765 research outputs found

    Towards transactive energy systems: An analysis on current trends

    Get PDF
    This paper presents a comprehensive analysis on the latest advances in transactive energy systems. The main contribution of this work is centered on the definition of transactive energy concepts and how such systems can be implemented in the smart grid paradigm. The analyzed works have been categorized into three lines of research: (i) transactive network management; (ii) transactive control; and (iii) peer-to-peer markets. It has been found that most of the current approaches for transactive energy are available as a model, lacking the real implementation to have a complete validation. For that purpose, both scientific and practical aspects of transactive energy should be studied in parallel, implementing adequate simulation platforms and tools to scrutiny the results.This work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No. 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019.info:eu-repo/semantics/publishedVersio

    Modeling economic systems as locally-constructive sequential games

    Get PDF
    Real-world economies are open-ended dynamic systems consisting of heterogeneous interacting participants. Human participants are decision-makers who strategically take into account the past actions and potential future actions of other participants. All participants are forced to be locally constructive, meaning their actions at any given time must be based on their local states; and participant actions at any given time affect future local states. Taken together, these essential properties imply real-world economies are locally-constructive sequential games. This paper discusses a modeling approach, Agent-based Computational Economics, that permits researchers to study economic systems from this point of view. ACE modeling principles and objectives are first concisely presented and explained. The remainder of the paper then highlights challenging issues and edgier explorations that ACE researchers are currently pursuing

    Privacy-Preserving Transactive Energy Management for IoT-aided Smart Homes via Blockchain

    Full text link
    With the booming of smart grid, The ubiquitously deployed smart meters constitutes an energy internet of things. This paper develops a novel blockchain-based transactive energy management system for IoT-aided smart homes. We consider a holistic set of options for smart homes to participate in transactive energy. Smart homes can interact with the grid to perform vertical transactions, e.g., feeding in extra solar energy to the grid and providing demand response service to alleviate the grid load. Smart homes can also interact with peer users to perform horizontal transactions, e.g., peer-to-peer energy trading. However, conventional transactive energy management method suffers from the drawbacks of low efficiency, privacy leakage, and single-point failure. To address these challenges, we develop a privacy-preserving distributed algorithm that enables users to optimally manage their energy usages in parallel via the smart contract on the blockchain. Further, we design an efficient blockchain system tailored for IoT devices and develop the smart contract to support the holistic transactive energy management system. Finally, we evaluate the feasibility and performance of the blockchain-based transactive energy management system through extensive simulations and experiments. The results show that the blockchain-based transactive energy management system is feasible on practical IoT devices and reduces the overall cost by 25%.Comment: To appea

    A Systematic Literature Review of Peer-to-Peer, Community Self-Consumption, and Transactive Energy Market Models

    Get PDF
    Capper, T., Gorbatcheva, A., Mustafa, M. A., Bahloul, M., Schwidtal, J. M., Chitchyan, R., Andoni, M., Robu, V., Montakhabi, M., Scott, I., Francis, C., Mbavarira, T., Espana, J. M., & Kiesling, L. (2021). A Systematic Literature Review of Peer-to-Peer, Community Self-Consumption, and Transactive Energy Market Models. Social Science Research Network (SSRN), Elsevier. https://doi.org/10.2139/ssrn.3959620Peer-to-peer and transactive energy markets, and community or collective self-consumption offer new models for trading energy locally. Over the past 10 years there has been significant growth in the amount of academic literature and trial projects examining how these energy trading models might function. This systematic literature review of 139 peer-reviewed journal articles examines the market designs used in these energy trading models. The Business Ecosystem Architecture Modelling framework is used to extract information about the market models used in the literature and identify differences and similarities between the models. This paper identifies six archetypal market designs and three archetypal auction mechanisms used in markets presented in the reviewed literature. It classifies the types of commodities being traded, the benefits of the markets and other features such as the types of grid models. Finally, this paper identifies five evidence gaps which need future research before these markets can be widely adopted.publishersversionpublishe

    Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models

    Get PDF
    Peer-to-peer, community or collective self-consumption, and transactive energy markets offer new models for trading energy locally. Over the past five years, there has been significant growth in the amount of academic literature examining how these local energy markets might function. This systematic literature review of 139 peer-reviewed journal articles examines the market designs used in these energy trading models. A modified version of the Business Ecosystem Architecture Modelling framework is used to extract market model information from the literature, and to identify differences and similarities between the models. This paper examines how peer-to-peer, community self-consumption and transactive energy markets are described in current literature. It explores the similarities and differences between these markets in terms of participation, governance structure, topology, and design. This paper systematises peer-to-peer, community self-consumption and transactive energy market designs, identifying six archetypes. Finally, it identifies five evidence gaps which require future research before these markets could be widely adopted. These evidence gaps are the lack of: consideration of physical constraints; a holistic approach to market design and operation; consideration about how these market designs will scale; consideration of information security; and, consideration of market participant privacy

    Transactive Energy in the Dutch Context

    Get PDF
    corecore