a reduction of the entropy generation up 
to 17.2 %. Even if it was very preliminary study, this entropy analysis has been 
useful in the thesis to further underline how - when latent heat exchange processes 
are considered - it is particularly necessary to adopt approaches that are capable to 
consider also the temperatures and the thermal levels involved.   

One of the outcome of this Section 4.2.4 is exactly to provide to the reader an 
outlook about how a process involving latent heat exchanges should be 
approached. Indeed, for certain elements (i.e., the thermal energy storage unit) the 
First law performance calculation is not sufficient itself to carry out significant 
long-term results. In this cases, the performance should be evaluated both in terms 
of energy balances and entropy (or exergy) balances. This work lays the 
foundations of more detailed investigation. Future works will be focused on the 
improvement of this Second law analysis. Moreover, exergy/entropy generation 
evaluations could be adopted to improve the design of each element of the 
innovative system, particularly the heat exchangers. 
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4.3 Experimental activities undertaken on the full-scale 
prototype of a mPCM slurry based solar thermal system 

4.3.1 Design and retrofit of the full-scale prototype  

The experimental campaign on the full-scale prototype operating with the 
mPCM slurry as the heat transfer fluid was the most critical path of the present 
thesis. The full-scale prototype was constructed on the roof of the DENERG 
Energy Department of Politecnico di Torino. This system construction activity 
was carried out with the aid of two industrial partners: TechnoEnergy (an Italian 
solar thermal panel manufacturer) and Teseo (an Italian-French company of 
industrial automation and control). First of all, the system was tested with water as 
the heat transfer fluid to check the operational behaviour of all the components.  
Measurement gathered in this phase were also used for a preliminary calibration 
the numerical models. Furthermore, the water-based system was used as 
benchmark and baseline to compare the performance achievable employing an 
innovative solar thermal system based on mPCM slurry. 

Second of all, a similar long-term experimental campaign was planned to 
investigate also the effectiveness of the mPCM slurry-based solar thermal system. 
Nevertheless, some drawbacks occurred at this stage, which delayed the 
experimental activities from the planned schedule. The experimental campaign 
started again at the end of October 2015. First of all, a mixture of 200 litres of 
water and mPCM was prepared. The mixture had 30 % w.t concentration. The 
mPCM preparation consisted of five steps:  

• The weighting of the various mixture components on a scale to divide the 
exact shares of each material. 200 litres of mPCM at 30 % w.t. 
concentration corresponds to about 197 kilograms of solution distributed as 
follow: 59 kilograms of mPCM, 55 kilograms of glycol, and 83 kilograms 
of water; 

• The pouring of the raw materials together in plastic containers. Four tanks 
of 50 litres each were used for this purpose; 

• The steering of the mixture to create a homogenous media; 
• The filtration of the mixture to remove any inhomogeneity and mPCM 

grains; 
• The filling up of the thermal energy storage tank with the mPCM slurry. 

Since the tests started, it emerged that the mPCM slurry was affected by 
physical instability problems. The creaming phenomenon in the storage unit was 
more severe than expected. In fact, the secondary pump P2 – conceived to mix the 
storage media when steady in the storage tank – was not able to contrast creaming 
occurrence. After a day of measurements, the mPCM slurry showed a critical 
creaming separation. Moreover, since the storage tank internal envelop was not 
realised with stainless steel, the storage inspection visors were matted with a layer 
of rust. Even if this layer was thin, it did not allow the direct visual inspection of 
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the creaming phenomenon and was not possible to quantitatively evaluate the 
problem. 

 

 
Figure 27. The thin layer of rust deposit affecting the inspection visors. 

 
This shortcoming strongly affects the reliability of the experimental results. 

Indeed, the exact concentration of the mPCM in the slurry flowing in the primary 
collector loop remained always unknown. Since the peristaltic pump P3 drew 
from the lower part of the storage tank, it dealt with the storage media more 
affected by the creaming phenomenon. Therefore, the lower layer of the storage is 
where the concentration of mPCM becomes lighter after the creaming occurrence 
(see Section 3.2.5). In fact, after a couple of days of tests, the material flowing in 
the pipes of the collector loops seemed to have a mPCM concentration 
approximately 0 % (almost pure water and glycol with only some particles of 
mPCM). 

After some unsuccessful attempts to solve these drawbacks changing the 
control settings of the system, the experimental campaign to test the behaviour of 
the SolHe-PCM prototype was temporarily stopped. A retrofit of the system was 
necessary to face the challenges due to the creaming manifestation. For this 
reason, a new thermal energy storage tank solution was designed. It consisted of 
moving forward to the Version 2 of the storage unit described in Section 3.3.2. 
The latest version of the storage had two main features that allowed to cope with 
the drawbacks mentioned above: 

• It was made by a transparent plastic envelope that has avoided rust 
formation (furthermore all the circuit pipes are copper made) and has 
allowed the visual inspection to be easily carried out; 

• It was equipped with a mechanical mixer regulated by a timer and an 
inverter that has stirred the mPCM slurry every hour to prevent the 
creaming formation. 

The previously described improvements required some months to be 
designed, provided, and integrated into the existing full-scale prototype. 
Consequently, the long-term experimental campaign to examine the mPCM slurry 
as heat transfer fluid in the SolHe-PCM full-scale prototype began at the very end 
of the Ph.D. programme. 
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4.3.2 Preliminary results of the tests undertaken exploiting mPCM 
slurry as heat transfer fluid of the solar thermal system  

The abovementioned retrofit of the full-scale prototype was completed by the 
end of January 2018. The ultimate retrofit activity was the electrical wiring of the 
inverter that regulates the mechanical mixer of the storage tank. Afterwards, the 
experimental campaign started again aiming at completing the following steps: 

• Water tightness test of the overall hydraulic circuit. It consisted of testing 
again after the system retrofit all the circuit components (pipes, valves, 
hydraulic fittings, pumps) using the water as the heat transfer fluid. This 
stage lasted from January 20th 2018 to January 29th 2018. 

• Preliminary mPCM slurry tests. The goal of this stage was twofold. On the 
one side, testing if drawbacks still occur after continuous operating of the 
circuit with mPCM slurry used as the heat transfer fluid. On the other side, 
scheduling the timer that regulates the mechanical mixer stirring operations, 
necessary to solve the creaming problem. This stage lasted from February 
10th 2018 to February 17th 2018; 

• Data gathering for numerical model calibration and validation with water as 
the heat transfer fluid. Since the storage unit was changed a new calibration 
procedure was required to verify the reliability of the numerical model (in 
this case it must refer to the single-node version 2 of the storage unit). This 
stage lasted from February 19th 2018 to February 22th 2018; 

• Data gathering for numerical model calibration and validation with mPCM 
slurry as the heat transfer fluid. This stage was planned for the beginning of 
March, but the adverse weather conditions (heavy snow) postponed this 
phase after the ultimate deadline of the present thesis; 

The two preliminary stages outlined positive results. The circuit was capable 
of operating correctly both with water and mPCM slurry used as the heat transfer 
fluid and storage media. Figure 28 illustrates a moment of this initial 
experimental investigation.  

 
Figure 28. The version 2 of the thermal energy storage unit filled with mPCM 

slurry. 
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The internal settings of the timer that regulates the mechanical mixer allow 17 

cycles only to be planned daily. Two different scenarios were outlined:  

• Storage media stirred at constant intervals all day long. In this case, every 1 
hour and 23 minutes the mechanical mixer is activated for 2 minutes. 

• Storage media stirred more frequently during the daytime. Since the 
creaming phenomenon does not represent a particular problem during night 
time, it can be selected to shorten the mechanical mixer activation cycles by 
considering the daytime only. In this case, from 8 am to 8 pm every 45 
minutes the mechanical mixer is activated for 5 minutes. During night time 
the mechanical mixer remains switched-off. The first activation in the 
morning lasts a longer time span to cope with the nocturnal creaming 
occurrence. 

The following Figure 29 illustrates the outdoor weather conditions affecting 
the solar thermal system performance during the experimental campaign.   

 

 
Figure 29. Weather conditions influencing the solar thermal system during the 
experimental campaign. Beam and diffuse solar radiations (a) during the tests 
with water and (c) during the tests with mPCM slurry. Ambient temperature (b) 

during the tests with water and (d) during the tests with mPCM slurry. 

 
In the case of the water-based system the useful thermal power produced by 

the collector was easily retrieved by the following formulation: 
 

𝑄̇𝑢 = 𝑚̇ ∙ c𝑝 ∙ (𝜗𝑜𝑢𝑡 − 𝜗𝑖𝑛) (4.16) 
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Where ṁ is the mass flow rate controlled by the peristaltic pump P3, cp is the 
specific heat capacity of water (set equal to 4186 Jkg-1K-1), θout is the temperature 
at the outlet of the collector (recorded by the thermocouple TC7), and θin is the 
temperature at the outlet of the collector (recorded by the thermocouple TC1). 
Once the useful thermal power was calculated, it was possible to evaluate the 
instantaneous efficiency of the system with the following formulation: 

 

𝜂 =
𝑄̇𝑢

𝐴𝑐 ∙ 𝐺𝑇
 

 
(4.17) 

 
Results are displayed in Figure 30. The experimental campaign with water as 

heat transfer fluid last only three complete days since adverse weather conditions 
aroused.  

 

 
Figure 30. Tests on the water-based circuit with the retrofitted version of the 

thermal energy storage unit. (a) Comparison between the temperature recorded at 
the collector inlet and outlet; (b) Useful thermal power produced by the collector; 

(c) Calculated instantaneous efficiency of the collector. 
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The preliminary tests adopting the mPCM slurry were conceived to set up the 

experimental apparatus and verify the non-occurrence of the creaming 
phenomenon within the new storage unit. In this preliminary tests, the mPCM 
slurry used in the system before the retrofitting was recycled to avoid the waste of 
the material. This mPCM slurry presented the drawback of not being a pure 
mixture since rust was dispersed in the solution, as described in Section 4.3.1.  

However, these tests were used to define the steps necessary to correctly 
evaluate the performance of the panel also in case of adoption of the mPCM slurry 
as heat transfer fluid. Indeed, in this circumstance the useful thermal power 
produced by the panel can be retrieved by the following formulation: 

 
𝑄̇𝑢 = 𝑚̇ ∙ (ℎ(𝜗)𝑜𝑢𝑡 − ℎ(𝜗)𝑖𝑛) (4.18) 

 

 
Figure 31. Tests on the mPCM slurry circuit with the retrofitted version of the 

thermal energy storage unit. (a) Comparison between the temperature recorded at 
the collector inlet and outlet; (b) Useful thermal power produced by the collector; 

(c) Calculated instantaneous efficiency of the collector. 
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Where h(θ)out and h(θ)in are the specific mPCM slurry enthalpies at the outlet 
and the inlet of the collector respectively. They can be derived as a function of the 
recorded temperature by means of the temperature versus specific enthalpy curves 
obtained with the T-History experiments (see Section 3.2.2). For this purpose, it is 
necessary to carefully evaluate the concentration of PCM microcapsules in the 
mixture. This was possible taking some mPCM slurry samples from the circuit 
and performing a gravimetric test, which consisted of drying the samples in a 
ventilated oven until constant weight was reached. Results of the gravimetric tests 
showed a concentration of about 10 % w.t. of PCM micro-particles dispersed in 
the mixture. Therefore, the temperature versus specific enthalpy curve referring to 
that specific concentration was adopted to define the specific enthalpies. Once the 
useful thermal power is calculated, the system efficiency can be evaluated using 
Equation 4.17 again. Figure 31 outlines the results for the mPCM slurry case. 
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4.4 Key-findings of the present chapter 

On the one hand, the present chapter used the numerical model described in 
Chapter 3 to assess the performance of the SolHe-PCM solar thermal system. On 
the other hand, experimental tests were undertaken by means of the full-scale 
prototype whose construction has been outlined in the previous chapter. First of 
all, the findings of the experimental campaign were used to calibrate and validate 
the numerical model. Indeed, The Key Performance Indicators used to evaluate 
the worthiness of the calibration procedure delineated a maximum discrepancy 
between actual experimental and simulated data lower than 12 %. Since these 
results were extremely satisfactory, it was possible to consider the outcomes of 
the model simulations as a reliable tool to assess the SolHe-PCM system 
performance. 

A comparison of the performance of the SolHe-PCM system with a traditional 
water-based system was performed in the subsequent sections of the current 
chapter. These analyses were undertaken using both instantaneous parametrical 
simulations (to evaluate the influence of a single variable on the overall system 
performance) and year-long simulation (to assess the system performance in 
different climatic location). In all the simulated scenarios, the SolHe-PCM system 
demonstrated to overperform the water-based reference system. The simulation 
results showed that the SolHe-PCM collector could improve the production of 
useful heat up to 7 % throughout the year and up to 19 % considering the heating 
season only. A brief dissertation about a Second law analysis of the system has 
also been undertaken, opening a path for future investigations more detailed.  

Eventually, the final section of the chapter describes the attempts of long-term 
monitoring of the technology. This part has strongly influenced also the full-scale 
prototype design and construction. Indeed, the system performance was optimised 
with a trial-and-error procedure (typical of each novel technology), which 
consisted in re-defining the design of a single system element when shortcomings 
show that better solution are necessary. This fact was particularly true for the 
thermal energy storage tank, where the physical instability due to the creaming 
phenomenon affected the experimental campaign.  
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Chapter 5 

Model Predictive Control (MPC) 
for enhancing buildings and HVAC 
systems energy efficiency. Problem 
formulation, applications and 
opportunities for the solar thermal 
system based on PCM slurry 
 

The increasing spread of renewable energy sources and small-size poly-
generation systems in buildings (likewise the SolHe-PCM project), is definitively 
changing the paradigm of energy distribution and the role of buildings. Energy 
needs are partially or completely satisfied by on-site energy production employing 
small renewable energy conversion systems. This process is introducing new 
challenges to face for compensating the mismatch between renewable sources 
availability and effective building occupants demand. For instance, the SolHe-PCM 
prototype can produce useful thermal energy only when solar radiation is available, 
while space heating demand can also occur during night time.  

These challenges are particularly complicated when buildings and the energy 
delivery system are grid connected (e.g., buildings in a district heating network, 
small-size building integrated PV systems). Buildings’ occupants are becoming 

“prosumers” (producers and consumers at the same time), and their behaviour 
during building operation is becoming of vital importance in enhancing energy 
performance. The implementation of active demand initiatives and peak-shaving 
strategies is expected to increase in the next future to foster the integration of these 
distributed resources and generation systems in smart distribution grids [1]. 
Furthermore, a new concept of active buildings – characterised by construction 
components (like floors, walls, roofs, foundations, façades, etc.) with adaptive and 
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responsive features – is increasingly penetrating in the market. In this paradigm, 
building elements and HVAC systems – coupled and integrated – are becoming 
capable of changing their behaviour and operating modes, in to face different and 
contrasting requirements related to different boundary conditions and objective 
functions. Indeed, responsive and adaptive technologies need to be controlled in an 
optimised way to exploit their potential completely. This feature is particularly true 
for innovative building elements such as systems with embedded PCM 
technologies, which require advanced control approaches to adequately manage 
their peak shifting potentialities and benefit entirely from their implementation in 
buildings. 

In this context, the implementation of effective energy management strategies 
through advanced control methods represents an attractive solution to reduce the 
operational energy consumption of buildings. Moreover, it can be useful to 
minimise the mismatch between energy demand and on-site generation, 
maximising the exploitation of renewable energy sources. Many investigations 
proved that the more advanced control methods could ensure significant energy 
savings when compared to traditional control strategies [8].  

Moreover, the increasing penetration of Information and Communication 
Technologies (ICT) in buildings has allowed a significant amount of building-
related data to be more readily available and accessible. For this reason, if this 
information is appropriately processed through data-driven procedures, it may 
provide crucial knowledge on the actual building performance and the influence of 
occupant behaviour on the building energy consumption [2]. As a consequence, the 
analysis of this monitored data might represent a very effective opportunity to 
translate the extracted knowledge into ready-to-implement energy saving 
techniques and active demand strategies to enhance energy efficiency in buildings 
and HVAC systems. 

Considering that usually indoor thermal comfort and building energy 
consumption are contrasting needs, optimisation procedures that aim at finding a 
trade-off between them are one of the primary goals of engineers and researchers 
worldwide [3]. Furthermore, buildings should be not considered as stand-alone 
systems, but they should be actively integrated into smart grids. In the last decades, 
many advances have been made in the building design stage to address these 
requirements, more recently opportunities to optimise the building behaviour also 
during its operation have been increasingly explored. This fact is in general 
achieved by studying and implementing advanced control techniques. 

These are enabled thanks to the decreasing cost, accessibility and advances of 
electronic items and Building Energy Management Systems (BEMS), which allow 
the collection, storage and analysis of a vast amount of building-related data. Due 
to this fact, much effort is going to be devoted to the implementation of more 
sophisticated and prediction-based control strategies aimed at optimising the energy 
performance of buildings. The application of model- and prediction-based control 
techniques capable of searching optimal trade-offs between conflicting objectives 
is therefore highly desirable. 



188 
 

Model Predictive Control (MPC) is a well-established method for constrained 
control in industrial applications. Recently, it is receiving full attention from 
researchers in the field of control of buildings and active components. MPC merges 
principles of feedback control and numerical optimisation. It opens up possibilities 
of exploiting energy storage capabilities and optimisation of renewable energy 
sources on-site generation. MPC is able to exploit both the predictions of future 
disturbances (e.g., internal gains, weather, etc.) and given requirements (e.g., 
comfort ranges), in order to anticipate the energy needs of the building and optimise 
its thermal behaviour on the basis of the defined control goals. Constraints are 
included directly in the optimisation problem that is solved at each sampling step. 
Until the past decade, the MPC framework found a steep path to the practical 
implementation, because of its high computational demand in massive optimisation 
problems. With the development of new processors, graphics processing units, and 
cloud computing (and therefore with the exponential increase of available 
computational power), MPC is increasingly applied in various types of buildings 
and energy systems. Just in 2009, predictive optimal controllers, such as MPC, were 
considered marginal strategies by a review of advanced building control systems 
[4]. However, from that date, the application of MPC in buildings received 
continuously increasing attention, as it can be inferred by Figure 1. The papers 
included in this survey were selected with a search of the keywords “Model 

Predictive Control”, “MPC”, “Predictive Control/Controller”, “Building” and 

“HVAC”, on Scopus and Web of Science. A total of 211 papers were identified 

and, after screening and removal of studies that were not in line with the definitions 
of a Model Predictive Control strategy applied to buildings, 161 papers were 
included in this survey. An additional 36 documents were used for defining the 
overall framework and individuating possible alternative control methods of the 
building thermal behavior. 

 

 

Figure 1. Yearly frequency distribution of scientific papers dealing with MPC 
formulation for buildings and HVAC systems. 
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When MPC formulation is undertaken, one of the leading problem arising is 
the definition of a simplified control oriented model that should be used in the 
iterative optimisation procedure. However, in the case of SolHe-PCM, a simplified 
lumped model of the controlled system was already formulated (see Section 3.4). 
For this reason, MPC algorithms seemed to be the ideal choice to devise a controller 
capable of maximising the SolHe-PCM system potentialities. Indeed, since a new 
technology was proposed, new control paradigms had to be formulated to enhance 
all its benefits. 

So that, the present Chapter is divided into two main Sections. The first one 
aims at reviewing previous works about MPC for building and HVAC system 
thermal regulation, defining a comprehensive framework to formulate a model-
based control problem effectively. In this direction, the entire review part contains 
many schematics that allow the MPC problem to be conceptually expressed, 
promoting a clearer comprehension for the readers. The second part of the chapter 
introduces the steps necessary to implement the MPC regulation in the SolHe-PCM 
prototype. Close-loop simulations were also carried out aiming at obtaining results 
to be compared with the ones obtained with a baseline Rule-Base Controller used 
as a benchmark.  

The first part of the present Chapter (Section 5.1) was started during the 
research period spent at IMT Alti Studi Lucca. Some portions were included in the 
scientific paper: 

• Model Predictive Control (MPC) for enhancing buildings and HVAC systems 
energy efficiency. Problem formulation, applications and opportunities. 
Authors: Gianluca Serale, Massimo Fiorentini, Alfonso Capozzoli, Daniele 
Bernardini, Alberto Bemporad. Journal: Eenergies 11(3) 1-35.  

The second part of the present Chapter (Section 5.2) represents an outcome of 
the research period spent at Sustainable Building Research Centre at University of 
Wollongong. This work was presented at the international scientific conference 12th 
SDEWES2017 held in Dubrovnik. Some portions have been included in the 
scientific paper “Formulation of a Model Predictive Control Algorithm to Enhance 

the Performance of a Latent Heat Solar Thermal System” (authors: Gianluca Serale, 

Alfonso Capozzoli, Paul Cooper, Marco Perino) that is currently under review in 
the Elsevier journal Energy Conversion and Management. 
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5.1 A framework for Model Predictive Control to improve 
thermal management of buildings: review of previous 
works, problem formulation, applications and 
opportunities  

A broader discussion on MPC formulation, applications and opportunities as a 
whole was necessary before focusing on the definition of the MPC algorithm to 
regulate the SolHe-PCM prototype. For this purpose, the main scope of the first part 
of this chapter is to lay the foundation of an imaginary bridge linking automation 
and control engineers with building and mechanical engineers involved in building 
and HVAC system design and operation. Indeed, so far, a lack of literature work 
providing a common dictionary and a taxonomy to enhance the relationship 
between those two professional categories was observed. Furthermore – even if the 
MPC control problem for buildings has been well-discussed in many studies found 
in the literature – a unique, clear and robust framework summarising the necessary 
steps to formulate the control problem does not exist. The remarkable work of 
Afram and Janabi-Sharifi [5] gave a significant contribution in this direction, but it 
only refers to studies done up to 2013 and significant research work in this area has 
been undertaken since then. Furthermore, compared to that work, more extended 
discussions and schematics to represent the operation of an MPC controller in a 
building could be useful to clarify the central concepts of this control framework 
that are sometimes misinterpreted. As a matter of fact, the lack of clear direction in 
the literature has generated confusion in some authors, and sometimes the term 
“Model Predictive Control” has been improperly used (e.g., calling MPC what 

actually is a day-ahead optimisation procedure or Dynamic Programming).  
 
 

5.1.1 Short overview on building and HVAC system control 
methods 

Before focusing on Model Predictive Control, a short overview on the most 
diffused control strategies adopted to manage the building and its HVAC system 
was necessary. A particular focus was given to the most innovative control 
techniques exploiting benefits achievable by data gathering. Indeed, over the past 
decades the implementation of wired and wireless sensors and embedded 
controllers in building systems has increased rapidly. The increase in computational 
power, the availability of low cost sensors and the availability of accurate weather 
predictions allow the control designers to explore some possible advanced control 
strategies for optimising an efficient building climate control.  

The optimisation of the living space climate regulation is a problem that has no 
unique solution, since many variables can be included in the optimisation process, 
in particular when on site generation and energy storage units are implemented in 
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the building. In general, the goals of an intelligent management system for energy 
and comfort include the following goals:  

• achieving a high comfort level, concerning thermal, air quality and visual 
comfort. This can be done by controlling temperature and lighting set-points 
or ensuring air quality by managing the level of contaminants such as carbon 
dioxide; 

• achieving high energy efficiency, with the implementation of energy saving 
strategies while assuring an acceptable indoor environment quality. Similarly, 
it is possible to minimise the running cost of the building, including dynamic 
energy pricing of energy sources instead of the simple energy consumption. 

A variety of control logic approaches for building cooling and heating systems 
have been proposed and reported in the literature. The ASHRAE handbook [6] 
offers a thorough review of the existing control methodologies for building energy 
systems. Classical control has been widely adopted in building energy systems due 
to its simplicity in design and low computational complexity when determining the 
control signals. The HVAC subsystems are controlled using Rule Based Controllers 
(RBC), based on inferential logics like “if–then–else”, which are each managing a 

specific goal. For example, On/Off or bang-bang controllers are very common in 
old building systems without digital control, and Proportional-Integral-Derivative 
(PID) control loops are usually implemented in more modern buildings where 
heating and cooling systems are equipped with digital control and variable 
frequency drives (e.g., pulse-width modulation controls) [6]. At the level of the 
whole building, there is generally no optimisation, even though there are often 
highly sophisticated local controllers. This means that an upper layer capable of 
optimising the set-point of each controller in general is lacking. This is due to the 
high complexity that would be required for each Rule Based Controller and the fact 
that it is practically impossible to generalise their rules at a building level [30]. 
Although the combination of well-tuned classical control methods can provide 
satisfactory results. More advanced controllers can better allow the exploitation of 
renewable sources or of passive techniques for heating, cooling and lighting to 
minimise the energy needs and the use of non-renewable primary energy 
consumption as well as to reduce over-shooting and oscillations that contribute to 
significant increase of energy waste [7].  

In the 1990s research started to focus on the development and application of 
intelligent methods to building control systems. Smart controllers could be 
optimally tuned for the control of different subsystems of an intelligent building 
using evolutionary algorithms [8]. For this purpose, the learning-based approaches 
from Artificial Intelligence techniques offer a different approach to the energy 
management problem compared to conventional methods. Control methods based 
on Artificial Intelligence can deal with noisy or incomplete data, and with 
nonlinearities in the system. After being trained, they can perform predictions at a 
relatively high speed [9].  
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The most common Artificial Intelligence methods is the adoption of Artificial 
Neural Networks. They have been used extensively for the building predictions and 
HVAC system control strategies [10,11]. Various Artificial Neural Network 
architectures have been studied for energy predictions, with resulting coefficient of 
variation in the range of 2 – 40%. These variations in the accuracy of the predictions 
were primarily dependent on the Artificial Neural Network architecture used, the 
regularity of the building operation and the accuracy of data measurement devices 
[12]. Artificial Neural Network controllers were studied for building thermal 
management, using a Multi-Input, Single-Output (MISO) architecture. Direct 
Artificial Neural Network controllers have been used in thermal comfort control 
[13] and in the temperature control of hydronic heating systems [14]. These 
controllers are practical and, in contrast to indirect Neural Network controllers, do 
not require identification of the dynamic model of the plant. 

Fuzzy Logic Controllers also offer a potential solution, coupling and integrating 
the management of all the different criteria and components of an HVAC system. 
Alcala et al. [15] showed that the use of Fuzzy Logic Controllers can enable the 
implementation of multi-criteria control strategies incorporating expert knowledge, 
showing a significant building performance improvement when compared to a 
classical On/Off controller. Fuzzy Logic Controllers demonstrated good potential 
also in the energy management of a commercial building, coordinating photovoltaic 
generation, energy storage system, and building demand under dynamic electricity 
price conditions [16].  

Genetic Algorithms (GAs) are optimization tools that can be used to improve 
the parameters of other control techniques. The use of Genetic Algorithms has been 
extensively researched for tuning parameters of classical controllers [16] and Fuzzy 
Logic Controllers [15]. Genetic Algorithms were also used to identify the key 
thermal parameters of a zone model based on measurements [17], as well as for the 
optimisation of Artificial Neural Network models [18] for the control of an HVAC 
system. Moreover, Genetic Algorithms were exploited for the broader scope of 
optimising the coordination of energy demand, renewable energy generation and 
energy storage [19]. 

 
  

5.1.2 Previous surveys on Model Predictive Control for building 
energy management 

In the last years, an increasing number of surveys aimed at analysing the 
opportunity offered by the implementation of techniques based on classical control 
principles were published. From these works it has emerged that MPC algorithms 
are an effective method to improve building energy efficiency. In particular, the 
reviews on MPC can be grouped in those focused on optimal-intelligent control 
methods adopted for a single HVAC component (e.g., ventilation systems, ground 
coupled heat pumps, thermal energy storage units, window control, etc.) or those 
that consider the control strategies for the energy management of the entire 
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building. Surveys focused on the thermal management of building and HVAC 
systems can be further classified into two main groups: those that consider MPC 
just as one among many possible control methods, and those that are entirely 
focused on MPC. 

 

5.1.2.1 Reviews that consider Model Predictive Control only as one 
among many possible control methods.  

The papers [4,20] are two preliminary surveys dealing with advanced control 
systems for energy and comfort management in buildings. In detail, in [20] a useful 
framework of the early studies about the model-based supervisory control methods 
up to 2006 is provided. In [21,22] Demand Side Management procedures are 
reviewed with the aim to clarify the possible energy management strategies based 
on load forecasts and predictions In [22] MPC is considered as the most diffused 
and effective instrument in an energy management optimisation framework, which 
represents the higher level of intelligent control of a building for the authors. In [3] 
an entire section is focused on MPC and a summary of its main features and 
advantages for energy management, is provided. Moreover, the authors input the 
low widespread of this control method to the high modelling expertise and 
monitoring effort required. Similarly, in [23] an entire section is focused on MPC. 
This paper is more application-oriented, and it summarises the main features of 
revised studies without a critical framework to discuss the implementation of MPC 
in buildings. The recent study [24], provides a detailed overview of the various 
control strategies that can be applied to a building, focusing in particular on model 
based controllers, such as MPC. This remarkable paper provides a framework that 
highlights strengths and weakness of those strategies. 

 

5.1.2.2 Reviews that are entirely focused on Model Predictive 
Control 

The work of Afram and Janabi-Sharifi [5] can be considered the most 
remarkable review on MPC due to the worthy scheme of MPC implementation that 
it offers, combined with clear classifications criteria. This review highlights all the 
steps necessary to properly implement the MPC problem and to formulate the 
optimisation problem for building energy management. Moreover, the papers 
analysed in the review are classified between those are based on experimental 
results; it identifies the most important indicators to compare the MPC with other 
control approaches and it provides an accurate framework of the future challenges 
for MPC in building energy management. While a good description of different 
MPC configurations (e.g., centralised, decentralised, distributed, etc.) was 
provided, the possible MPC types (e.g., tracking, robust, economic, etc.) are 
roughly considered in this survey. Despite it considers a large number of articles 
(around 50), this review dates back to 2013. From that time, as far as the author 
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know, more than 100 new articles have been published about this MPC algorithm 
for building thermal management, reflecting the increasing magnitude that this 
topic is getting. Hilliard et al. [25] published in 2014 an excellent review of trend 
and opportunities for MPC implementation in commercial buildings. After an 
introductory description of MPC main features, the article summarises details of 19 
scientific works using a series of tables that capture the salient points and allow for 
comparison. In those tables are listed all the various elements affecting the MPC 
performance (from the software adopted to the problem details). Consequently, a 
detailed analysis of strengths and weakness of each paper is carried out, also 
adopting descriptive statistics to find most common peculiarities. Results of this 
work were used by the same authors also in [26] to define which are the main 
requirements of a commercial building to be properly controlled by MPC. Despite 
the very notable discussion and the effective clearness of the article due to a 
structure organised by tables, compared to [5] these reviews are affected by a 
relatively low number of considered case studies and a short description of MPC 
key elements. Papers [27] and [28] are the most recent reviews on MPC applied to 
building and HVAC system control. They are both not general surveys, but works 
focused on particular aspects of building related MPC problems. The first one [27] 
is focused on Artificial Neural Network based MPC and the initial review section 
part can be considered an extension of the previous work undertaken by the same 
research group [5], with additional details on Artificial Neural Network control 
oriented models. The second one [28] is focused on occupant behaviour based MPC 
problems for internal temperature regulation. In the first part of the paper, the 
intention of the authors was to provide a general framework of MPC application for 
building energy management. Eventually, [29] provided a good overview and 
vision about the current and future potential applications for MPC building thermal 
regulation.  

 
 

5.1.3 Model Predictive Control: framework and structure 

The dynamic response of the outputs of a system is affected by controlled inputs 
(or manipulated variables) and uncontrolled inputs (or disturbances) [30]. A 
dynamical model of the system can capture such dynamics. Afterward, the 
controller can exploit them to make predictions of the possible future response of 
the system as a function of future controlled and uncontrolled inputs. MPC uses 
these predictions to select the best sequence of future manipulated variables, 
according to specific performance indices. The latter are defined over a time 
window that starts from the current time and spans a given prediction horizon in the 
future. The best sequence is obtained by solving a numerical optimisation problem, 
that also takes into account the constraints on input and output variables that must 
be satisfied during the operation of the building. The difference between MPC and 
open-loop optimal control is that the former only applies the first optimal move of 
the sequence at the current time instant, optimising a new sequence at the following 
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time-step again. This way of acting and replanning continuously over time is 
denoted as the “receding horizon” concept, and is sketched in Figure 2. 

 

 
Figure 2. Schematic of the principle of receding horizon. The difference between 

the top and the bottom figure is one time-step. 

 
The following notation is introduced to describe the receding horizon problem: 

• Current instant (k): the current sampling step the controller is applied;  
• Control time-step (Ts): it is the time between control updates and iterative 

receding horizon optimisations. The discrete variable k is generally used to 
refer to a specific control time-step; 

• Prediction horizon (Np) (also referred to as planning horizon): the number of 
control time-steps the controller looks ahead in the future to optimise the cost 
function under constraints; 

• Control horizon (Nc) (also referred to as execution horizon or manipulated 
input horizon): the number of possible different values the manipulated 
variables can take in the future, that relates to the dimension of the 
optimisation vector. 

A general framework of the MPC formulation is shown in Figure 3. All the 
aspects of the MPC framework presented in this figure are discussed in the 
following sections of this chapter. In Figure 3, the boxes filled in dark grey indicate 
elements that directly influence the optimisation problem; the light grey boxes 
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denote types of resulting optimisation problems; all the other boxes list the possible 
forms that the MPC formulation for buildings and HVAC system can take. 

 

 
Figure 3. Framework and critical elements of the MPC optimization problem 

applied to building and HVAC systems. The boxes filled in dark grey indicate 
factors that directly influence the optimization problem; the light grey boxes 
denote types of resulting optimization problems; all the other boxes list the 

possible forms that the MPC formulation for buildings and HVAC system can 
take. 

 
 

5.1.4 Typologies of Model Predictive Control 

When solving a building control problem, various typologies of MPC can be 
adopted and they have to be selected according to the nature of the controlled 
process. In particular, to the type of prediction model that one has developed to 
describe it. Consequently, also the optimisation algorithms used will differ 
depending on the nature of the optimisation problem. 

The main goal of the so called standard MPC (or tracking MPC) is to reach 
and closely track an a-priori defined reference trajectory of a controlled variable. 
Depending on the nature of the controlled system dynamics, the MPC problem can 
be either linear or nonlinear. The extension of MPC from linear to nonlinear 
problems is not a trivial matter due to additional computational complexity, 
reliability of nonlinear programming solvers, and lack of general purpose nonlinear 
systems identification techniques [31]. 

When the effect of unmeasured disturbances or model mismatch is a concern, 
sometimes is useful to embed a model of the possible mismatch between the 
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nominal and real system within the MPC problem formulation. Generally, with an 
expert knowledge of the controlled process or during the model validation phase 
from data, it is possible to define the magnitude of the uncertainties affecting the 
system and their effect on the model response. An MPC is called robust MPC when 
the stability and the performance specifications are maintained for all possible 
model variations and a class of noise signals (uncertainty magnitude) within a 
specified range [32]. In this case the uncertainties are bounded and the resulting 
control strategy always satisfies the defined constraints within the uncertainty 
range. An alternative solution is offered by the stochastic MPC, where a stochastic 
dynamical model of the process is used to predict its possible future evolution. 
Disturbances and constraints are included as random variables with a given 
probability distribution (e.g., Markov Chains). In case of continuous distributions, 
one allows for unbounded uncertainties and enforces constraints within a finite 
probability. Contrariwise, in case of discrete distributions, that is if the uncertainty 
can only take value from a limited set with a given probability, one can optimise 
stochastic measures (such as a trade-off of expectation and variance, or conditional 
value at risk) and enforce constraints either for all disturbances (worst-case) or in 
probability, depending on how critical are the constraints[33]. A stochastic 
approach in MPC is often used to simulate the occupancy disturbances [34,35]. In 
[36] an adaptive multi-scenario robust MPC is proposed as an alternative to 
stochastic MPC. In this case a fuzzy-logic and a hierarchical MPC are used to 
coordinate the different possible scenarios of building use, ensuring a 
computational time that is reported lower than that the one required by stochastic 
MPC to handle the same problem. 

The previously described MPC strategies are designed around an objective 
function that penalizes the deviation of an output of the system from a reference 
trajectory. Generally, in a hierarchal MPC configuration, the reference trajectories 
for the set-points are calculated based on economic considerations (e.g., 
temperature desired values for optimal energy consumption) by the upper 
supervisory optimisation layer [37]. At a lower level, an MPC can optimise the 
control sequence of the actuators, minimizing the control effort to track the defined 
trajectory. Economic MPC refers to a strategy where temperature trajectories and 
system set-points are optimised within the same MPC cost function. The cost 
function is therefore based on an economic objective rather than the magnitude of 
the tracking error (e.g., minimising the energy consumption or the operational costs 
of a building). While this takes into consideration the building operational cost, it 
also implies that the cost function cannot be used as a traditional Lyapunov function 
to prove closed-loop stability [38]. Various studies demonstrated that these 
mathematical issues can be addressed in many practical situations [38]. In 
particular, in most of the cases, building energy management problems involve 
processes (i.e., temperature control) with slow dynamics where stability is not an 
issue, allowing the adoption of an economic MPC strategy [5]. 

In numerous energy management applications, the system is of a hybrid nature, 
in the sense that it includes both continuous dynamics (involving real-valued inputs 
and states) and discrete dynamics (involving finite-state machines and Boolean 
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input and states), leading to a nonlinear model with discontinuities. In this case, the 
optimisation most commonly can be cast as a Mixed Integer Programming (MIP) 
problem, and the MPC formulation is commonly referred as hybrid MPC [39]. This 
MPC approach is commonly used when the operation of the system involves 
discrete states, functioning modes, open or closed, On or Off or scheduling 
requirements.  

The MPC problem can be formulated in an implicit or explicit formulation. 
While in implicit MPC the control law is defined by solving the optimisation 
problem in real-time, in explicit MPC multi-parametric programming algorithms 
are run offline to recast the control law as a lookup table of linear gains [40]. 
Explicit MPC is generally used in those applications of small size where the 
computing power is limited or a very short computational time is required (e.g., in 
embedded controllers that are required to perform the online optimisation). 
Building thermal systems are generally characterised by large time constants and 
Building Automation Systems normally have sufficient computational power to 
allow the optimisation of an implicit formulation that can be adopted for the 
building energy management, and moreover are characterized by large model sizes 
which would make the explicit MPC approach unpractical, if not impossible. 

 
 

5.1.5 Models used in Model Predictive Control 

The models are mathematical tools capable of describing the physical 
behaviour of a system with defined input and output variables [41]. Physical 
processes are continuous in nature, however the availability of information on their 
status is generally discrete, due to the sampling nature of the sensors used to 
monitor and understand the process. A deterministic model can completely 
determine the future and past states of a system knowing its initial conditions. On 
the other hand, complex random systems with chaotic behaviour require stochastic 
models, which are in general more difficult to implement [42]. It is well-known that 
the development of an appropriate dynamic model and its identification are often 
the most difficult and time-consuming tasks of the control design process, in 
particular when applying an MPC strategy. Indeed, models are the cornerstone of 
MPC and, following the Camacho and Bordons [31] indications, two different 
important models can be discerned within the implementation of an MPC controller 
for buildings and their HVAC systems: 

• The control oriented building and its HVAC system model, which represents 
the thermo-dynamical behaviour of the building, used by the MPC for the on-
line optimisation. This model should be capable of accurately describe the 
physics of the controlled process and predicting the future states of the 
controlled system;  

• The disturbance models that allow the forecast of the behaviour of the 
uncontrolled variables affecting the dynamic response of the system. 



199 
 

The control oriented building model is always necessary and its definition is a 
common issue for those who approach an MPC problem for building control and 
energy management; while the disturbance models can be in some cases neglected, 
and data retrieved by external (e.g., Cloud connected) modelling tools or databases 
can be used instead. While the two aforementioned models are required for the MPC 
controller implementation, a further model is necessary at the design, simulation 
and prototype phase: 

• The surrogate simulated building model that is a virtual, possibly high-
accuracy representation of the controlled system necessary to close the 
control loop in simulation. 
 

5.1.5.1 Modelling the building and the HVAC system 

ASHRAE [6] categorises modelling methods into two different approaches: the 
forward (classical) approach and the data-driven (inverse) approach. On the one 
side, the forward approach (also known as white box models or engineering 
methods) presumes detailed knowledge of the various system processes and 
interactions. The main advantage of this approach is that the system does not require 
to be physically built in order to evaluate its performance. Thus, in modelling the 
energy behaviour of a building, the forward approach is usually suitable for 
preliminary predictions of energy needs and design of system loads. Reduced order 
models, quasi steady-state methods suggested by standards, modified bin methods 
and the most common detailed energy simulation tools (e.g., EnergyPlus, TRNSYS, 
ESP-r and DOE-2) belong to the forward approach methods [43].  

 

 
Figure 4. Different modelling approaches according to ASHRAE 

classification. 
 
On the other side the data-driven models were further classified by ASHRAE 

[6] in three broad groups, highlighted in Figure 4, that have also been adopted in 
the following classifications [2,43–46]: 
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• Calibrated simulation models: are high fidelity response models based on 
physical principle to calculate thermal dynamics and energy behaviour of 
whole building level or for sublevel components [46]. The approach is the 
same as the one mentioned in the forward approach, but in this case the 
models are calibrated using real data gathered on-field. 

• Black-box models (also known as empirical approach): do not require full 
knowledge of the system or the process. They are developed by fitting 
parameters of a model to historical behaviour of the system. The parameters 
subject to identification do not generally have direct physical meaning. For 
these reasons, black-box models become particularly suitable for predicting 
the behaviour of processes where a-priori deterministic knowledge of the 
physical relationship between input and output is not univocally defined (e.g., 
evolution of climatic disturbances and occupant behaviour related 
disturbances). In the last few years, much research was focused on this kind 
of black-box models applied to building data. Various further classifications 
have been proposed in the literature and interested readers can refer to 
[43,44,46]. The black-box approach can be either statistical or based on 
artificial intelligence [2]. For example, linear, multivariate or change-point 
regression, autoregressive models, conditional demand analysis and Fourier 
series belong to the category of statistical models. Artificial Intelligence 
techniques are those are based on machine learning techniques such as 
Artificial Neural Networks or Support Vector Machines. 

• Grey-box models: are simplified physical models of system dynamics. While 
they retain the physical description of the system they represent, their 
parameters can be estimated using system identification methods. Grey-box 
models have fitting parameters that include the dynamics of the physical 
system described. Semi-Deterministic Physical Modelling (DSPM) uses a 
Resistance-Capacitance (R-C) electrical network analogue to describe the 
thermodynamics of a system. Figure 5 represents an example of R-C 
modelling of a building. Usually the model parameters are estimated by 
tuning to historical measurements, and this approach has been presented in a 
wide variety of papers [47–50]. Semi-Probabilistic Physical Modelling 
(PSPM) - also referred as Bayesan network - approaches the problem using 
stochastic differential equations for the description of a system to be 
identified [51]. Various models with increasing complexity have been 
formulated based on prior physical knowledge, and the parameters of each 
model are estimated using the maximum likelihood method. Grey-box 
models, depending on their use, can be either linear or nonlinear, 
deterministic or stochastic. Non-linear grey-box models require a further 
effort in the system identification task. 
In Figure 5 an example of R-C network is shown. ϴo is the outside 
temperature, ϴa is the internal ambient temperature, ϴa is the internal 
temperature of a narrow ambient, Rwo is the external liminar thermal 
resistance of the wall, Rwi is the internal liminar thermal resistance of the wall, 
Rw is the thermal resistance of the wall, Rv is a surrogate thermal resistance 
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associated to ventilation, Cw is the wall thermal capacity, Ca is the internal air 
thermal capacity, Cf is the floor thermal capacity, ϕs is the solar flux incident 
on the external wall, ϕi is the flux due to internal heat gains, ϕHVAC is the 
thermal power delivered by radiant panel embedded in the floor. 

 

 
Figure 5. A typical example of an R-C network for MPC applications. 

 

5.1.5.2 The control oriented building and its HVAC system model 

It is well known that the development of an appropriate dynamic model and its 
identification are often the most difficult and time-consuming tasks of the 
automation process, in particular when applying a MPC strategy. Indeed, for MPC 
it is necessary to carry out a virtual image of the controlled system, called control 
oriented building model, capable of describing the physics of such controlled 
process accurately [52]. This control oriented building model must be accurate 
enough to ensure satisfactory prediction capabilities and capture the fundamental 
engineering processes that influence the dynamics of the controlled building, but at 
the same time has to be simple to ensure a reasonable computational time of the 
optimisation process [53]. Indeed, the real-time optimisation process could require 
that the control oriented building model is run numerous times within a defined 
time interval (represented by the control time-step). The importance of the control 
oriented building model is highlighted by the fact that many papers have a two-
parts structure describing the model: in a first part are focused on the description of 
the controller and the optimisation process in a second one. In many cases these 
parts are quite extensive in terms of the amount of research content that the authors 
decide to split it in two independent articles (e.g., [54] and [55] or [56] and [57]). 
The control oriented building and HVAC system models, even they are a 
simplification of the real physical system, are required to represent its response 
accurately enough for the optimisation to be effective, thus in most cases they are 
supported by a data-driven approach. In experimental case studies, historical data 
of states and disturbances, measured by sensors, can be utilized for this purpose. 
These measurements can also be used in real-time by the controller to perform the 
optimisation. On the other hand, when the controlled building uses a surrogate 
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simulated model, the surrogate real-time measurements need to be sent at each 
control time-step from the simulation platform to the MPC controller.  

Inputs to the models for prediction and calibration include the most significant 
climatic and occupancy related disturbances, as well as controllable inputs such as 
the thermal energy delivered by the HVAC system. Common inputs to the thermal 
model include outdoor temperature, solar radiation, internal gains and heating or 
cooling energy delivered by the HVAC system. The measured response is generally 
the indoor air temperature; in some cases, mainly simulated, the measured response 
can also include the average walls or other building components temperature [58]. 
While the measured indoor air temperatures typically are monitored using sensors 
integrated into the building automation system, the temperature of the walls, floors, 
ceilings and other building components are typically estimated, with no feedback 
from sensors. Furthermore, the temperatures of HVAC system components are also 
often part of the control oriented model. For example, in [59–61], the thermal 
energy system operation was optimised, by considering it as a lumped temperature 
node. The relative difference between the temperature of the thermal energy storage 
and the building internal temperature represents an additional opportunity for 
heating and cooling [44,62]. Similarly, to the applications where the control 
oriented model states relate to temperature nodes, some other authors include in this 
model also other variables that affect the occupants’ comfort. For example, in [63–

66] the internal carbon dioxide concentration level is also considered as controlled 
variable together with the internal temperature. In [65–68] also the light level was 
taken into account. The light level can be controlled using the blinds position, while 
the carbon dioxide concentration level was controlled by managed the air change 
rate. Both these additional variables have an effect on the thermal balance of an 
indoor environment, affecting the solar gains and the ventilation losses respectively.  

From a thermodynamic perspective, a building can be treated as a single zone 
or as multi zone. The number of zones coincides with the number of internal nodes 
that are used to model the building dynamics. From the MPC prospective and its 
use in thermal regulation of indoor spaces, a multi-zone building can be modelled 
in its entirety in the control oriented building model, in the attempt to find an 
optimal solution for the operation of the entire building. In other cases, a distributed 
approach is taken, where various controllers manage a separate zone. A model with 
reasonable prediction properties is an ultimate condition for excellent performance 
of the predictive controller, and extensive research has been undertaken to aid the 
selection of the most appropriate model for the task [58]. Building thermal models 
used for optimisation generally use less information when compared to high fidelity 
models, as their complexity and order is reduced and they tend to lump physical 
characteristics and processes. 

It is unlikely that white-box or calibrated simulation models can be utilised as 
a control oriented building model, as in general they do not provide an explicit 
model of the building, the identification and validation of calibrated simulation 
models are non-trivial processes, and require building blueprints, significant 
parameter tuning and simulation effort. Moreover, since the complexity, non-
linearity and size of the calibrated simulation responsive models, quickly lead 
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optimisation problems exceed computation time frames required in a practical 
control application. Nevertheless, many researchers have studied the application of 
optimal controllers that use those calibrated simulation models, interfaced with 
different optimisation toolboxes [69–72]. Some of this studies demonstrated how 
the computational time required by the optimisation of a high fidelity model in 
TRNSYS exceeds the control sampling time [73]. Moreover, high fidelity 
simulation models prevent the optimisation solvers from exploring the sparse 
structure of the resulting optimisation problem [74]. In [29] the further issue of 
differences between blueprints and actually used materials is introduced. In general, 
the literature offers numerous works deducing that the calibrated simulation 
approach is not effective for implementation in controllers [74–76]. 

In general, black-box models these models cannot ensure reliable prediction for 
operating points outside the range covered by the training data and thus extensive 
and adequate data training is needed in order to guarantee prediction accuracy. 
However, state that these models are faster to develop and implement, if sufficient 
data are available, they are often adopted as control oriented models capable of 
ensuring an accurate system representation. Black-box models are also used to 
represent the thermal response of a building, and a common representation of a zone 
heat transfer can be achieved using transfer functions, and in the specific case, given 
that signals are generally discrete, z-transforms are used [77]. Arguably, when 
transfer functions parameters are constrained, they can be considered grey-box 
models. Other examples of representation of a building response and comfort 
perception for thermal regulation and HVAC system control using black-box 
models are Artificial Neural Networks [78], even though they are most commonly 
used for supervisory optimisation of the energy management [79]. 

Grey-box modelling is proven to be a comprehensive method to model the 
thermal response of a building [80]. One of the critical targets in development of a 
grey-box model for an MPC application is identifying a suitable model is agreement 
with the physical response of the system and at the same time has a complexity that 
can embed the information contained in the data, which means that the model 
should neither be under-fitted nor over-fitted [81]. In buildings, grey-box models 
commonly use the R-C network analogy with an electric circuitry to describe the 
thermal process dynamics of a building zone. Thermal inertia, modelled as a 
capacitance in the R-C network, plays a crucial role in the behaviour and optimal 
operation of Thermally Activated Building Structures. Modular construction of the 
R-C circuit can be followed to describe the behaviour of a multi-zone building as a 
combination of single zones. Toolboxes for the automatic generation for control 
oriented R-C models were also recently developed [82,83]. A forward selection 
strategy is used to find the best model by an iterative process, using the most 
meaningful and adequately complex model [81,84]. In [85] the model fit is 
recalculated every night, taking into account the additional building dynamics data 
observed each day. 

In most of the cases, grey-box models were formulated using a state-space 
representation of Linear Time Invariant (LTI) systems. A discrete state-space model 
is usually formulated as follows: 
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 {
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢𝑢(𝑘) + 𝐵𝑣𝑣(𝑘) + 𝐺𝑤(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢𝑢(𝑘) + 𝐷𝑣𝑣(𝑘) + 𝑑(𝑘)
 (6.1) 

 

Where u(k) is the vector of manipulated inputs or controlling variables (e.g., 
the HVAC system control inputs), v(k) is the vector of measured disturbances 
affecting the system (e.g., weather), x(k)is the vector of the system states (e.g., the 
building temperature nodes), y(k) is the vector of the outputs, d(k) is the unmeasured 
random noise on the outputs, and w(k) is the unmeasured random noise on the 
measurement of the state. The terms A, Bu, Bv, C, Du, Dv and G are state matrix, 
manipulated input matrix, measured disturbances matrix, output matrix, direct 
transmission matrix for manipulated inputs, direct transmission matrix for 
measured disturbances, and the matrix of the unmeasured random noise on the 
states respectively. When the model is grey-box, the parameters in these matrices 
are estimated using system identification techniques. In building applications, 
similarly to other industrial processes, the output is not a function of manipulated 
inputs, resulting in a zero Du matrix. The outputs y(k) can be either measured (e.g., 
the indoor air temperature) or unmeasured (e.g., the wall internal temperature). An 
observer – typically a Kalman filter – is employed to reconstruct the current state 
vector at time k based on the measured signals. In MPC, an alternative to the output-
feedback formulation discussed above is referred to as state-feedback, and assumes 
that all the states are measured. In that case the output vector is typically neglected. 
This formulation is also frequently adopted for building applications. 

 

 
Figure 6. (a) Proportion of reviewed literature papers using either white, grey or 
black-box models as control oriented building models; (b) proportion of literature 

papers considering in the control oriented model either the building only, the 
HVAC only, or both. 
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On the one hand, some authors prefer not to include the HVAC system model 

in the MPC formulation. In this case, the MPC solves a higher level optimisation 
problem, which returns the building set-points to be utilised, while it does not 
provide information on the HVAC system and its actuators states or behaviour.  

On the other hand, other authors consider the mathematical description of the 
HVAC system and its energy components, together with the building model, crucial 
for a reliable optimisation of the building operation. In these cases, the HVAC 
system model can be either integrated with the building model, solving a complete 
optimisation problem, or the building (or the precinct) demand can be sometimes 
introduced as an external disturbance with a forecasted profile in the optimisation 
problem, which is mainly focused on the HVAC system. Figure 6 reports the 
fraction of papers found in the literature that use different control oriented building 
models and approaches to the HVAC system modelling. 

In the first case the optimisation can take into account the mutual interaction of 
the two systems in the thermoregulatory and energy problem, resulting in a more 
complete formulation, which comes though with a higher cost in terms of problem 
complexity and computational effort. In the case of Air Handling Units and 
Variable Air Volume boxes for example [86], the problem acquires a non-linear 
nature, specifically bi-linear, where one of the states (e.g., the room temperature) 
multiplies one of the controlled inputs (e.g., the system air flow rate) [87–90]. A 
similar configuration can also be found in the regulation of Fan Coil Units [91]. 

 Additional complexity can also derive from an intermittent nature of the 
energy delivery, which leads to the formulation of an optimal controller of a hybrid 
system, due to the combination of continuous and Boolean variables in the 
optimisation problem [92]. HVAC systems integrating renewable energy source 
thermal generation and energy storage can also exhibit a hybrid nature, since they 
can operate in various defined operating modes [59,61], and MPC is particularly 
relevant for them since renewable thermal energy resources are highly weather-
dependent and energy storage allows an offset of the generation to allow a better 
match with the demand. 

In other cases, the MPC mainly focuses on the control of the HVAC system, 
considering the thermal demand of the building only as a disturbance to the 
controlled system. This approach is more common when the complexity or the 
research focus lies on the HVAC system itself (e.g., in [93] where the optimisation 
of renewable generation and storage for a solar cooling system is studied), or where 
the HVAC system has to supply energy to a number of buildings, as in a university 
campus, and the focus is on the energy management [48,94].  

A general framework of the alternative scenario dealing with HVAC system 
modelling in MPC problems is provided in Figure 7.  
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Figure 7. Possible alternative scenario of HVAC system modelling in MPC 

problems. (a) HVAC system not considered in the MPC formulation; (b) MPC 
integrating both building and its HVAC system; (c) building not considered in the 

MPC formulation. 
 

5.1.5.3 The prediction models of disturbances 

Disturbances can be either measured or unmeasured. The measured 
disturbances are generally part of the dynamic building model, and their effect on 
the system response is directly captured by the model. The unmeasured 
disturbances can have a small or large effect on the system response, affecting the 
uncertainty and the accuracy of the model response. In some cases, even if a sensor 
is not providing a direct measurement of the disturbance, the disturbance or at least 
its magnitude can be estimated beforehand [95].  

The measured disturbances can be considered as ideal measurements or as 
measurements affected by uncertainty (e.g., white noise, stochastic noise, etc.). 
Signal processing tools generally help in discriminating the signal noise from the 
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signal itself. Data retrieved from existing data sets can be considered ideal 
predictions or further elaborated adding a noise to model the uncertainty affecting 
the disturbances. This action generally is addressed using a Kalman filter that 
implements white noise to the signal [96]. 

There are three main categories of measured disturbances affecting a MPC 
problem for HVAC system and building energy management: 

• Climatic disturbances (e.g., ambient temperature, humidity ratio, relative 
humidity, wet-bulb temperature, dew-point temperature, solar radiation, wind 
velocity, ground temperature; 

• Occupant behaviour related disturbances (e.g., occupied/unoccupied, 
variation in the scheduled comfort set-points, internal heat gains/loads, 
adjacent zones set-points); 

• Grid and energy distributor related disturbances (e.g., Time of Use or real-
time prices, peak load penalties, demand response incentives). 

Climatic disturbances affect the energy balance of the building and the 
performance of system components. The occupant behaviour can also significantly 
influence the operation objectives, constraints and system response [97]. The 
disturbances related to the energy distribution becomes crucial where building 
Demand Side Management strategies are considered in the MPC formulation (e.g., 
reduction of daily energy cost or peak load shifting or shaping). In other cases, 
though the building demand can be treated as a single disturbance where the 
climatic conditions, the occupant behaviour and factors affecting the building 
energy consumption are lumped together. 

The most straightforward method to determine disturbances affecting a 
building is to utilise commonly available disturbances patterns, such as the Example 
Weather Year, the Representative Meteorological Year, the Typical Meteorological 
Year, or the International Weather for Energy Calculation weather files or 
ASHRAE building demand and occupation patterns [6]. In this case the 
disturbances can only be used when assessing seasonal macro trends, but would not 
be accurate enough to be utilised for the short term predictions used by optimisation 
methods. For this reason, considering the disturbances to be equal to the ones 
provided in these datasets can be used to assess, at a design stage, the simulated 
controller performance only, but cannot be used for implementation on a real-time 
controller.  

A more accurate representation of the disturbances affecting the building and 
its HVAC system can be achieved for example by analysing historical data gathered 
from the Building Automation System. In this case the disturbances will be 
modelled around an existing system and they can be used for predicting the 
performance of an MPC controller when compared to existing classical control 
logic. The results from such analysis can lead to the development of a real-time 
controller that can be deployed on the considered building. For the real-time 
applications, accurate short term predictions are necessary and two primary possible 
methods of forecast can be adopted: 
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• Online predictions rely on the availability of an internet connection and the 
possibility to acquire forecasts from a third party source, that has the 
capability to provide accurate prediction using complex models. For climatic 
disturbances, these third party sources can include models for weather 
forecast, which normally use complex numerical climatic models to predict 
most of the influencing disturbances. The accuracy of these online models 
has been validated and several papers state that they are highly reliable. 
Future energy prices are also often predicted using data retrieved from the 
internet, by means of information supplied by the electricity provider or 
national/regional energy regulators.  

• Offline predictions do not need an internet connection and they only rely on 
the data which has been measured on site; on the other hand, they require a 
model that can predict the future disturbances behaviour. Moreover, these 
methods are compulsory for the forecast of occupancy related disturbances 
that are specific to each case study. The simplest method for offline 
predictions is the so-called lazy-man prediction method. It is based on a rule 
of thumb that states that “the conditions of the next hours would be only 

slightly different from those of the previous time period” [35,98,99]. For this 
reason, data collected on-site referring to previous hours can be used as a 
prediction for next hours, simply averaged or modified with small corrections 
(e.g., coefficients assessing higher weights to the measurement closer to the 
current state). More accurate offline prediction methods are those are based 
on statistical or machine learning models. Likewise building black-box 
response models, the literature offers many available methods for modelling 
the disturbances in these ways[98–100]. 
 

 
Figure 8. (a) Proportion of literature papers using as disturbances forecast 

method either online predictions, offline predictions or a combination of the two; 
(b) number of scientific papers grouped according to combination of forecasted 

disturbance variables. 
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A further prediction method often used in the literature combines the 
predictions of both offline and online methods. Indeed, combining the predictions 
of external models with data gathered on-site can be useful to calibrate external 
forecasts - reducing the uncertainty due to discrepancies between the location of 
weather stations and building site - and to address the risk of sudden internet service 
interruptions. Furthermore, a more straightforward online forecast can be used to 
adjust an offline prediction. For example in [101] minimum and maximum daily 
forecasted temperature were used to correct the trajectory of an offline prediction; 
or in [102] the Support Vector Machine method was used to forecast day-ahead 
electricity tariff prices based on past spot market prices and grid load levels. 

Figure 8(a) shows the forecasting methods used by previous scientific works 
and Figure 8(b) summarises the scenarios concerning the type of disturbances 
subject to these predictions. 

 
 

5.1.6 The controlled systems 

The MPC framework is suitable for the management of buildings, regardless of 
their typology and classification (e.g., residential, educational, commercial, 
institutional). Figure 9(a) shows that theoretical and experimental studies available 
in the literature cover very heterogeneous building classifications and final uses. 

 

 
Figure 9. (a) Proportion of building typologies considered for MPC scientific 

literature studies; (b) proportion of simulated versus experimental cases of MPC 
for building and HVAC systems in the scientific literature. 

 
The prototyping and testing of an MPC algorithm can be achieved by 

implementing the controller on an experimental case study or a simulated surrogate 
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building model. In any experimental case study, simulations (even if using 
simplified models) are still necessary during controller design to properly set up the 
controller parameters and ensure a reliable performance under different boundary 
conditions. Despite MPC is becoming one of the most promising algorithms for 
building energy management, o available in the literature there are only few 
experimental studies compared to the number studies in which the MPC was 
applied to a simulated surrogate building. The pie chart in Figure 9(b) highlights 
the unbalance between experimental and simulated works. 

When the MPC algorithm is applied experimentally, an adequate Building 
Automation System and integration platform is necessary. Firstly, the correct 
sensors integrated into the Building Automation System are required to monitor the 
variables required for the model embedded in the MPC to estimate the response of 
the system, and that adequate control inputs are associated to the process 
components. The MPC algorithm, especially in a research study or testing phase, is 
not embedded in the local controller of the building, but a separate computer 
performs the online optimisation and exchanges information with the Building 
Automation System at each control time-step employing a communication protocol. 
The computation of the solution and therefore the communication can be either 
local (using a computer and a communication protocol such as Modbus, BacNet, 
Obix, etc…) or the optimisation can be done off-site, where there is a remote server 
and the exchange of information is done over the internet. A typical schematic of 
real experimental implementation of MPC is shown in Figure 10Errore. L'origine 
riferimento non è stata trovata.. 

 

 
Figure 10. Schematic of MPC implementation in a real controlled system. Dashed 

lines represent possible connections by the internet. 
 
In most of the cases available in the literature, surrogate simulated building 

models have been used to test MPC performance. On the one hand, when the 
building is ideal or monitoring data is not available, the surrogate simulated 
building model follows a forward approach. This one is the typical case of the 
theoretical studies on the MPC performances or the evaluation of MPC at building 
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design stage. In particular, for theoretical studies the building can be represented by 
an archetype that allows to carry out some performance indicators about MPC 
management of a category of buildings. On the other hand, when there is an existing 
case study building, where operative data can be gathered in the field, the surrogate 
simulated building model can be built using either a forward approach or a data-
driven approach. This scenario occurs when it is necessary to investigate the 
possible benefits achievable through the MPC algorithm compared to an existing 
logic already implemented in the Building Automation System.  

Surrogate simulated building models do not require a control oriented 
modelling approach and reducing the computational effort is not a primary issue. 
Indeed, it is only a surrogate of the real experimental application, thus the higher 
the surrogate simulated model reliability the better.  

The most common issue when testing an MPC algorithm on a simulated 
building is that it is quite challenging to integrate an MPC controller into a building 
simulation software, leaving the MPC algorithm in most cases on a different 
external software platform. The two platforms must be interfaced at each control 
time-step with each other to evaluate the performance of the controller. In this 
interface, the surrogate building model sends information on the current states and 
disturbances to the controller, which computes the optimisation and responds with 
the set of actions that the surrogate building model has to apply at the next time-
step. Sometimes, when a detailed simulated surrogate building model is not 
available, simulation studies can be performed utilising the control oriented 
building model also as surrogate building model to test the closed-loop performance 
of the MPC controller and speed up the procedure. 

This aspect can be achieved by utilising software that already embed an external 
interface (e.g., TRNSYS - Type 155) or using packages that have been developed 
for time-step coupling of two platforms, such as Building Controls Virtual Test Bed 
(BCVTB) or MLE+ for Matlab/Simulink interfacing with EnergyPlus. 

 

5.1.6.1 Building Automation System and Model Predictive Control 
architecture 

The control inputs calculated by the MPC, which coincides with the outputs 
that the controller uses to actuate the system, are used to affect the system to reach 
the control goals. The output of an MPC algorithm is the optimal control sequence 
for each control input over the controlling horizon, and at each time-step only the 
first element of this array is applied. The physical actuation of the control inputs is 
generally achieved using actuators at different levels, which can regulate the 
heating and cooling delivery, the fans or pumps speeds, or the dampers, valves and 
windows positions. 

The MPC problem can be formulated contemplating different levels of 
controller outputs. In the configuration presented in Figure 11(b), the MPC controls 
the actuators directly, while in the configuration presented in Figure 11(a), which 
is a hierarchical controller, the MPC provides the trajectories that lower level 
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controllers have to follow. The upper supervisory controller can also be called Real-
Time Optimisation layer [38]. The lower layer controllers can be either Tracking 
MPCs or classical controllers (e.g., RBC, PID, etc...). Generally, in the case where 
the MPC problem is formulated without considering the HVAC system, see Figure 
6(b), the scope of the MPC algorithm is to define the trajectory of the internal set-
points, and how to track them is demanded to various lower level controllers. When 
all the controllers of the lower layer are MPC the configuration is defined as 
hierarchical MPC. Hierarchical MPC is composed at least by an upper MPC layer 
with a more extended control time-step and horizon that decides the operation of 
the building processes also addressing complex optimisation goals. The output of 
this upper layer enters in a number of lower layer MPC controllers, that have a 
shorter control time-step and prediction horizon, and are designed to track the set-
point trajectories defined by the upper control layer. Another similar architecture is 
represented by the cascade MPC, which presents various layers that run 
optimisations at the same frequency, without a higher level controller that acts as a 
supervisor. Those distinctions are quite formal and strongly affected by the problem 
formulation, thus in many cases the difference between cascade and hierarchical is 
not significant and many papers do not discriminate between the two. In the cases 
where the MPC also model the HVAC system it controls the set-points of the supply 
and return temperatures, the system air or water flow rates, amount of fresh air 
intake, heating and cooling generation systems activation or scheduling, evaporator 
and condenser loop pressures and refrigerant temperatures, etc. Finally, the MPC 
optimisation can define higher level decisions. For instance, the building and its 
HVAC system can be set into a specific operating mode (e.g., thermal storage 
charging or discharging modes, natural or mechanical ventilation modes [59,61]). 
These are typical applications of Hybrid MPC [92,101,103–105]. 

 

 
Figure 11. (a) MPC used as supervisory hierarchical controller; (b) MPC used 

directly for actuation. 
 
A further classification of MPC architectures must be discussed. Figure 12 

shows the three possible configurations of the MPC architecture and their interface 
to the building. The centralised MPC configuration, shown in Figure 12(a), is a 
solution for the management of an entire building and its HVAC system, using a 
single MPC law. The building and its systems dynamics, their interaction and the 
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disturbances by which they are affected are considered in a single optimisation 
problem, which takes into consideration their constraints and mutual influences. 
While this configuration allows explicit modelling of the system dynamics, the 
computational effort can grow quite significantly with the system and process 
complexity. Moreover, a failure of the central MPC controller could cause severe 
issues with the entire building energy management, making it harder to isolate the 
problem. In the decentralised MPC approach, shown in Figure 12(b), each 
component is regulated by an independent controller that does not consider events 
occurring to other elements of the control chain/structure. The mutual interactions 
among factors are regarded as unknown external perturbations to the model using 
this approach; the stronger the correlations of performance between these 
components, the more the reliability of the controller can be affected. Thus, on one 
hand there is a risk of achieving a significantly suboptimal solution, on the other 
hand a computational effort is drastically reduced and a higher tolerance to local 
failures when compared to a centralised solution is obtained. The distributed MPC 
approach, shown in Figure 12(c), has been considered an attractive solution for 
large-scale dynamically coupled building systems by many researchers [91,106–

112], because it incorporates positive features of both centralised and decentralised 
configurations, merged in a single controller. This cooperative behaviour of every 
individual controller improves the global control performance when compared to 
decentralised structure. At the same time, the computational effort is significantly 
reduced when compared to the centralised control method, due to the possibility of 
sharing the computational workload between controllers. A very good comparison 
between the performance of centralised, decentralised and distributed in building 
energy management MPC configurations is presented in [91,107]. In [109] a 
comparison between centralised and decentralised MPC performances is provided 
and a compromise solution with a decentralised approach that clusters together 
some thermal zones to achieve a balanced trade-off between performance and 
robustness to faults is discussed. 

 

 
Figure 12. (a) Centralised MPC formulation; (b) decentralised MPC formulation; 

(c) distributed MPC formulation. 
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5.1.7 Definition of the receding finite horizon problem for building 
applications 

The control horizon must be smaller or equal to the prediction horizon. 
Typically, the added value of having many free control moves is limited, as the 
accuracy of the prediction model decreases with the prediction horizon. In many 
research works there is no clear distinction between the two horizons, and possibly 
assume that they were set to equal length.  

 
Figure 13. Frequency distributions emerging from the survey of the scientific 

literature of MPC problems for building and HVAC system regulation: (a) 
sampling times; (b) prediction horizons;(c) ratio of prediction horizon on 

sampling time (number of optimisation steps). 
 
The selection of time-step, control horizon and prediction horizon is influenced 

by the time constants and the dynamical behaviour of the controlled processes. Heat 
and mass transfer processes in buildings are prolonged, thus the control time-step 
can be relatively widened when compared to other industrial processes. Typically, 
because of HVAC systems have faster dynamic responses, they require smaller 
control time-steps (from a few seconds to a few minutes) compared to when the 
MPC only manages the building’ dynamics (from a minute to an hour). The authors 
of [113] believe that MPC algorithms should require shorter control time-steps and 
prediction horizons if they are managing cooling processes when compared to 
heating ones, due to factors with a faster profile that influence the process response. 
If on the one hand short horizons reduce the computational effort of the controller, 
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on the other hand they can affect its reliability by neglecting the effect of a portion 
of the dynamics of the system. If the horizons are set too long compared to the 
control time-step, this could lead to much higher computational times, without a 
significant improvement in the controller performance.  

Moreover, because the optimal solution is based on disturbances forecast with 
inherent uncertainty, an excessive length of the horizons can affect the reliability of 
the forecasts and therefore the optimality of the solution found. Referring to the 
applications reviewed in this section, Figure 13 shows the frequency distribution 
of: Figure 13(a) sampling times, Figure 13(b) the prediction horizons and Figure 
13(c) the ratio of prediction horizon on sampling time (number of optimisation 
steps). From the distribution of Figure 13(c) can be inferred how small time-steps 
also require short horizons, so that the number of optimisation steps remains of the 
same order of magnitude and consequently the computational effort to solve the 
optimisation problem. 

 
 

5.1.8 Typical constraints used in Model Predictive Control 
formulations for building energy management 

One of the main advantages of utilizing MPC to control building systems is the 
possibility to include physical constraints into the formulation of the control 
problem, embedding them in the optimisation algorithm. Table 1 summarises the 
possible constraints features. 

Constraints can be formulated both as equalities or inequalities, according to 
how they relate to their counterpart of the real system. When the problem 
constraints are rigid and it is mandatory that they are satisfied, they are defined as 
hard constraints, while they are defined as soft constraints if they represent a 
flexible boundary and it is not strictly required that they are satisfied. Generally, 
soft constraints are formulated using a slack variable that can move the boundary 
of a certain amount, with an associated penalty in the cost function. The higher is 
the cost associated to this slack variable, and the closer the solution of the problem 
will be to the one where the constraints are considered to be hard. From a time 
perspective, constraints can be either constant or time varying limits that change 
according to a schedule, the occurrence of events or variations of the problem 
boundary conditions. 

 
Table 1. Constraints features in an MPC formulation. 

Formulation Position Restriction Time 
variation 

Kind 

Equality System states Hard Constant Rate 

Inequality Actuators Soft Time 
varying Range 
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Constraints can be allocated to system states and system inputs. Constraints on 

systems states are generally used to handle the occupants’ comfort (e.g., maximum 

or minimum bounds for the indoor temperature [114]), or the allowable temperature 
range affecting an active building component (e.g., thermal energy storage unit 
operating range [115]). The constraints allocated to system inputs refer to physical 
limitations or imposed bounds on the system actuation components, or input 
variables. The actuation components’ constraints can include maximum and 

minimum limits both for the range (e.g., minimum or maximum power of a heat 
pump[116] or a terminal unit [107], valve/damper position limits [117]) and for the 
rate of change of their operation (e.g., boiler or heat pump response rate[116], 
valve/damper/pump/fan change rate [118]). Likewise, the input variables can be 
constrained on their range and rate of change and they represent imposed or feasible 
limits (e.g., the maximum or minimum supply/return temperature [118]or the flow 
rate limits [48,86]). Because of their physical meaning, constraints on actuators are 
generally formulated as hard constraint, while the constraints on the system states 
can be softened in some cases [116,119]. For example, softening a constraint on an 
indoor temperature operation range, represents an undesirable situation that might 
be considered acceptable and advantageous under specific circumstances. 
Moreover, state constraints are typically imposed as soft constraints to preserve the 
feasibility of the optimisation problem, i.e., to make sure that a solution exists. 

Additional terms that effect how the controller states behave at the end of the 
prediction horizon are the terminal constraint and the terminal weight. The terminal 
constraint imposes the desired state configuration to be attained at the end of the 
prediction horizon, while the terminal weight acts as an incentive (but not a 
necessary condition to satisfy) to the same goal. Both are often used to guarantee 
closed-loop stability. For example, a terminal constraint can be used to ensure that 
a thermal energy storage unit continuously stores a minimum level of energy to 
satisfy the demand of the following day [94]. 

 
 

5.1.9 Control goals and objective functions used in Model 
Predictive Control problem for building thermal management 

The construction of the optimisation function depends on the global objectives 
that it is desired to achieve in the controlled process. One of the primary goals is 
ensuring that the controller meets the constraints and operates reliably. The stability 
of the controller and minimization of the control effort (variation of control inputs 
in two subsequent time instants) are two typical objectives of the optimisation. 
Other key objectives could be defined by the preferences the building occupants, 
the requirement of stakeholders or energy managers. In the first case these 
requirements are mostly related to comfort factors (e.g., target tracking for indoor 
temperature regulation, maintaining the internal ambient temperature in bounds 
ensuring the thermal comfort, minimizing occupants’ thermal discomfort hours), 
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whether in the latter the drivers are mostly economic factors (e.g., reduction of 
overall energy demand or greenhouse gas emissions, minimisation of the 
operational costs, maximisation of renewable energy sources productivity). Other 
factors commonly considered in the objective function are the constrained on-line 
system operations optimisation or the peak load shifting or shaving. The cost 
function has to be chosen based on the requirements of the specific application.  

The MPC cost function aims at reducing a multi-objective problem into a scalar 
objective. This is achieved by weighting and adding the various terms of the cost 
function, where each of these terms represent a specific performance criterion. 
Properly defining the weights of this objective function is one of the key tasks of 
the controller designer, because they represent the trade-off between the different 
control goals. The following expression represents a general formulation of an 
objective function for an MPC controller [31]: 

min. ∑ [𝑊𝑥‖𝑥(𝑘) − 𝑥(𝑘)𝑟𝑒𝑓‖
𝑛𝑥

+ 𝑊𝑦‖𝑦(𝑘) − 𝑦(𝑘)𝑟𝑒𝑓‖
𝑛𝑦

]

𝑁𝑝

𝑘=1

+ ∑ [𝑊𝑢‖𝑢(𝑘) − 𝑢(𝑘)𝑟𝑒𝑓‖
𝑛𝑢

𝑁𝑝−1

𝑘=0

+ 𝑊∆𝑢‖𝑢(𝑘) − 𝑢(𝑘 − 1)‖𝑛∆𝑢
] 

(6.2) 

 
Where x is the vector of system states, y is the vector of outputs, and u is the 

vector of manipulated variables or control inputs. Typically, only x or y is employed 
in the cost function, the first one when the control oriented building model is 
formulated as state-feedback, while the second one in output-feedback 
formulations. The discrete index k denotes time steps along the prediction horizon. 
The term u(k) – u(k-1) indicates inputs increment over the prediction horizon and 
is an indication of the control effort. The subscripts ref were adopted to indicate the 
reference trajectories or set-points. Wx, Wy, Wu, and W∆u are the weight matrices, 
which can vary along the prediction horizon. Np is the prediction horizon. If the 
prediction horizon Np is larger than the control horizon Nc, then the control inputs 
following Nc are assumed constant. The terms n indicate the norm dimensions in 
the cost function. When the 2-norm is used each vector multiplying a weighting 
matrix is transposed and multiplied a second time (for example, we define xTWxx 
for the costs associated to the states). The solution of the minimisation of the 
objective function under constraints yields an optimal control sequence u*. This is 
a trajectory of the optimal control moves along the prediction horizon that optimises 
the problem requirements according to the cost function weights and subject to the 
constraints defined by the user. Only the first control input u*(0) is applied to the 
controlled building. Afterwards, the receding horizon moves one control time-step 
ahead and the optimisation procedure is repeated. Alternative formulations of the 
objective function are possible according to the problem peculiarities (e.g., the most 
common alternative in building applications is the hybrid MPC formulation). 
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One of the most common objectives of the optimisation is ensuring the thermal 
comfort requirements of building occupants, by scheduling or regulating the set 
points of the HVAC system or other equipment. When formulating an MPC 
algorithm, the occupant comfort is generally considered as a pre-determined set-
point or set-point trajectory to track or as thermal bounds. This is the simplest way 
to ensure a positive thermal sensation of the occupants. This formulation avoids 
adding computational effort to the optimisation problem due to non-linearities. 
Moreover, it allows a simple implantation of a sensor feedback to the controller in 
experimental applications. The set-point trajectory can be constant in time (e.g., 
indoor ambient temperature equal to a pre-defined set point [120]) or time varying 
(e.g., using a set-point when the building is occupied and a set-back set-point for 
unoccupied periods [121–123]). The time varying formulation introduces the 
possibility to vary the target of the building based on occupants’ feedback or 

adaptive thermal comfort theories [124] (e.g., adjusting the set-point according to 
the external temperature running mean [125]). This set-point can be included in the 
formulation of a tracking MPC problem, entering in the objective function as a state 
reference xref(k) or a system output reference yref(k). It is also possible to include 
multiple set-points as thermal bounds, which do not affect the problem linearity and 
allow the indoor temperature to oscillate in a range of admissible values (e.g., in 
[61] variable limits of admissible indoor temperature were used as bounds, while 
[126] introduced two comfort ranges, one can be violated from time-to-time and 
another one should not be violated at almost any cost). This can be either introduced 
as a hard constraint of the optimisation problem or as a soft constraint, where the 
violation of these limits is weighted in the cost function. In this case the slacking 
variable that allows the softening of the thermal bound constraint is weighted 
together with the other inputs in the matrix Wu with the reference equal to zero.  

In order to better assess the occupants’ comfort, detailed thermal sensation 

indices can be introduced in the MPC formulation. For example, the Predicted 
Mean Vote (PMV) is an index that represents the average human thermal sensation 
under certain conditions. Since Fanger introduced this index in the 70’s [127], the 
Predicted Mean Vote is one of the most widely recognised indices to evaluate 
thermal comfort[128,129]. Even if it provides a more detailed indication of the 
human thermal sensation than set-points or thermal bounds, the introduction of 
Predicted Mean Vote in an MPC problem has significant drawbacks [130,131]. 
Firstly, since Predicted Mean Vote is intrinsically nonlinear, it affects the 
formulation of the MPC by dramatically increasing the computational effort of the 
optimisation. In general, it is introduced as a further non-linear function in the MPC 
objective function. This formulation therefore requires the adoption of non-linear 
optimisation methods (e.g., Genetic Algorithms or Particle Swarm Optimisation), 
that cannot guarantee that the optimisation will reach the optimal solution. 
Secondly, in real applications, Predicted Mean Vote poses issues in the possibility 
to monitor all the environmental and occupants’ variables affecting its calculation. 

Several studies the possibilities of implementing the comfort indices evaluation into 
MPC formulations [71,78,132–136]. Some authors use a comparison between 
Predicted Mean Vote and Actual Mean Vote to merge information from occupants’ 
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feedback and data from sensors [135,137] to improve the decision of their thermal 
comfort. Predicted Percentage of Dissatisfied (PPD) - an index which calculation is 
based on the Predicted Mean Vote value and that represents the predicted 
percentage of occupants would feel thermally uncomfortable – can be adopted as a 
comfort indicator as well and sometimes it is preferred for its easier user 
comprehensibility. However, since it is based on the Predicted Mean Vote value, 
the control of a building based on the Predicted Percentage of Dissatisfied value is 
affected by the same drawbacks as a Predicted Mean Vote control.  

The weighting matrix Wu assigns a cost to the usage of the control inputs in 
comparison to references defined in the array uref(k). Generally, the term Wu 
contains the cost of the actuation of each energy resource and it is utilized to 
minimize the factors affecting the building operational costs and energy 
consumption. In the economic MPC formulation it can be directly related to the 
energy prices of the different energy sources adopted in the process. A typical 
example is trying to minimise the energy consumption of an HVAC system. Since 
the model generally considers the thermal delivery to the building, it is necessary 
to convert this energy to the electrical demand of this equipment. This can be 
achieved either by including a constant or linear representation of the Coefficient 
of Performance (CoP) of the studied unit in the control oriented model or in the 
linear cost function [61,89,103]. In other cases, where the Coefficient of 
Performance is described by a more detailed non-linear function (e.g., non-linearly 
dependent on system states and disturbances), it can be included in the optimisation 
problem with a non-linear cost function, similarly to the case of the Predicted Mean 
Vote [138,139]. This is a typical example of finding the best trade-off between a 
more accurate representation of the real system and the computational performance 
of the MPC problem. The weighting matrix WΔu assigns instead a cost to the 
derivative of the control inputs and therefore their rate of change, ensuring the 
stability of the system and avoiding excessive fluctuations that can damage the 
actuators.  

The objective function can be expressed in the following forms: 

• Quadratic, also referred as “norm 2” (n = 2). Quadratic cost functions are 
more common in tracking MPC problems, where the distance from a 
reference trajectory (e.g., the internal set-point temperature [120,140]) has to 
be minimised and the fact that the penalty function is quadratic helps with 
stability and reduced computational effort of the controller (e.g., the on/off 
switching of the HVAC system and its components 
[34,103,108,109,126,132,141,142]) ; 

• Linear, also referred as “norm 1” (n = 1). Linear cost functions are the most 
common in building energy management in problems where the costs 
allocated to the elements of the weighting matrices must be comparable with 
each other, for example when trying to minimise building operating cost or 
maximise RES exploitation in an economic MPC; 

• Min/Max, also referred as “norm infinite” (n = ∞). This configuration is the 
less frequent for building and its HVAC system control purposes. It is mainly 
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used when the control goals focus on the peak values [111,143–149], such as 
reducing or shifting the power peak load or minimizing the maximum daily 
Predicted Percentage of Dissatisfied value [69].  

•  

 
Figure 14. (a) Proportion of different MPC objective function formulation in 

the scientific literature; (b) number of scientific papers grouped according to 
different combination of goals considered in the MPC objective function. 

 
 

5.1.10 Algorithms and programming languages 

The optimisation problems that the MPC has to solve highly depend on the 
nature of the controlled system and the objective cost function defined to assess the 
control goals. The simplest formulation of an MPC controller is the one applied to 
a Linear Time-Invariant system. The nature of heat and mass transfer phenomena 
affecting buildings is intrinsically non-linear [150], however those processes can be 
treated as a Linear Time-Invariant system, under proper assumptions and 
simplifications in the control oriented model (e.g., R-C networks with fixed 
material features and linearised radiative heat transfer coefficient). The constrained 
problem that includes these Linear Time-Invariant systems to be optimised, 
generally leads to a Linear Programming (LP) or a Quadratic Programming (QP) 
optimisation problem, depending on if a linear or quadratic cost function was 
chosen.  

Thermo-dynamical processes in buildings are generally characterised by long 
response times, and therefore stability is not a primary concern, allowing all the 
three forms of cost function to be commonly utilised in the optimisation problems 
[5].  

Figure 14(a) shows the fraction of different objective function formulations in 
MPC applied to building and HVAC system management found in the literature 
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survey; while Figure 14(b) clusters the possible factors considered as optimisation 
goals. 

Systems that contain discrete variables, such as Boolean variables (e.g., heater 
on/off) or defined operating modes (e.g., natural/mechanical ventilation mode or 
charging/discharging of a battery [59,61]), or scheduling problems (e.g., heating 
system operation time[151]), generally have a hybrid nature (formulated as Mixed 
Logical Dynamical (MLD) or Piecewise Affine (PWA) systems), and they lead to 
a Mixed Integer Programming (MIP) optimisation problem, as shown in Figure 15. 
Also in this case, depending on the cost function, the problem can take the form of 
a Mixed Integer Linear Programming (MILP) or Mixed Integer Quadratic 
Programming (MIQP) problem, which are generally solved using a Linear 
Programming - or Quadratic Programming -based branch-and-bound algorithm. 
The problem complexity grows significantly with the number of discrete variables 
included in the optimisation problem. 

 

 
Figure 15. Logic-based discrete dynamics and continuous dynamics interacting 

through events and mode switches. 
 
Another typology of non-linear system, commonly found when developing 

models for MPC applied to building HVAC systems, is the bilinear system. This 
typically occurs when modelling Variable Air Volume boxes. In this case, either 
non-linear optimisers or Sequential Linear Programmers (SLP) or Sequential 
Quadratic Programmers (SQP) can be employed to solve the problem. These 
approaches solve the problem by iteratively linearizing around the state trajectory 
computed in the previous iteration until convergence is achieved. 

When the problem to be solved has a non-linear nature and a mathematical 
solution is not possible (e.g., the only way to find the response of the system to 
variable inputs is to entirely simulate the response of the model iteratively), a near 
optimal solution can be found. This solution can be reached using optimisation 
algorithms that can at least reduce the number iteration when compared to a “brute 

force” method, where all the possible combinations of inputs have to be iteratively 

simulated. This case is typical when black-box or white-box models are employed 
to model the response of the system. Furthermore, non-linear optimisation methods 

Continuous 
dynamics

Discrete dynamics 
and logics

continuous 
inputs

continuous 
outputs

discrete inputs discrete 
outputs

Mode 
switchesEvents



222 
 

are also required when the objective function handles non-linear terms, such as the 
Predicted Mean Vote calculation or a non-linear Coefficient of Performance 
formulation. To this purpose, the commonly used optimisation methods are Genetic 
Algorithms and Particle Swarm Optimisation (PSO), which can reduce the number 
of iterations necessary to find a near-optimal solution. Due to the iterative nature of 
these optimisation methods, the computational effort required to simulate the model 
becomes very significant, making the use of white box models not viable in most 
cases. 

A framework of the frequency distribution of the optimisation methods used in 
the various MPC problems available in the scientific literature is highlighted in 
Figure 16.  

 

 
Figure 16. Frequency distribution of the optimisation methods used in the various 

MPC problems available in the scientific literature. 
 
The most commonly utilised platforms for the implementation of an MPC 

algorithm are Matlab, for which a number of toolboxes have been developed to 
make the development of an MPC controller more manageable (e.g., Matlab MPC 
Toolbox, MPT Toolbox, Hybrid Toolbox, Yalmip), Scilab (open-source software 
similar to Matlab), Python and C++. To solve the optimisation problem many open-
source solvers are available (e.g., GLPK), as well as faster commercial solvers (e.g., 
CPLEX, Gurobi). 

 
 

5.1.11 Critical discussion 

This survey has so far aimed at providing a clear framework and a complete 
overview of the applications of MPC algorithms to regulate buildings and their 
HVAC systems. However, some questions still remain open at this point of the 
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discussion. How is it possible to evaluate the performance of a building predictive 
controller? What are the actual benefits of its application? What are the 
drawbacks? Is it possible to define general guidelines to drive the penetration of 
MPC control strategies in buildings? What is the current utilisation of such 
algorithms? To answer those not easy questions a holistic approach should be 
adopted. Some answers can be found exploring and discussing the trends emerging 
from the survey undertaken. Some of the studies that were not directly cited in the 
text of the aforementioned survey [152–197], were still considered in the general 
statistics presented in the figures and in the discussion of this section. 

A controller performance is generally evaluated considering its robustness to 
disturbances, its response time and stability, the suitability of its computational time 
for the building system dynamics, and the capability to guarantee the achievement 
of the control goals. In the papers analysed in this survey, the MPC formulation 
demonstrated a higher performance in each of those aspects when compared to 
classical building controllers.  

The MPC formulation allows the controller to perform an on-line multi 
objective optimisation, finding an optimal trade-off between contrasting objectives. 
However, quantitatively evaluation of such benefit is not a simple task. Indeed, a 
comparable benchmark is necessary for this purpose and this is not always readily 
available. When the MPC is retrofitted to an existing building, the building baseline 
performance before the MPC implementation could be used as a reference [198]. 
Nevertheless, if the study is completely based on theoretical simulations, the 
baseline controller that defines this reference performance has to be arbitrarily set 
by the authors of the paper. Furthermore, in experimental implementations, 
different boundary conditions normally occur in different tests – in terms of weather 
conditions, occupancy patterns, etc. - and therefore it is not simple to compare 
consistently the performance of controllers that were acting on the same building at 
different times. 

In building thermal energy management problems, the computational time is 
not a primary issue contrarily to other industrial processes. Indeed, well formulated 
MPC problems require from a few seconds (e.g., simple Quadratic Programming 
problems) to a few minutes (e.g., complex Mixed Integer Linear Programming or 
non-linear MPC formulations). Those intervals are perfectly compatible with 
building and HVAC system dynamics, since they generally have a large time 
constant (from several minutes to hours). To the best of the author’s knowledge, the 
computational time was an issue for a successful MPC implementation only where 
the control problem was not properly formulated. For instance, when detailed 
simulation tools were used as control oriented model for the MPC. 

As it is possible to infer from Figure 14(b) the most common goal included in 
the objective function of the MPCs surveyed is the reduction of the building energy 
consumption or operative costs. Figure 17(a) shows the average percentage of 
energy reduction related to an MPC implementation in the surveyed papers. These 
results are similar to the qualitative analysis of expected potential energy reduction 
outlined in 2010 by Oldewurtel et al. [65] and reported in Figure 17(b). In almost 
all these studies the MPC algorithm outperforms the baseline controller also in 
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terms of satisfaction of the comfort requirements [154]. Since in these studies 
different long term comfort indicators were used [150], a detailed comparison of 
the results was not achievable. Furthermore, MPC controllers also led to dramatic 
reductions of peak loads when they were considered part of the control goals 
(generally around 30 %) either with an explicit formulation in the objective function 
or with an indirect variable energy prices policies. Peak load reduction is 
particularly significant when the MPC was managing either an active or passive 
thermal storage (e.g., managing the charge/discharge of thermal energy storage unit 
or pre-heating/cooling of thermal activated building structures). This represents a 
strong opportunity for peak load shifting, demand side management and reduction 
of the overall energy costs. 

 

 
Figure 17. (a) Frequency distribution of the papers about the extent of energy 
saving consequent to the implementation of MPC algorithms; (b) estimation of 

energy saving potential exploitable by means of the implementation of MPC 
algorithms for building energy management 

. 
A further advantage of MPC is given by its ease of reconfiguration and 

adaptability to changes in the controlled system. For example, in building and 
HVAC system applications the objective function may include terms describing the 
cost of energy. In this case, it is straightforward to update the weights to reflect 
fluctuations in the energy price, with no other changes to the controller. Also, due 
to malfunctions or wear and tear, an actuator may operate with a reduced range in 
some conditions or for some time. This can be very easily taken into account in the 
MPC problem, by simply updating the corresponding constraints, without having 
to redesign or recalibrate the controller. This aspect, which is also critical for 
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scalability of MPC technologies, is barely evaluable in terms of key performance 
indicators and was usually not considered in the literature papers. 

It is possible to individuate three main critical aspects in the implementation of 
MPC algorithms in buildings, which can significantly affect its operative 
performance. Firstly, the accuracy of the models (e.g., the control oriented model, 
or the disturbances prediction model) strongly affects the performance of MPC 
optimisation and the potential benefits achievable in terms of control goals 
satisfaction. For this reason, great attention to all these aspects should be paid when 
formulating the MPC problem. Secondly, utilising an MPC algorithm in the 
supervisory control layer requires sufficient computational power and proper 
system calibration to ensure bumpless integration with existing low level 
controllers. The last and probably most significant issue is related to the existing 
great variety of building classifications and architectures. Indeed, every building is 
unique in terms of thermodynamic response – due to the different geometry, 
construction, end uses, occupancy patterns, weather location, etc. – and MPC 
algorithms must be customised to fit the specific building features. As an example, 
the control oriented building models cannot be easily standardised to represent the 
whole variety of buildings, introducing a significant challenge in the controller 
development.  

 
Table 2. Categories used in the present survey to undertake statistical trend in MPC 
formulation for buildings and HVAC systems. 

Model type Model of Study Building 
classification 

Forecast 
method 

Reduced order Building Simulated Commercial Offline 
Detailed 

simulation 
Building + 

HVAC Experimental Educational Online 

Calibrated 
grey-box 

HVAC system  Residential Database 

Black-box   Other Offline + 
online 

 

Horizons Disturbances Formulation Goal Optimisation 

Control Weather Linear Economic LQ 

Prediction Occupancy Quadratic Comfort QP 

Sampling time Prices Infinite Other MILP 

 Load Combo Combo MIQP 

 Combo   SLP 

    SQP 

    Other NL 
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Such singularities also cause difficulties in providing a pre-defined general 
step-by-step guideline for the development of a building MPC control strategy. 
Nevertheless, the statistics undertaken in the present survey allowed the main trends 
to be outlined. These trends are based on the classification proposed in Table 2. In 
certain cases, some information was not clearly outlined by the authors of the 
analysed papers. For this reason, Table 2 can be viewed as a suggested guideline 
for the necessary information to be included in a study for a comprehensive 
description of an MPC algorithm implemented to control buildings and HVAC 
systems. Furthermore, authors should clearly indicate in the problem description 
the control sampling time, the prediction horizons and the control horizon.  

Despite the growing diffusion of theoretical works, from Figure 9(b) it emerges 
that the number of real buildings actually implementing MPC strategies was 
relatively small. Up to date, the Illawarra Flame house [59–61] in Wollongong and 
10 households in Brugg [114], the 3E Headquarters in Brussels [152] and a 
commercial Building in Allschwil [75,119], a building of the Czech Technical 
University in Prague [118,156], the University of California Merced Campus [48] 
and the Engineers Construction Engineering Research Laboratory in Champaign 
[155], and the airport of Adelaide [104,153,199] represent the most interesting 
examples of practical implementation of MPC algorithms in buildings. These 
applications cover all building classifications - residential, commercial, 
educational, and other respectively – and are located in various climatic locations. 

In this context a last question remains open, related to potential future market 
penetration rate of MPC for building energy management. Why do such promising 
algorithms, which proved to outperform traditional controllers, reach just a small 
fraction of real building applications? The answer to this question needs to take 
into account that only ten years ago MPC was almost not considered as a potential 
building control method. Afterwards, dozens of theoretical studies and prototype 
implementations clearly demonstrated the high potential of this control 
methodology. Killian and Kozek [29] compared this situation for MPC in building 
control systems to the one in the early 90’s of MPC in the process industry. In the 

early 90’s only very few experts in the field knew how to set up and commission 
an MPC control system successfully in the industrial processes. However, after a 
massive adoption of these controllers in the last decades, MPC proved to be one of 
the most widespread, reliable and best performing methods in the processes 
industry [200]. 

Nowadays, the primary barrier to a more substantial MPC adoption in the 
building industry is the intrinsically tricky scalability of the technology, since every 
building is unique, significantly increasing the controller cost. In order to reach a 
larger adoption, MPC designers should find a solution to this drawback, otherwise 
well-tuned traditional controllers with lower performance but easily adjustable to 
different applications would remain the preferred choice [121,171]. For this 
purpose, tools that help with the design of the control oriented model should be 
introduced, in order to reduce the effort and the know-how required in the controller 
set up. Furthermore, building archetypes coupled with proper setting guidelines 
should be constructed to standardise the control oriented models partially. 
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This literature review showed that these algorithms lead to meaningful energy 
savings, which approximately are around 15-20 %. These values prove that MPC 
implementation represents an excellent opportunity to reduce buildings carbon 
footprint and achieve a substantial cost benefits. Furthermore, the established 
effectiveness whereby MPC algorithms deal with peak shifting and demand side 
management allow this technology to be considered as one of the most suitable for 
integration of buildings in smart grids. This fact represents a crucial perspective for 
the energy market, which continuously requires further flexible loads to mitigate 
the renewable energy source supply fluctuation.  

From the theoretical perspective, it is crucial to investigate better how the 
occupant behaviour and the occupancy patterns affect the algorithm performance 
and how to best predict them. At the same time, it is important to study further the 
robust, stochastic or scenario-based formulations, which allow the uncertainty 
related to the forecast of disturbances in the optimisation problem to be considered. 
Important steps in this direction were already made in [34,35,67,90,110,148]. 
Besides, benchmarking strategies for experimental applications should be defined. 
Promising solutions for comparing experimental tests on the same building at 
different times were proposed in [114,152]. 

In conclusion, to accelerate the market penetration of MPC algorithms it is 
necessary to explicitly identify which are the most promising building 
classifications and stakeholders that can take advantage of its implementation. The 
papers of Hilliard et al. [26,201] provided an excellent overview on the building 
requirements that allow MPC algorithms to be really effective. The size of the 
building must be large enough to make an MPC algorithm a cost effective 
technological solution. In large buildings the capital investment to implement the 
MPC technology is relatively smaller when compared to the reduction in operating 
cost. The benefits are more marginal when the MPC is applied to smaller buildings. 
Moreover, possibilities of active and passive storage strategies, flexibility of the 
constraints and alternation between occupied and unoccupied periods were 
individuated as the essential requirements for a worthy building predictive control. 
The Building Automation System must be at a sufficient technological level to be 
able to integrate an MPC controller input and output signals. In general, modern 
commercial, institutional and educational buildings satisfy these requirements and 
therefore are the most likely candidates for a straightforward practical 
implementation of an MPC in their supervisory building control system. 

It can be misleading to consider that existing manufacturers of building 
automation system components are the only stakeholders that can benefit from the 
deployment of an MPC controller. Large organisations can be fairly conservative 
in the adoption of disruptive control strategies, due to the risks associated with 
potential failures and the sunk costs related to their existing strategies. For this 
reason, the author believes that a higher adoption rate of MPC in buildings can be 
led by control system installers, capable of involving both Building Automation 
System manufacturers and stakeholders that would directly benefit from the MPC 
implementation. For example, building owners, energy managers or Energy Saving 
COmpanies could see in MPC a real possibility to maximise both occupants’ 
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comfort and energy savings, reducing at the same time users’ complains and energy 

bills. Energy providers could also see the potential of MPC as an opportunity to 
implement demand response strategies directly.  
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5.2 Model Predictive Control formulation for the 
regulation of the SolHe-PCM solar thermal system 

When a novel technology is introduced, novel control paradigms have to be 
investigated. Indeed, to adequately control the system and efficiently exploit all its 
potentialities the existing control logic could be not sufficient. This fact is 
particularly true when disruptive solutions are proposed. For instance, shifting the 
thermal energy storage from sensible to latent solutions also influences the system 
regulation. Indeed, traditional controllers – based and tuned for sensible heat 
solutions – exploit information deriving from the measurements of process 
temperatures or incident solar radiation. In latent based solution, the temperature 
measurement can be misleading because neglecting the additional enthalpy 
exchanges occurring in the phase change process. 

For these reasons, innovative PCM-based solar thermal systems and thermal 
energy storage units – likewise the SolHe-PCM prototype – need to be controlled 
in an innovative optimal way to be effective and to fully exploit their potential. In 
these cases, the classical control methods are not always able to obtain the 
maximum benefits from these technologies. The investigation of new control 
paradigms is therefore necessary. Additionally, when poly-generation energy 
supply systems integrate solar thermal or energy storage systems (e.g., renewable 
energy sources coupled with auxiliary heaters or boilers, combined heat and power 
systems, heat pumps, etc.), dynamic optimisation methods may be used to 
recursively define which is the most advantageous generation source to be selected 
[202]. 

The previous review and framework showed how in recent years MPC 
algorithms have been successfully implemented in various thermal and energy 
management strategies concerning buildings or building elements. Moreover, MPC 
has been effectively applied to active energy storages, as well as for the optimal 
management of on-site renewable energy sources. All these studies showed that the 
MPC could effectively contribute to the reduction of energy consumed by the 
HVAC system and the integration of buildings in more flexible energy grids. 
Nevertheless, the main drawback that has limited the widespread implementation 
of MPC controllers in building automation systems has been the bottleneck 
represented by the need of having a reliable mathematical model of the building at 
disposal [203]. However, in the SolHe-PCM case, a simplified mathematical model 
capable to accurately describe the physical behaviour of the prototype system was 
already developed (see Section 3.4). In this case, the main limitation for model-
based predictive controllers can be effortlessly addressed. Furthermore, compared 
to an entire building model, the control oriented model for a solar thermal system 
and thermal energy storage units can consider almost similar even in very different 
contexts and applications. This fact led to a control system that can be easily 
scalable and which can adapt its behaviour in different backgrounds with minimum 
effort in the controller development phase.  
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On the other hand, using an MPC algorithm for smart control of a solar thermal 
system and thermal energy storage unit is not a trivial problem. Indeed, the use of 
MPC algorithms can arise some issues and proper assumptions are necessary for its 
effective formulation. In Refs. [61] and [60], air heater collectors were integrated 
into an MPC algorithm that regulated the building automation system of a single 
story house. In this case, the storage unit and the solar system had an open loop 
configuration. This implementation eliminated the mutual interactions between 
those elements, allowing a straightforward linearisation of the system. Halvgaard 
et al. [116] investigated the regulation of water-based thermal energy storage 
designed to couple the space heating system of an apartment and a solar thermal 
system, neglecting the mutual interaction between the panel and the storage unit. 
Zambrano et al. [204] stated that controlling a solar system and storage equipped 
with an absorption chiller to provide space cooling can be used as a benchmark 
problem for the implementation of hybrid MPC algorithms. Indeed, the hybrid 
nature of the controlled system that exploits multi-energy sources and has multiple 
operating modes introduces additional challenges, which required a mixed logical 
dynamical formulation. Menchinelli and Bemporad in Ref. [93] also faced a similar 
problem highlighting how for closed-loop solar thermal systems, the heat exchange 
processes involved are intrinsically non-linear; thus the optimization problem 
presents a particular challenge. Also in this case, the Mixed Logical Dynamical 
formulation of a hybrid MPC allowed the problem to be solved. 

The MPC problem for solar thermal systems is complicated by the heat 
exchanges processes involved in the system that are intrinsically non-linear. Thus 
the optimisation problem presents a particular challenge. Moreover, the adoption of 
PCM in the controlled process introduces further non-linearities that have to be 
included in the model. These non-linearities are due to the change of phase and 
latent heat transfer process at nominal operating temperatures. The next Sections 
present the formulation of an MPC problem that deals with these challenges for the 
SolHe-PCM project. A particular focus was undertaken on the controlled system 
model, the forecasting models for the disturbances affecting the system, the 
generation system and building demand constraints, and the formulation of the 
objective function to be optimised. Simulations of the MPC behaviour in a closed 
loop test rig were performed with the aim of assessing the performance associated 
with the application of an optimal control strategy when compared to an existing 
baseline RBC. The baseline RBC was used for analysing key-performance 
indicators and for benchmarking the system performance in terms of demand 
satisfaction and electrical energy consumption. Results of the simulations showed 
that the predictive controller was able to anticipate future disturbances, and 
therefore optimises the utilisation of the more efficient energy sources.  

In the present discussion, the MPC algorithm was not implemented in the real 
control system embedded in the SolHe-PCM prototype. The existing prototype 
controller is based on a National Instrument Compact Rio solution, and the MPC 
algorithm is programmed in Matlab-Simulink. The interconnection of these two 
programming environments on an embedded controller is a very tricky process that 
requires efforts beyond the primary goals of the present thesis. 
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5.2.1 SolHe-PCM configuration selected to test the Model 
Predictive Control performance 

A configuration of the SolHe-PCM prototype must be selected to investigate 
the MPC features properly. Since the present study is simulation based, what 
influences the system behaviour is the selection of the numerical model used as a 
test rig. In detail, on the one side the second version of the collector model, which 
discretises the panel in ten segments of equal length, was chosen collector (see 
Section 3.4.1). On the other side, the thermal energy storage tank unit was simulated 
with a model that uses a thermo-energetic balance of a single lumped node (see 
Section 3.4.2).  

In addition to the prototype configuration presented in Chapter 3.3, an 
additional auxiliary heat exchanger was added to the system with the scope to 
operate when renewable energy source generation is insufficient to meet the space 
heating demand. This assumption was necessary to bring back the prototype to a 
case study that is capable of simulating real technological solutions, where multi-
source energy systems are generally coupled in the thermal energy storage unit. 
Indeed, non-renewable energy conversion systems are commonly used to integrate 
the energy delivery when the renewable production is not sufficient. Since the 
secondary heat exchanger that delivers heat to the building is 2 kW, the auxiliary 
heater was selected of a similar size. In detail, for these simulations, a 1.5 kW 
auxiliary electrical heater was chosen. In further simulations, the auxiliary electrical 
heater can be substituted by different auxiliary heat sources (e.g., a natural gas 
boiler, electric heat pump, combined heat and power systems, etc.). Therefore, the 
MPC formulation can be easily adapted to optimise different multi-energy system 
coupled with a thermal energy storage unit just taking into consideration the 
different energy conversion efficiencies that characterise the various energy 
generation systems. The solar thermal system prototype investigated in these 
simulations is shown in Figure 18.  

 

 
Figure 18. Schematic of solar thermal system prototype. 

 
Eventually, it was already primarily discussed how the whole system 

performance is influenced by the mPCM concentration chosen for the PCM slurry 
used as heat transfer fluid and storage media. The system studied in the simulation 

Solar thermal 
collector

Thermal energy 
storage unit

Demand side 
heat exchanger

Peristaltic pump

Electric auxiliary 
heater
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herewith presented used a constant concentration of 30 % w.t. of micro-capsules in 
the PCM slurry mixture. Knowledge of the specific enthalpy versus temperature 
curve of the PCM slurry at 30 % w.t concentration was necessary to determine the 
thermo-dynamical behaviour of the material. For this purpose, the results of the T-
History experimental procedure outlined in Section 3.2.2 were used to define the 
specific enthalpy versus temperature curve of the PCM slurry.  

 
 

5.2.2 Regulation strategies 

5.2.2.1 Definition of the baseline Rule-Based Controller 

The system controller regulates the pump flow-rate and the power delivered by 
the auxiliary heater. The existing baseline controller is based on an RBC regulation. 
In this case, the control of the pump and the electric heater are independent each 
other. The pump adopted in the full-scale prototype is a peristaltic pump that is 
capable of operating at four fixed operating flow-rates (0 l/h, 10 l/h, 60 l/h and 90 
l/h) to maximise the exploitation of the solar source. The existing baseline controller 
uses an open-loop control logic, which selects the flow rate from the measurement 
of the beam solar radiation incident on the solar thermal collector. The pump is 
activated at the lowest speed (10 l/h) when the beam solar radiation is higher than 
50 W/m2, increased to 60 l/h when the radiation exceeds 225 W/m2, and further 
increased to 90 l/h the radiation exceeds 500 W/m2. These thresholds are listed in 
Table 1 together with the corresponding electrical energy consumption of the pump 
at each fixed PCM slurry flow-rate. For safety reasons, the maximum temperature 
that could be reached in the thermal energy storage unit was 60 °C. If this value 
was detected, the pump was automatically switched off. The auxiliary electric 
heater controller’s goal was to maintain the thermal energy storage mean 
temperature as close as possible to a reference set-point temperature. The set-point 
chosen at the design stage was 35 °C, which is the average of the temperature range 
within which phase transition occurs.  

 
 

Table 3. Pump flow-rates, baseline controller thresholds and related electric power 
consumptions. 

Flow-rate Power 
l/h m3/s W 
10 2.78∙10-6 5 
60 1.67∙10-5 25 
90 2.50∙10-5 55 
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Figure 19. Schematic of the solar thermal system with RBC implemented. 

 

5.2.2.2 Model Predictive Control formulation 

The dynamic response of the outputs of a system is affected by controlled inputs 
(or manipulated variables) and uncontrolled inputs (or disturbances). Such 
dynamics can be captured by a dynamical and simplified control-oriented model of 
the controlled system and exploited by the controller to make predictions of the 
possible future response of the system as a function of future controlled and 
uncontrolled inputs [30]. MPC uses these predictions to select the best sequence of 
future manipulated variables, according to a specific performance index. The latter 
is defined over a time window that starts from the current time and spans a given 
prediction horizon in the future. The best sequence is obtained by solving a 
numerical optimisation problem, that also takes into account the constraints on 
input and output variables one must satisfy during the operation of the controlled 
system. The difference between MPC and open-loop optimal control is that the 
former only applies the first optimal move of the sequence at the current time 
instant, optimising a new sequence at the following time-step again. This way of 
acting and replanning continuously over time is denoted as the “receding horizon” 

concept [205]. 
The MPC problem for the current study was formulated using a control time 

step of 1 hour. It is clear to the author that the control time-step can be reduced to 
smaller intervals (e.g., a quarter of hour or five minutes) to further improve the 
quality of the results. However, for the sake of conciseness, the present work has 
been limited to the hourly basis. In this way, it was possible to use directly the 
climatic data retrieved from IWEC datasets avoiding any interpolation. 
Furthermore, even if one-hour time step would be too long for a low-level 
controller, it can be sufficient for a supervisory controller regulating the set-points 
exploiting recursive optimisation, such as the MPC algorithms. The control and 
prediction horizons were assumed to be of the same length and were set equal to 24 
hours. According to the classification proposed in Table 2, Table 4 summarises the 
principal features of the MPC algorithm used to control the system. 

It is well-known that prediction models are the cornerstone of MPC and, 
following the Camacho and Bordons indications [205], two different important 
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model categories can be discerned within the implementation of an MPC controller: 
the models required to forecast the external disturbances (external weather 
conditions and space heating demand, in this case) and the control-oriented model 
of the controlled system (the thermal management of the thermal energy storage 
unit, in this case). The models adopted in the close loop simulations are outlined in 
Figure 20.   
 
 
Table 4. Summary of the peculiarities of the MPC algorithm used to regulate the 
operation of the SolHe-PCM solar thermal collector and thermal energy storage 
unit. 

Model type Model of Study Building 
classification 

Forecast 
method 

Reduced order HVAC system Simulated Residential Database 
 
 

Prediction/ 

control 
horizon 

Time 
step Disturbances Formulation Goal Optimisation 

24 h / 24 h 1 h Weather Linear Economic MILP 

  Load  Comfort  
 
 

 
Figure 20. Schematic of the models necessary to formulate the MPC problem for 

the solar thermal system based on PCM slurry. 
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5.2.2.3 General assumptions for the problem linearisation  

The schematics of the model with the implementation of MPC is presented in 
Figure 21. The MPC algorithm aimed at optimising the operation of the collector 
by controlling the PCM slurry flow-rate and the utilisation of the auxiliary heater. 
That is, by dynamically finding the optimal set of control inputs without the need 
for predefined set-points or schedules. 

To ensure the linearity of the model, as required by the MPC optimisation, 
experimental data related to specific enthalpy versus temperature curve of the PCM 
slurry were approximated by three-segment piecewise-linear correlations (Figure 
22). The first and the third segment represent the relation between temperature and 
specific enthalpy of the PCM slurry with the core material in its solid and liquid 
state. The central portion is representative of the melting/solidification phase of the 
material. The phase change occurred not at a specific temperature but within a 
temperature range (around 2 °C) bounded by a lower and a higher phase change 
temperature [206]. The results which provided the best match between the 
experimental data and the piecewise approximation are given in Figure 22 and 
Table 5.  

 

 
Figure 21. Schematic of the solar thermal system with the Model Predictive 

Controller implemented. 
 

Table 5. The PCS thermo-dynamical characteristics. 

Tinf,PCM 33.9 °C Lower phase change temperature of the 
PCM slurry 

Tsup,PCM 36.1 °C 
Higher phase change temperature of the 

PCM slurry 

cp,PCM,li 5.47 kJkg-1°C -1 Specific heat capacity of the PCM slurry in 
solid phase 

cp,PCM,tr 26.10 kJkg-1°C -1 
Dummy specific heat capacity of the PCM 

slurry during transition 

dhPCM,tr 57.42 kJkg-1 Total phase change specific enthalpy of the 
PCM slurry 
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cp,PCM,so 3.52 kJkg-1°C -1 Specific heat capacity of the PCM slurry in 
liquid phase 

 
The material specific heat capacity as a function of temperature was derived 

from this piecewise approximation for numerical simulations. In the phase-change 
range a constant fictitious specific heat capacity (named: dummy specific heat 
capacity of the PCM slurry during the transition) was considered. The PCM slurry 
was a 30 % w.t. mixture of water and a micro-encapsulated PCM material 
characterised by a nominal specific heat capacity slightly lower than water (n-
eicosane solid/liquid specific heat capacity: 1.92/2.46 kJkg-1°C -1). However, from 
Table 2 it is possible to notice that when the PCM slurry is in the solid phase, its 
specific heat capacity is slightly higher than that of water. This fact is due to a small 
amount of phase change transition, caused by rotator–crystal transition occurring in 
the interval below 30 °C [207]. 

 

 
Figure 22. Three-segment piecewise approximation of specific enthalpy versus 

temperature curve carried out by means of the T-History method. 

 
It is well known that the control-oriented model of the controlled system has to 

be accurate enough to ensure satisfactory prediction capabilities and capture the 
fundamental thermal dynamics of the processes influencing the controlled system, 
whilst at the same time be simple enough to ensure a reasonable computational time 
for optimisation [53]. In order to ensure the feasibility of the MPC optimisation 
problem within a prescribed computational time (e.g. lower than the control time-
step), the control-oriented model should be formulated to be as close as possible to 
a Linear Time Invariant model [204]. A subclass of nonlinear systems, that include 
both continuous and discrete variables (e.g. Boolean variables describing operating 
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modes), are known as hybrid systems which can be formulated as Mixed Logical 
Dynamical or Piecewise Affine system [39]. 

The hybrid system formulation approach adopted for the solar system studied 
in this paper helped with many challenges that appeared when formulation of an 
MPC for such a system was attempted. A solar thermal system is intrinsically non-
linear in nature, and the formulation of MPC problems requires specific 
precautions. When a PCM slurry is adopted as a heat transfer fluid the non-
linearities further increase due to the phase change processes, as the specific 
enthalpy stored by the PCM slurry at different temperatures follows a non-linear 
trend. This problem was addressed by means of the aforementioned piecewise 
linearisation of the enthalpy versus temperature curves. This allowed the system to 
be considered as a Piecewise Affine linear system, separating the PCM slurry 
properties in three linear regions depending on its state of aggregation (solid, liquid 
or in phase change transition). The heat exchange processes of the solar thermal 
collector are also strongly influenced by non-linear thermal phenomena (e.g., 
radiation heat exchange, laminar flow coefficients). Furthermore, the collector 
performance is influenced by the thermal energy storage unit temperature and vice 
versa. This non-linearity problem was overcome by excluding the solar collector 
model from the control-oriented model, and considering the solar generation as an 
external “switchable” input to the thermal energy storage unit. In this way, the heat 
flux delivered by the collector was calculated off-line at every time step and treated 
as a measured external disturbance. This was made possible under the assumption 
that the collector inlet temperature remains almost constant over the prediction 
horizon. This hypothesis was particularly true in a solar collector system filled with 
PCM slurry, where this temperature can be reasonably set in the phase change 
temperature range of the material. The heat delivered by the collector is influenced 
by the flow-rate in the collector and by climatic disturbances (i.e., to ambient air 
temperature, wind speed, solar irradiance, sky temperature). 

 

5.2.2.4 Climatic disturbances forecast 

The predicted climatic disturbances affecting the collector and the thermal 
energy storage were derived following two different approaches: i) by utilising a 
“perfect prediction”, using the same 24-hours weather conditions derived from the 
Example Weather Year (EWY) of Turin used for the simulation of the controlled 
system. This simplification can be useful to assess, at a design stage, the simulated 
controller performance only, but afterward cannot be used for the implementation 
of a real-time controller; and ii) by providing an estimated weather forecast to the 
MPC controller. Ref. [99] presented a number of approaches for weather forecast 
estimation. The Deterministic-Stochastic method was adopted in the current study 
to predict both external dry-bulb temperature and solar radiation. 

The predicted weather was then utilised to calculate the estimated thermal 
energy generation of the collector and boundary weather conditions over the 24-
hour horizon. The comparison between the performance of the controller with ideal 
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and estimated weather prediction can be used to estimate the effect of a real-time 
weather forecast on the MPC controller implemented on a real system. 

 

5.2.2.5 Space heating demand forecast 

The forecasted space heating demand was considered deterministic and known 
a-priori. In this study, the space heating demand was calculated in advance by re-
scaling the daily thermal load profile assessed using the method proposed in Ref. 
[208]. This pattern was representative of a typical profile of residential buildings in 
Piedmont, the same region where the experimental test rig presented in this study 
is located. The dwellings considered in Ref. [208] were located in Turin (2617 
Heating Degree Days and heating design temperature equal to -8 °C) with an annual 
average space heating energy demand around 90 kWh/m2.  

As the current paper aimed to understand the influence of weather and 
generation forecast uncertainty, rather than heating demand uncertainty, on the 
performance of the proposed MPC controller, perfect heating demand forecasts 
were provided to the MPC with a 24-hours forecast period. 
 

5.2.2.6 Control oriented model 

Using the assumptions discussed above, the control-oriented model that 
represents the thermal energy storage unit dynamics was formulated, based on the 
system schematic shown in Figure 23. The present MPC formulation is defined as 
a Hybrid MPC, since it required a Mixed Logical Dynamical formulation due to the 
three pump operating modes and the three PCM specific heat capacities. The 
measured disturbances affecting the thermal energy storage model were the ambient 
air temperature, the space heating demand and the heat delivered by the collector. 
The controller was able to regulate the heat delivery of the auxiliary heater and to 
switch between the three speeds of the solar collector pump and thus to regulate the 
flow-rate in the collector.  

The control-oriented model that represents the evolution of the controlled 
thermal energy storage unit was explicated by means of the following Equation 6.3: 

 

𝑇̇𝑠𝑡(𝑡)

=
𝛿10 ∙ 𝑄̇10(𝑡) + 𝛿60 ∙ 𝑄̇60(𝑡) + 𝛿90 ∙ 𝑄̇90(𝑡) − 𝑄̇𝑛𝑒𝑒𝑑(𝑡) − 𝑈𝑠𝑡 ∙ 𝐴𝑠𝑡 ∙ (𝑇𝑠𝑡(𝑡) − 𝑇𝑎(𝑡))

𝜌𝑃𝐶𝑀 ∙ 𝑉𝑠𝑡 ∙ 𝑐𝑝,𝑃𝐶𝑀,𝑗(𝑡)
 (6.3) 

 
Where the terms Ust = 0.47 Wm-2°C -1, Ast = 1.75 m2, and Vst = 0.2 m3 are the 

average thermal transmittance, the total external surface and the volume of the 
thermal energy storage tank respectively. The terms ρPCM = 950 kg∙m-3, and cp,PCS,j 

are the PCM slurry density and specific heat capacity respectively. The latter 
depends on the state of aggregation of the material at the time t. Tst is the thermal 
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energy storage unit average temperature; Ta is the ambient temperature; Q̇g10, Q̇g60 
and Q̇g90 are the available heat generations produced by the solar thermal collector 
at the various pump speeds calculated by means of the external model of the solar 
thermal collector, Q̇he is the heating delivered by the auxiliary heater; and Q̇need is 
the heating power delivered to address the space heating demand. The indices δ10, 
δ60 and δ90 are the Boolean variables that represent the activation, or not, of the 
pump at a defined speed. Two pump speed cannot be activated simultaneously. 

 

 
Figure 23. The control-oriented model of the thermal energy storage. Thermal 
fluxes are marked in black, while electrical energy consumptions are in grey. 

 
To formulate the MPC problem, the system is formulated in the form: 
 

{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢𝑢(𝑡) + 𝐵𝑣𝑣(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢𝑢(𝑡) + 𝐷𝑣𝑣(𝑡)
 (6.4) 

 
Where x= Tst is the system state, u = [e, Q̇he, δ10, δ60, δ90]T is the vector of 

continuous and Boolean manipulated inputs containing the slacking variable e that 
allows the minimum temperature constraint to be relaxed, v = [Q̇need, Ta]T is the 
vector of measured disturbances affecting the system, and y is the vector of the 
outputs. A, Bu, Bv, C, Du and Dv are the state matrix, the manipulated input matrix, 
the measured disturbances matrix, the output matrix, the direct transmission 
matrices for manipulated inputs and measured disturbances respectively. These 
matrices are defined as: 
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𝐴 = 1 −
𝑈𝑠𝑡 ∙ 𝐴𝑠𝑡

𝜌𝑃𝐶𝑀 ∙ 𝑉𝑠𝑡 ∙ 𝑐𝑝,𝑃𝐶𝑀,𝑗
 (6.5) 

 

𝐵𝑢 =
1

𝜌𝑃𝐶𝑀 ∙ 𝑉𝑠𝑡 ∙ 𝑐𝑝,𝑃𝐶𝑀,𝑗

[1 𝑄̇10(𝑡) 𝑄̇60(𝑡) 𝑄̇90(𝑡)] (6.6) 

 

𝐵𝑣 =
1

𝜌𝑃𝐶𝑀 ∙ 𝑉𝑠𝑡 ∙ 𝑐𝑝,𝑃𝐶𝑀,𝑗

[−1 𝑈𝑠𝑡 ∙ 𝐴𝑠𝑡] (6.7) 

 
𝑪 = 𝟏 𝑫𝒖 = 𝟎 𝑫𝒗 = 𝟎 (6.8) 

 
Where at each time-step the value of the PCM specific heat capacity is: 
 

𝑐𝑝,𝑃𝐶𝑀,𝑗 = {

𝑐𝑝,𝑃𝐶𝑀,1            if           𝑇𝑠𝑡(𝑡)≤𝑇𝑖𝑛𝑓,𝑃𝐶𝑀

𝑐𝑝,𝑃𝐶𝑀,2 if 𝑇𝑖𝑛𝑓,𝑃𝐶𝑀≤𝑇
𝑠𝑡

(𝑡)≤𝑇𝑠𝑢𝑝,𝑃𝐶𝑀

𝑐𝑝,𝑃𝐶𝑀,3            if          𝑇𝑠𝑡(𝑡)>𝑇𝑠𝑢𝑝,𝑃𝐶𝑀

 (6.9) 

 

5.2.2.7 Constraints 

The controlled system had to respect a number of constraints, which reflected 
the boundaries of the real system. This includes the maximum heating power that 
the auxiliary electric heater can deliver (Qhe,max equal to 1.5 kW), the maximum 
temperature allowed in the thermal energy storage (Tst,max = 60 °C) due to the 
material performance limits, and the impossibility to operate two pump speeds at 
the same time. These constraints are summarised in Equation 6.10, Equation 6.11 
and Equation 6.12 respectively. 

 
0 ≤ 𝑄̇ℎ𝑒 ≤ 𝑄̇ℎ𝑒,𝑚𝑎𝑥 (6.10) 

 
𝑇𝑠𝑡 ≤ 𝑇𝑠𝑡,𝑚𝑎𝑥 (6.11) 

 
~(𝛿10 & 𝛿𝟔0)  & ~(𝛿10 & 𝛿𝟗0) & ~(𝛿𝟔0 & 𝛿𝟗0)     (6.12) 

 
An additional soft constraint reported in Equation 6.13 was introduced to 

ensure that the temperature of thermal energy storage unit remains high enough to 
be able to deliver the required heating demand building at each time step, 
considering the physical design of the secondary loop that extracts heat from the 
tank to supply the thermal energy, while allowing the possibility to relax it to ensure 
the feasibility of the problem and the stability of the controller: 

 
𝑇𝑠𝑡,𝑚𝑖𝑛 + 𝑒 ≤ 𝑇𝑠𝑡 (6.13) 
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Where Tst,min is the minimum temperature of the thermal energy storage unit. 

Tst,min was determined as a function of Q̇need assuming that the system works with a 
fixed flow-rate and with a constant return water temperature equal to 25 °C. For 
this reason the profile of Tst,min is directly related to the heating energy demand 
profile.  

5.2.2.8 Objective Function 

The MPC problem was formulated in an Economic way, since the objective 
function was calculated in first-norm with minimization of energy needs as the 
primary control goal (Equation 6.14). 

In particular, the objective function was minimised over the control horizon 
time-span (Nc = 24-hours) targeting the minimal overall electrical energy 
consumption components and the violation of the slacking constraint e. 

 

min.{𝑢}0
𝑁−1     𝐽 = ∑‖𝑄(𝑥(𝑘) − 𝑥𝑟)‖𝑝

𝑁−1

𝑘=1

+ ‖𝑅(𝑢(𝑘) − 𝑢)‖𝑝 (6.14) 

 
Where Q and R are the weighting matrices on the states and the manipulated 

input respectively. The problem was formulated as an economic MPC, assuming a 
linear objective function corresponding to norm-1 (p=1). In this cost function, only 
the manipulated inputs contribute to the overall cost, through: i) the energy 
consumption associated to the electric heater; ii) each possible operating mode of 
the circuit pump, and; iii) the violation of the slacking variable e used as a soft 
constraint. The cost associated with each input variable is summarised in Table 6. 
The MPC algorithm was formulated using the Multi Parametric Toolbox (MPT3) 
for Matlab [209] and the control-oriented model was defined in HYSDEL [210]. 
The optimisation was achieved using the CPLEX as a solver for the Mixed Integer 
Linear Programming (MILP) problem. The average solving time at each control 
time step was around 0.5 s on a laptop computer with an Intel core I7 processor and 
32 GB of RAM.  
 

Table 6. The weighting matrix parameters. 

Input variable Cost Units 
e 0.90 – 0.95 – 1 kWhel/°C 

Qhe 1 kWhel/ kWhth 
δ10 0.005 kWhel 
δ 60 0.025 kWhel 
δ 90 0.050 kWhel 
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5.2.3 Results of the application of the MPC algorithm 

The results presented below refer to one week of closed loop simulation. 
Specifically, the 7th week of the Example Weather Year was selected for the 
analysis, as it was considered representative of winter conditions in Turin because 
of its average temperature and solar conditions (average ambient air temperature 
equal to 4.2 °C and average daytime direct beam radiation equal to 320 Wm-2), as 
well as the alternation between sunny and cloudy days. Figure 24 shows the 
disturbances affecting the solar thermal system. In Figure 24(a) the main weather 
disturbances, including ambient air temperature, direct beam solar radiation, and 
horizontal diffuse solar radiation are shown. Figure 24(b) presents the potential 
solar thermal collector heat generation profile at the various pump speeds, 
calculated using the numerical model presented in Chapter 3. The procedure was 
repeated at each control time step for the 24-hours ahead using the future weather 
disturbances, forecasting the three potential generation profiles. Figure 24(c) 
presents the instantaneous space heating demand profile. 

 Both the RBC and MPC with perfect disturbances forecast strategies were 
implemented in close loop with the simulated system and the results were 
compared. In Figure 25(a) and Figure 26(a) the closed loop control sequences for 
the RBC and MPC controllers respectively are shown. The flow-rate corresponding 
to the different fixed pump speeds is shown on the primary y-axis, while the heat 
provided by the electric heater is shown on the secondary y-axis. The controlled 
variable and only system state was the thermal energy storage temperature, which 
was influenced by the external disturbances and control inputs. The storage 
temperature profiles of the two simulations are shown in Figure 25(b) and Figure 
26(b). In these charts, the actual thermal energy storage temperature is compared 
with the minimum thermal energy storage unit temperature required to ensure the 
complete fulfilling of space heating demand. The temperature bounds of the phase 
change transition are shown using dashed lines on the chart. The initial temperature 
of the thermal energy storage unit was set at 35 °C in both cases, assuming that 
some level of charge was accumulated in the previous days. 
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Figure 24. Disturbances affecting the controlled system. (a) Weather 

disturbances. (b) Forecasted solar thermal collector heat generation profiles at 
the various fixed pump speeds. (c) Space heating demand profile. 

 

 

Figure 25. RBC regulation (a) System controlled inputs (pump flow-rate and 
electric heater power). (b) Temperature evolution of the thermal energy storage 
unit compared with the minimum temperature required for the thermal energy 

storage unit. 
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Figure 26. MPC regulation with perfect disturbances prediction (slacking 

variable e equal to 1.0 kWhel/°C) (a) System controlled inputs (pump flow-rate 
and electric heater power). (b) Temperature evolution of the thermal energy 

storage unit compared with the minimum temperature required for the thermal 
energy storage unit. 

 

 
Figure 27. MPC regulation with estimated disturbances prediction (slacking 

variable e equal to 0.95 kWhel/°C). (a) System controlled inputs (pump flow-rate 
and electric heater power). (b) Temperature evolution of the thermal energy 

storage unit compared with the minimum temperature required for the thermal 
energy storage unit. 
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The MPC controller was also simulated using the imperfect weather prediction 

in the MPC controller, replicating what a real-time controller would experience if 
an online weather prediction method was implemented together with the MPC logic 
on an embedded controller. The closed loop control sequences and storage 
temperature profiles of this simulation are shown in Figure 27(a) and Figure 27(b). 

To quantitatively evaluate the potential benefits achievable by means of a 
control strategy is not a simple task. Comparable benchmark indicators are 
necessary for this purpose and must be selected appropriately. Table 7 summarises 
the main results and key performance indicators of the controllers in the performed 
week of close loop simulations, where for example MPC (1.00) represent the results 
of the MPC controller with perfect disturbances forecast and slacking variable equal 
to 1 kWhel/°C, RBC the Rule-Based Controller baseline benchmark, and MPC (dist) 
the MPC controller with estimated disturbances forecast (slacking variable was 
only considered to be equal to 0.95 kWhel/°C in this case). These key performance 
indicators include the overall energy system consumption (Wtot) and the split 
between pump and electric heater consumption (Wpump and Wheater respectively), the 
unsatisfied heating demand (Qunsatisfied, which only depends on the temperature 
difference between the minimum required and the actual storage temperature, since 
the secondary flow to the building is considered to be constant), and the details on 
the panel energy generation (Qpan, SF and COPpan , which represent total energy 
extracted, solar fraction and system COP). Furthermore, G and Qneed represent the 
total available solar energy and the total demand. Finally, Qst represents the energy 
difference in the storage between the beginning and end of the simulation. 
 

Table 7. Energy consumption and performance indicators resulting from the 
close loop simulation for the system operating with RBC or MPC regulation. 

 G Qpan SF Wpump COPpan Wheater Wtot Qneed Qst Qunsatisfied 

 [kWh] [kWhth] [%] [kWhel] 
[kWhth 

/kWhel] 
[kWhel] [kWhel] [kWhth] [kWhth] [kWhtl] [%] 

RBC 

57.8 

22.0 38.1% 1.6 13.93 17.6 19.2 

33.3 

0.1 2.6 7.7% 
MPC (1.00) 21.3 36.8% 1.0 20.64 14.4 15.5 6.1 0.3 1.0% 
MPC (0.95) 22.1 38.3% 1.0 22.21 13.6 14.6 5.8 1.8 5.3% 
MPC (0.80) 23.1 40.1% 0.8 30.65 12.4 13.1 6.1 4.6 13.9% 
MPC (dist) 22.1 38.3% 1.2 18.26 16.8 18.0 6.7 2.8 8.2% 

 
 

5.2.4 Discussion of the results 

A comparison of the key-performance indicators was necessary to evaluate the 
performance of the MPC and the RBC regulation. To initially perform this 
comparison, the results related to MPC with perfect weather forecast and slacking 
variable e equal to 1 kWhe/°C were used to this purpose.  

The total weekly energy demand for space heating was 33.3 kWh. To define 
the overall energy required by the system the energy losses towards the ambient 
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should be added to this value. Since these losses depend on the thermal energy 
storage unit temperature, the RBC and MPC algorithm resulted in different losses 
amounts, which were equal to 8.9 kWh in the RBC simulation and 8.8 kWh in the 
MPC simulation case. Thus, the resulting total weekly energy demand was equal to 
42.2 kWh in the case of system controlled with RBC and equal to 42.1 kWh for the 
MPC regulation. 

In the case of the RBC regulation, the collector delivered 57.6 % of the total 
thermal energy generated by the system (22.0 kWh), while the remaining 42.4 % 
was provided by the electric heater (17.6 kWh). In this case, the thermal energy 
storage level at the end of the simulation was the same as the one at the beginning 
(same temperature of the heat transfer fluid stored in the tank – see Figure 25(b)), 
with Qst equal to 0.1 kWh.  

The MPC regulation used the collector to generate 59.7 % of the total thermal 
energy generation (21.3 kWh), and used the electric heater for the remaining 40.3 % 
(14.4 kWh). However, to fulfil the demand an additional 6.1 kWh were discharged 
from the storage when comparing the initial and final energy stored in the tank, Qst, 
(as the final heat transfer fluid temperature was lower than the one at the beginning 
of the simulation – see Figure 26(b)).  

From the demand satisfaction perspective, the RBC simulation showed that 
7.7 % of the space heating demand was not satisfied (2.6 kWh), while in case of 
MPC regulation this amount was only 1.0 % (0.3 kWh). The failure to satisfy the 
energy demand occurred when thermal energy storage unit temperature was lower 
than the minimum temperature required by the space heating system. While the 
RBC controller cannot increase the thermal energy storage unit temperature when 
energy demand peaks occur, as it does not have this knowledge available, the MPC 
algorithm can act in advance and prepare for peak demand, as can be seen in the 
first two days of the simulation in Figure 25(b) and Figure 26(b).  

While managing the ability to satisfy more or less demand in favour of energy 
efficiency is non-trivial with a RBC controller, with an MPC this trade-off (or 
violation of the temperature boundary constraint in favour of energy) can be 
managed by varying the slacking variable value and therefore by relaxing or 
hardening the temperature boundary constraint.  

The MPC in the initial setup (with a slacking variable value equal to 1.0 
kWhel/°C) outperforms the RBC controller in terms of both meeting the heating 
demand and in total energy consumption (total energy consumption was reduced 
by 19.2 % when compared to the RBC case). 

The effect of varying the slacking variable value can be seen in the results from 
the simulations presented in Table 7. Relaxing the boundary allows the controller 
to meet less demand (5.3 % and 13.9 % of unmet demand in the cases of e equal to 
0.95 kWhel/°C and 0.8 kWhel/°C respectively), but at the same time this creates an 
opportunity to utilise more the solar resource (solar fraction increases to 38.3 % and 
40.1 % respectively, from the initial 36.8 %) and more efficiently (the COP of the 
solar system increases to 22.21 kWhth/ kWhel and 30.65 kWhth/ kWhel respectively, 
from the initial 20.64 kWhth/ kWhel). This leads to a further reduction of the energy 
consumption when compared to the RBC case, by 24.0 % and 31.8 % respectively. 
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Specifically, in the case of e equal to 0.95 kWhel/°C, this further energy reduction 
is achieved whilst maintaining a smaller amount of unmet heating demand relative 
to the RBC case. 

Considering the case where the MPC was operating using estimated weather 
and generation predictions, the MPC performed less efficiently compared to the 
benchmark MPC with perfect predictions, using 18 kWhel in total. The MPC with 
estimated weather and generation still outperformed the RBC in terms of total 
energy consumption, but with a slight decrease in performance when considering 
the unmet demand (8.2 %). 

It is particularly noticeable that the use of an estimated prediction causes a 
decrease in the COP of the solar system (18.26 kWhth/ kWhel) and result in a higher 
compensation of the missing solar generation with the electric heater (16.8 kWhel). 

The methods by which the MPC algorithm regulates the solar thermal system 
to achieve superior performance can be seen in Figure 26(a). Given that the electric 
heater has a considerably lower efficiency compared to the solar system driven by 
a pump with a low electrical consumption, the MPC controller attempted to exploit 
the renewable energy source as much as possible to fulfil the demand, charging the 
storage whenever possible. During the days in which the solar energy generation is 
low and not sufficient to fulfil the energy demand, the electric heater was mostly 
utilised to maintain the storage temperature above the lower temperature boundary 
constraint. The lower the pump speed, the lower the electrical energy consumption 
(Table 3), but also the lower the amount of energy delivered by the collector (Figure 
24 (b)). The MPC ensured an optimal regulation and trade-off between these two 
contrasting objectives, using high pump speeds with high energy generation levels 
and only when necessary. It can be seen in Figure 26(b) that the MPC algorithm 
tends to maintain the thermal energy storage unit temperature within the PCM 
slurry phase transition range when solar energy is available, and maintains a lower 
temperature when there is no generation available (likely in order to minimise the 
thermal losses). Furthermore, Figure 26(b) highlights how the receding horizon 
formulation allowed the space heating demand requirement to be anticipated by the 
control system, overheating the thermal energy storage unit before a demand peak, 
and when the more efficient renewable energy source was available. Comparing 
Figure 27(a) and (b) with Figure 26(a) and (b) it is possible to observe the 
difference between the MPC controller with perfect predictions and with an 
estimated forecast. There is a sudden change in weather and available generation in 
the last two days of the simulated period. This was not well predicted by the weather 
estimation algorithms, as they only use past data to predict the future disturbances. 
This unpredicted weather caused a more extensive and less efficient (in terms of 
meeting the demand) use of the electric heater. In reality better disturbances 
prediction models can be implemented which do not only rely on past data, but also 
access on-line forecast via internet.  

Using estimated disturbances reduced the performance of the Model Predictive 
Control algorithm from both the energy consumption and demand satisfaction when 
compared to using perfect predictions, highlighting the importance of reliable 
model and disturbances prediction to ensure effective operation of a Model 
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Predictive Controller. Better disturbances prediction models than the one 
implemented in this study, which do not only rely on past data, but also access on-
line forecast via internet, could improve the controller performance towards the 
perfect prediction benchmark performance. The findings of the work have proved 
the effectiveness of MPC in properly exploiting the benefits of the latent heat of 
fusion/solidification at the base of the investigated solar system, which is expected 
to penetrate the market in the near future. 
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5.3 Key-findings of the present chapter 

The aim of this chapter has been twofold. On the one side, a detailed survey on 
the recent advances of Model Predictive Control (MPC) for regulating the building 
thermal processes was carried out. On the other side, a MPC algorithm was 
developed to optimally regulate the SolHe-PCM full-scale prototype.  

The first part of the chapter was more theoretical. A total of 211 papers were 
identified on Science Direct and Google Scholar database and, after screening and 
removal of studies that were not in line with the definitions of a MPC strategy 
applied to buildings, 161 papers were included in an extended survey. The scope of 
this study was not only to review the recent findings of the scientific literature, but 
also and chiefly to define a clear and exhaustive framework capable of pointing out 
the steps required for a correct implementation of MPC algorithms to building 
thermal regulation. The various subsection of this parts examined each single aspect 
that should be carefully considered when devising an MPC formulation. Particular 
effort was given to the section dedicated the building control oriented model. In 
fact, defining a correct model of the controlled system represents a great challenge 
in the development of a model-based controller. Great emphasis was given to 
critically examine the pros and cons encountered during the devising of an MPC 
algorithm for regulating building energy processes. The entire final section of this 
chapter part was dedicated to this purpose. 

Since the previous survey has demonstrated that the benefits attributable to an 
MPC algorithm overtake the shortcomings a practical application to a case study 
was studied in the second part of the chapter. In detail, it was clear to the author 
that the controller of SolHe-PCM had to be improved. Indeed, innovative PCM-
based solar thermal systems and thermal energy storage units – likewise the SolHe-
PCM prototype – need to be controlled in an innovative optimal way to be effective 
and to fully exploit their potential. In these cases, the classical control methods are 
not always able to obtain the maximum benefits from these technologies. The 
investigation of new control paradigms was therefore necessary. Additionally, 
when poly-generation energy supply systems integrate solar thermal or energy 
storage systems (e.g., renewable energy sources coupled with auxiliary heaters or 
boilers, combined heat and power systems, heat pumps, etc.), dynamic optimisation 
methods may be used to recursively define which is the most advantageous 
generation source to be selected. MPC proved to be reliable and efficient for 
satisfying these purposes. A MPC algorithm was devised to regulate the operation 
of the SolHe-PCM solar thermal collector and thermal energy storage unit. The 
MPC formulation with different soft constraint parameters and disturbances 
forecasted with ideal and deterministic-stochastic methods was compared with the 
baseline RBC. Compared to the traditional RBC formulation the MPC regulation 
produced energy savings of up to 19.2 % with lower unmet energy demand. 
Moreover, when the slacking variable, which was used to constrain the requirement 
to meet space heating demand, was relaxed energy savings increase to 31.8 %, but 
with a slightly higher unmet energy demand. 
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Chapter 6 

Conclusion and outlook 

The pursuit to obtain higher levels of comfort has led to a dramatic increase in 
the energy demand in buildings. For this reason, in the last decades, one of the 
primary goals of engineers and researchers has been to optimise the trade-off 
between the conflicting objectives of increasing the occupants’ thermal comfort and 

reducing the building energy demand. The outcomes of these studies led to improve 
the performance of energy efficient building technologies significantly and to 
increase the market penetration of nearly Zero Energy Buildings or passive 
buildings. However, the adoption of Renewable Energy Sources - directly 
integrated into buildings or connected to energy grids - has introduced new 
challenges to face. Indeed, the Renewable Energy Sources variation during the time 
and the mismatch between Renewable Energy Sources availability and the actual 
occupants’ demand require buildings capable to interact with variable grid and 
occupants’ needs. Exploiting active and passive energy storage technologies is a 

first possible solution for addressing this requirement. Additional benefits can 
derive from the implementation of information and communication technologies in 
buildings. Indeed, electronic components are becoming extremely affordable. Thus 
their deployment in buildings sharply increased in the last decade, allowing a 
significant amount of building-related data to be more readily available and 
accessible. Simultaneously, the increase in computational power and the 
availability of accurate weather predictions permitted the building designers to 
explore many possible advanced control strategies for optimising the energy 
management of buildings. 

The research activity outlined in the present thesis has been undertaken in this 
framework. The primary goal of the work has been to investigate the innovative 
energy technologies and control algorithms for enhancing demand-side 
management in buildings. In detail, the thesis has been focused on a solar thermal 
system for satisfying space heating demand of buildings. The main shortcoming of 
solar energy (and broadly of renewable energy sources) is the possible mismatch 
between energy production and exploitation. Indeed, the building energy demand 
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profiles do not match exactly with the shape of the power pattern supplied by 
renewable energy production system. For this reason, technologies able to store the 
energy production and active demand-side management or demand-response 
strategies must be implemented in buildings. The scope is to enable the reduction 
in the mismatch between energy availability and demand in buildings. This 
shortcoming can be faced employing hardware or software solutions. The hardware 
solutions for thermal demand response of buildings are those technologies that 
allow the energy loads to be permanently shifted or mitigated. The software 
solutions for demand response are those that integrate an intelligent supervisory 
layer in the building automation (or management) system. The present thesis 
approached the problem from both the hardware technologies side and the software 
solutions side. This methodology represents itself a novelty in the literature. In fact, 
innovative hardware technologies and intelligent control layers are generally 
investigated separately. Contrariwise, in the present thesis, an approach that 
evaluated the problem holistically was undertaken. This path has allowed the 
benefits available employing hardware or software solutions to be considered at the 
same time. This detail enabled the mutual relationships and interactions between 
the strategies to be appropriately measured.  

Most of the findings and outcomes of the current research work has been 
already discussed in detail in the previous chapters. The goal of this final chapter is 
providing to the reader not only a simple summary of the results but also a clear 
perspective about their implication in a global framework and future works. 

The technology used as the case study was a low-temperature solar thermal 
system for satisfying space heating demand, named SolHe-PCM. Current advances 
in the energy science have marked how the improvement of performance of a 
conditioning system requires a reduction in the thermal levels involved in the 
process. This objective can be reached moving the paradigms at the basis of the 
heat transfer processes involved in the heat conversion, storage, and delivery. For 
instance, in this thesis, it was possible by switching from a traditional technology 
that involves sensible heat storage to an innovative solution characterised by latent 
heat exploitation. A novel heat transfer fluid and storage media based on mPCM 
slurry was adopted for this purpose. In the first part of the thesis, the features of that 
material were investigated experimentally and theoretically. In particular, it was 
demonstrated that the mPCM slurry – up to 45 % w.t. concentrations – can be 
straightforwardly used in solar thermal systems without particular rheological, pipe 
clogging, and pumping problems. An increase in pressure drops was monitored, but 
it assumes significant values only for very high mPCM concentrations (over 35 % 
w.t.). Tests on thermal properties underlined how the material significantly 
overperform the water within the phase change range. The higher the PCM 
concentration in the mixture, the better the overall thermal performance. Future 
works should find the optimal trade-off between the pressure drops worsening and 
the thermal properties improving for each system configurations.  

Form the material science perspective, the main shortcoming of the mPCM was 
the physical instability due to the density difference between the dispersed mPCM 
and the carrier fluid, causing the creaming phenomenon. Firstly, creaming was 
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studied experimentally. Secondly, technical measures to mitigate its occurrence 
were adopted on the SolHe-PCM full-scale prototype. Despite these precautions, 
the first version of the prototype was affected by material instability shortcomings. 
The creaming caused material segregation in the storage tank and pipe clogging. 
This fact required the substitution of the storage tank with a new version equipped 
with a mechanical mixer. This recursive design procedure (trial-and-error) is almost 
typical of every innovative technology. The experimental campaign was slowed 
down by the operation of system retrofit required for preventing creaming 
shortcomings. For this reason, in the time-span of the present thesis, it was not 
possible to carry out and discuss detailed experimental results. Anyhow, the 
recursive design led to an operating version of the full-scale prototype, which opens 
up to future tests on the long-term system performance. 

Nevertheless, the experimental campaign was used to calibrate and validate a 
numerical model of the solar thermal system. This model was developed to define 
the thermo-energetic behaviour of the technology. It consisted of two mathematical 
sub-models able to describe the power/energy balances of the flat-plate solar 
thermal collector and the thermal energy storage unit respectively. In closed-loop 
configuration, all the Key Performance Indicators used to assess the reliability of 
the model indicated an excellent comparison between the system monitored outputs 
and simulation results. For this reason, the model was considered validated and able 
to explain the real system behaviour adequately. A traditional water-based solar 
thermal system was used as the reference baseline. Parametrical simulations about 
the collector performance showed how the heat transfer fluid based on PCM slurry 
overperforms the baseline according to various boundary conditions. The same 
results were obtained during year-long simulations referred to three locations, 
characterised by very different climatic conditions. Compared to a traditional water-
based system, the simulation results showed that the SolHe-PCM collector could 
improve the production of useful heat up to 7 % throughout the year and 19 % 
during the heating season. The last part of this section explained that the thermal 
energy storage performance must also be considered Second law analysis to be 
adequately evaluated. Even if a simplified version of Second law balance was 
herewith presented, detailed Second law analyses will be demanded for future 
works. Moreover, exergy/entropy generation evaluations could be adopted to 
improve the design of each element of the innovative system, particularly the heat 
exchangers. 

Once the hardware technology was defined, the implementation of an 
innovative control method was necessary to enhance the operational efficiency of 
the system. In this framework, the increasing penetration of Information and 
Communication Technologies (ICT) in buildings has allowed a significant amount 
of building-related data to be more readily available and accessible. For this reason, 
if this information is appropriately processed through data-driven procedures, it 
may provide crucial knowledge on the actual building performance and the 
influence of occupant behaviour on the building energy demand. A specific solution 
was considered particularly promising for this purpose: the adoption of Model 
Predictive Control (MPC) formulations for improving the building thermal and 
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energy management. When MPC formulation is undertaken, one of the leading 
problem arising is the definition of a simplified control oriented model that should 
be used in the iterative optimisation procedure. However, in the case of SolHe-
PCM, a simplified lumped model of the controlled system was already formulated. 
For this reason, MPC algorithms seemed to be the ideal choice to devise a controller 
capable of maximising the SolHe-PCM system potentialities. Indeed, since a new 
technology was proposed, new control paradigms had to be formulated to enhance 
all its benefits. 

Firstly, this thesis provided a robust and complete framework of the steps 
required to define an MPC problem for building processes regulation correctly. This 
scope was reached employing an extended review of the scientific literature and 
practical application concerning MPC application for building management. The 
main outcome of this section was to lay the foundation of an imaginary bridge 
linking automation and control engineers with building and mechanical engineers 
involved in building and HVAC system design and operation. Secondly, an MPC 
algorithm was formulated to regulate the SolHe-PCM prototype. Deterministic and 
estimated external disturbance were considered. A testbed virtual environment was 
developed to perform closed-loop simulations. The existing rule-based control logic 
was employed as the reference baseline. Compared to the baseline, the MPC 
algorithm produced energy savings up to 19.2 % with lower unmet energy demand. 
Moreover, when the slacking variable used to constraint the fulfilling of the space 
heating demand was relaxed energy savings ramped up to 31.8 %. Nevertheless, in 
this case, a slightly higher unmet energy demand was detected. The findings of the 
work have proved the effectiveness of MPC in adequately exploiting the benefits 
of the latent heat of fusion/solidification at the base of the investigated solar system. 
Future works will be focused on the implementation of the control algorithm on the 
regulation system embedded in the full-scale prototype. Furthermore, a better 
estimation of the disturbances related to the occupant behaviour will be considered 
thanks to the advancement in data analytics. 

 In conclusion, the research activity undertaken in this PhD thesis underlined 
how topics covered by energy sciences are nowadays heterogeneous and complex. 
Conducting research investigations able to cover all these aspects seemed to be a 
hard challenge. However, the thesis outlined how the current advanced technologies 
offer development potentialities and computational power that are stronger than 
ever. Engineers and researchers must improve their “soft skills” in problem 

formulation to correctly select the questions necessary to answer with the aid of 
these technologies. This path should be carried on with a holistic approach, capable 
of considering all the possible aspects of the problem and all the possible solutions 
to face it. At the same time, engineering “hard skills” are necessary to integrate and 

deploy these technologies appropriately. Two main research paths should be further 
investigated in this direction: hardware technologies and software solution. 
Concerning hardware aspects, more than ever, it is necessary to increase the 
building storage potentialities and better integrate renewable energy sources. On 
the other hand, software solutions enable to enhance the performance of these 
innovative hardware technologies. Particularly promising are those solutions 
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related to energy data analytics for automatic extraction of knowledge and 
predictive control strategies with recursive optimisation tools. 

The geometrical figure used in the introduction of the thesis (the most 
unfortunate dodecahedron) can also be adapted to conclude the work. In fact, even 
if the present study was focused on a specific case study, it contained aspects 
belonging to several scientific disciplines. Besides, future works must necessarily 
deal with further topics. This fact underlines how the current challenges offered by 
the building physics require more and more a multi-disciplinary approach. This 
heterogeneous and complex framework can be pinpointed by the dodecahedron 
represented in  Figure 1. For similarity with the previous one, this geometric figure 
was called “the challenging dodecahedron”. 

 

 
Figure 1. The challenging building physics dodecahedron. 

 
The building physics is represented by the challenging dodecahedron itself. 

The dodecahedron faces represent the several disciplines affecting the development 
of a novel aspect of the building physics. Most of them have also been approached 
in the present thesis, while others open up at future studies. The sciences primarily 
involved in the building physics have been the mechanical engineering, 
thermodynamics and architecture which institute the basis of the geometrical 
figure. The design competences intervene in the conceiving of novel technologies 
and the definition of the initial blueprints, while the project management is required 
to correctly deploy and make full-scale prototypes. Rheology (hydraulics) and 
material science (chemistry) demonstrated to play a fundamental role in novel 
HVAC system performance assessment. Mainly the latter will be crucial for the 
specific case study, in order to individuate a definitive solution to the creaming 
phenomenon. Up to date, electronics is broadly used in building and HVAC 
systems both for extensive monitoring and practical actuation. Computer science 
leads to connect the components in an Internet of Things framework, which takes 
advantage of the tremendous computational power offered by Cloud solutions and 
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data gathered from several resources. The embedded controller used in the present 
case study only partially covered these topics. Nevertheless, they will be essential 
for future developments that will estimate system disturbances (e.g., space heating 
demand or climatic conditions) in a more tailored mode. On the one side, the 
collected data can be processed to exploit advances in control engineering, which 
allows intelligent energy management strategies to be performed. On the other side, 
data science competencies are becoming more and more central in understanding 
stochastic processes (e.g., occupancy driven problems).  Eventually, the economic 
feasibility of a technology must be investigated considering all the investment and 
operational costs required for penetrating the market effectively. In detail, cost-
optimal analyses represent a valid solution to explore the trade-off between the 
energy-saving benefits and the additional budgets needed by a novel technology. 
Future works regarding SolHe-PCM has to approach the problem also from this 
perspective.  

 


