15,288 research outputs found

    TRIDEnT: Building Decentralized Incentives for Collaborative Security

    Full text link
    Sophisticated mass attacks, especially when exploiting zero-day vulnerabilities, have the potential to cause destructive damage to organizations and critical infrastructure. To timely detect and contain such attacks, collaboration among the defenders is critical. By correlating real-time detection information (alerts) from multiple sources (collaborative intrusion detection), defenders can detect attacks and take the appropriate defensive measures in time. However, although the technical tools to facilitate collaboration exist, real-world adoption of such collaborative security mechanisms is still underwhelming. This is largely due to a lack of trust and participation incentives for companies and organizations. This paper proposes TRIDEnT, a novel collaborative platform that aims to enable and incentivize parties to exchange network alert data, thus increasing their overall detection capabilities. TRIDEnT allows parties that may be in a competitive relationship, to selectively advertise, sell and acquire security alerts in the form of (near) real-time peer-to-peer streams. To validate the basic principles behind TRIDEnT, we present an intuitive game-theoretic model of alert sharing, that is of independent interest, and show that collaboration is bound to take place infinitely often. Furthermore, to demonstrate the feasibility of our approach, we instantiate our design in a decentralized manner using Ethereum smart contracts and provide a fully functional prototype.Comment: 28 page

    An overview to Software Architecture in Intrusion Detection System

    Full text link
    Today by growing network systems, security is a key feature of each network infrastructure. Network Intrusion Detection Systems (IDS) provide defense model for all security threats which are harmful to any network. The IDS could detect and block attack-related network traffic. The network control is a complex model. Implementation of an IDS could make delay in the network. Several software-based network intrusion detection systems are developed. However, the model has a problem with high speed traffic. This paper reviews of many type of software architecture in intrusion detection systems and describes the design and implementation of a high-performance network intrusion detection system that combines the use of software-based network intrusion detection sensors and a network processor board. The network processor which is a hardware-based model could acts as a customized load balancing splitter. This model cooperates with a set of modified content-based network intrusion detection sensors rather than IDS in processing network traffic and controls the high-speed.Comment: 8 Pages, International Journal of Soft Computing and Software Engineering [JSCSE]. arXiv admin note: text overlap with arXiv:1101.0241 by other author

    Controlled Data Sharing for Collaborative Predictive Blacklisting

    Get PDF
    Although sharing data across organizations is often advocated as a promising way to enhance cybersecurity, collaborative initiatives are rarely put into practice owing to confidentiality, trust, and liability challenges. In this paper, we investigate whether collaborative threat mitigation can be realized via a controlled data sharing approach, whereby organizations make informed decisions as to whether or not, and how much, to share. Using appropriate cryptographic tools, entities can estimate the benefits of collaboration and agree on what to share in a privacy-preserving way, without having to disclose their datasets. We focus on collaborative predictive blacklisting, i.e., forecasting attack sources based on one's logs and those contributed by other organizations. We study the impact of different sharing strategies by experimenting on a real-world dataset of two billion suspicious IP addresses collected from Dshield over two months. We find that controlled data sharing yields up to 105% accuracy improvement on average, while also reducing the false positive rate.Comment: A preliminary version of this paper appears in DIMVA 2015. This is the full version. arXiv admin note: substantial text overlap with arXiv:1403.212

    Toward Network-based DDoS Detection in Software-defined Networks

    Get PDF
    To combat susceptibility of modern computing systems to cyberattack, identifying and disrupting malicious traffic without human intervention is essential. To accomplish this, three main tasks for an effective intrusion detection system have been identified: monitor network traffic, categorize and identify anomalous behavior in near real time, and take appropriate action against the identified threat. This system leverages distributed SDN architecture and the principles of Artificial Immune Systems and Self-Organizing Maps to build a network-based intrusion detection system capable of detecting and terminating DDoS attacks in progress
    • …
    corecore