1,510 research outputs found

    Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    Get PDF
    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development which simplifies the process of creating and managing complex application graphical user interfaces (GUI's). TAE Plus supports the rapid prototyping of GUI's and allows applications to be ported easily between different platforms. This paper will discuss the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUI's easier for application developers. TAE Plus is being applied to many types of applications, and this paper discusses how it has been used both within and outside NASA

    A Programming Environment for Visual Block-Based Domain-Specific Languages

    Get PDF
    AbstractVisual block-based programming is useful for various users such as novice programmers because it provides easy operations and improves the readability of programs. Also, in programming education, it is known to be effective to initially present basic language features and then gradually make more advanced features available. However, the cost of implementing such visual block-based languages remains a challenge. In this paper, we present a programming environment for providing visual block-based domain- specific languages (visual DSLs) that are translatable into various programming languages. In our environment, programs are built by combining visual blocks expressed in a natural language. Blocks represent program elements such as operations and variables. Tips represent snippets, and macro blocks represent procedures. Using Tips and macros make code more abstract, and reduce the number of blocks in code. Visual DSLs can be a front-end for various languages. It can be easily restricted and extended by adding and deleting blocks. We applied our programming environment to Processing, an educational programming language for media art. We show that the environment is useful for novice programmers who learn basic concepts of programming and the features of Processing

    Transportable Applications Environment (TAE) Plus: A NASA user interface development and management system

    Get PDF
    The transportable Applications Environment Plus (TAE Plus), developed at the NASA Goddard Space FLight Center, is a portable, What you see is what you get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development of graphical user interfaces, as well as management of the user interface within the operational domain. TAE Plus is being applied to many types of applications, and what TAE Plus provides, how the implementation has utilizes state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA are discussed

    A gentle transition from Java programming to Web Services using XML-RPC

    Get PDF
    Exposing students to leading edge vocational areas of relevance such as Web Services can be difficult. We show a lightweight approach by embedding a key component of Web Services within a Level 3 BSc module in Distributed Computing. We present a ready to use collection of lecture slides and student activities based on XML-RPC. In addition we show that this material addresses the central topics in the context of web services as identified by Draganova (2003)

    Transportable Applications Environment (TAE) Plus: A NASA tool used to develop and manage graphical user interfaces

    Get PDF
    The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA

    Graphical User Interface Environment for Developing Workcell Control Programs

    Get PDF
    A forms-based development environment for writing manufacturing workcell programs is described. The environment is a Microsoft Windows application that allows a programmer to describe a sequence of operations and associated preconditions to control a workcell by filling in forms. The environment then generates code to be loaded into a controller. Currently, the environment generates a language called Cell Programming Language (CPL), which is a workcell programming language used at Miami University. The aim of the environment is to provide an easier-to-use environment for developing workcell control software

    Engineering Language-Parametric End-User Programming Environments for DSLs

    Get PDF
    Human-computer communication can be achieved through different interfaces such as Graphical User Interfaces (GUIs), Tangible User Interfaces (TUIs), command-line interfaces, and programming languages. In this thesis, we used some of these inter- faces; however, we focused on programming languages which are artificial languages consisting of instructions written by humans and executed by computers. In order to create these programs, humans use specialized tools called programming environments that offer a set of utilities that ease human-computer communication. When creating programs, users must learn the languageā€™s syntax and get acquainted with the pro- gramming environment. Unfortunately, programming languages usually offer a single user interface or syntax, which is not ideal considering different types of users with varied backgrounds and expertise will use it. Given the increasing number of people performing any kind of programming activity, it is important to offer different inter- faces depending on the programming task and the background of the users. However, from the language engineering point of view, offering multiple user interfaces for the same language is expensive, and if we specifically consider Domain-Specific Languages (DSLs), it is even more expensive given their audience and development teamsā€™ size. Therefore, we study how to engineer different user interfaces for DSLs in a practical way.This thesis presents different mechanisms to engineer different language-parametric programming environments for end-users. These mechanisms rely heavily on reusing existing language components for existing languages or helping language engineers define these interfaces for new languages. We mainly studied four technological spaces, namely, Grammarware, Computational Notebooks, Block-based environments, and Projec- tional editors. We present three different language-parametric interfaces for interacting with DSLs, namely computational notebooks, projectional editors, and block-based editors. These interfaces offer different user experiences and rely upon different technological spaces. Different notations are associated with different technological spaces; for in- stance, grammarware is associated with text files, while block-based environments are associated with Blockly and JavaScript files. Therefore, to provide different notations for their languages, we have to "space travel" so that language engineers can select the most appropriate technological space and interface for their target audience. To support this, we defined grammarware as a common starting point to allow traveling to different technological spaces (e.g., computational notebooks space, projectional editors space, or block-based space). Based on this idea, we developed three tools that allowed language engineers to generate different interfaces for their DSLs based on a grammar definition of the language. Our results show that it is possible to generate these different user interfaces and decrease the effort required to create these. However, additional research is required to improve the usability of the generated interfaces and make the generation of these interfaces more flexible so that usersā€™ data can be used as part of the generated interfaces
    • ā€¦
    corecore