34,731 research outputs found

    Design and Optimization of Inductively Coupled Spiral Square Coils for Bio-Implantable Micro-System Device

    Get PDF
    Due to the development of biomedical microsystems technologies, the use of wireless power transfer systems in biomedical application has become very largely used for powering the implanted devices. The wireless power transfer by inductive resonance coupling link, is a technic for powering implantable medical devices (IMDs) between the external and implanted circuits. In this paper we describe the design of an inductive resonance coupling link using for powering small bio-implanted devices such as implantable bio-microsystem, peacemaker and cochlear implants. We present the reduced design and an optimization of small size obtained spiral coils of a 9.5 mm2 implantable device with an operating frequency of 13.56 MHz according to the industrial scientific-medical (ISM). The model of the inductive coupling link based on spiral square coils design is developed using the theoretical analysis and optimization geometry of an inductive link. For a mutual distance between the two coils at 10mm, the power transfer efficiency is about 79% with , coupling coefficient of 0.075 and a mutual inductance value of 2µH. In comparison with previous works, the results obtained in this work showed better performance such as the weak inter coils distance, the hight efficiency power transfer and geometry

    Wireless Power Transfer For Biomedical Applications

    Get PDF
    In this research wireless power transfer using near-field inductive coupling is studied and investigated. The focus is on delivering power to implantable biomedical devices. The objective of this research is to optimize the size and performance of the implanted wireless biomedical sensors by: (1) proposing a hybrid multiband communication system for implantable devices that combines wireless communication link and power transfer, and (2) optimizing the wireless power delivery system. Wireless data and power links are necessary for many implanted biomedical devices such as biosensors, neural recording and stimulation devices, and drug delivery and monitoring systems. The contributions from this research work are summarized as follows: 1. Development of a combination of inductive power transfer and antenna system. 2. Design and optimization of novel microstrip antenna that may resonate at different ultra-high frequency bands including 415 MHz, 905 MHz, and 1300MHz. These antennas may be used to transfer power through radiation or send/receive data. 3. Design of high-frequency coil (13.56 MHz) to transfer power and optimization of the parameters for best efficiency. 4. Study of the performance of the hybrid antenna/coil system at various depths inside a body tissue model. 5. Minimizing the coupling effect between the coil and the antenna through addressed by optimizing their dimensions. 6. Study of the effects of lateral and angular misalignment on a hybrid compact system consisting of coil and antenna, as well as design and optimize the coilâs geometry which can provide maximum power efficiency under misalignment conditions. 7. Address the effects of receiver bending of a hybrid power transfer and communication system on the communication link budget and the transmitted power. 8. Study the wireless power transfer safety and security systems

    Design and miniaturization of a microsystem to power biomedical implants using grey wolf optimizer-based cuckoo search algorithm

    Get PDF
    One of the greatest techniques, inductive coupling is frequently utilized in the biomedical sector for wireless energy transfer to implants. The aim of this article is to develop and analyze the effect of inductor geometrical characteristics, distance between transmitter (TX) and receiver (RX) and also the operating frequency on the wireless power transfer system, using grey wolf optimizer-based cuckoo search (GWO-CS) algorithm. Power transfer efficiency (PTE), power provided to load, and other critical components must all be improved or maximized and miniaturaze the microsystem proposed. The invention, design, and optimization of coils square spirals in a wireless energy transfer system using a resonant inductive link are the emphasis of this paper. The GWO-CS approach is evaluated to existing methods, demonstrated by simulations and to demonstrate the effectiveness of the suggested strategy

    Design and Optimization of Printed Circuit Board Inductors for Wireless Power Transfer System

    Get PDF
    Wireless power transfer via inductive link is becoming a popular choice as an alternate powering scheme for biomedical sensor electronics. Spiral printed circuit board (PCB) inductors are gaining attractions for wireless power transfer applications due to their various advantages over conventional inductors such as low-cost, batch fabrication, durability, manufacturability on flexible substrates, etc. In this work, design of a multi-spiral stacked solenoidal inductor for biomedical application in 13.56 MHz band is presented. Proposed stacking method enhances the inductance density of the inductor for a given area. This paper reports an optimization technique for design and implementation of the PCB inductors. The proposed scheme shows higher inductance and better figure-of-merit values compared to PCB inductors reported in literature, which are desirable for wireless power transfer system. DOI: 10.4236/cs.2013.4203

    Magneto-inductive Passive Relaying in Arbitrarily Arranged Networks

    Full text link
    We consider a wireless sensor network that uses inductive near-field coupling for wireless powering or communication, or for both. The severely limited range of an inductively coupled source-destination pair can be improved using resonant relay devices, which are purely passive in nature. Utilization of such magneto-inductive relays has only been studied for regular network topologies, allowing simplified assumptions on the mutual antenna couplings. In this work we present an analysis of magneto-inductive passive relaying in arbitrarily arranged networks. We find that the resulting channel has characteristics similar to multipath fading: the channel power gain is governed by a non-coherent sum of phasors, resulting in increased frequency selectivity. We propose and study two strategies to increase the channel power gain of random relay networks: i) deactivation of individual relays by open-circuit switching and ii) frequency tuning. The presented results show that both methods improve the utilization of available passive relays, leading to reliable and significant performance gains.Comment: 6 pages, 9 figures. To be presented at the IEEE International Conference on Communications (ICC), Paris, France, May 201

    Passive Power Filters

    Full text link
    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter structures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. Practical aspects for the realization of power filters are also discussed.Comment: 25 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Power waves formulation of oscillation conditions: avoidance of bifurcation modes in cross-coupled VCO architectures

    Get PDF
    This paper discusses necessity of power-waves formulation to extend voltage-current oriented approaches based on linear concepts such as admittance/impedance operators and transfer-function representations. Importance of multi-physics methodologies, throughout power-waves formulation, for the analysis and design of crystal oscillators is discussed. Interpretation of bifurcation modes in differential cross-coupled VCO architectures in terms of gyrator-like behavior, is proposed. Impact of amplitude level control (ALC) on large-signal phase noise performances is underlined showing necessity of robust control analysis approach relative to power-energy considerations
    • …
    corecore