36,772 research outputs found

    Dwarna : a blockchain solution for dynamic consent in biobanking

    Get PDF
    Dynamic consent aims to empower research partners and facilitate active participation in the research process. Used within the context of biobanking, it gives individuals access to information and control to determine how and where their biospecimens and data should be used. We present Dwarna—a web portal for ‘dynamic consent’ that acts as a hub connecting the different stakeholders of the Malta Biobank: biobank managers, researchers, research partners, and the general public. The portal stores research partners’ consent in a blockchain to create an immutable audit trail of research partners’ consent changes. Dwarna’s structure also presents a solution to the European Union’s General Data Protection Regulation’s right to erasure—a right that is seemingly incompatible with the blockchain model. Dwarna’s transparent structure increases trustworthiness in the biobanking process by giving research partners more control over which research studies they participate in, by facilitating the withdrawal of consent and by making it possible to request that the biospecimen and associated data are destroyed.peer-reviewe

    Medical Virtual Public Services

    Get PDF
    The healthcare enterprises are very disconnected. This paper intends to propose a solution that will provide citizens, businesses and medical enterprises with improved access to medical virtual public services. Referred medical services are based on existing national medical Web services and which support medically required services provided by physicians and supplementary health care practitioners, laboratory services and diagnostic procedures, clinics and hospitals’ services. Requirements and specific rules of these medical services are considered, and personalization of user preferences will to be supported. The architecture is based on adaptable process management technologies, allowing for virtual services which are dynamically combined from existing national medical services. In this way, a comprehensive workflow process is set up, allowing for service-level agreements, an audit trail and explanation of the process to the end user. The process engine operates on top of a virtual repository, providing a high-level semantic view of information retrieved from heterogeneous information sources, such as national sources of medical services. The system relies on a security framework to ensure all high-level security requirements are met. System’s architecture is business oriented: it focuses on Service Oriented Architecture - SOA concepts, asynchronously combining Web services, Business Process Management – BPM rules and BPEL standards.Business Process Management, Service Oriented Architecture, Application Integration, Web services, information technologies, virtual repository, database.

    Adoption and non-adoption of a shared electronic summary record in England: a mixed-method case study

    Get PDF
    Publisher version: http://www.bmj.com/content/340/bmj.c3111.full?sid=fcb22308-64fe-4070-9067-15a172b3aea

    Cyber security investigation for Raspberry Pi devices

    Get PDF
    Big Data on Cloud application is growing rapidly. When the cloud is attacked, the investigation relies on digital forensics evidence. This paper proposed the data collection via Raspberry Pi devices, in a healthcare situation. The significance of this work is that could be expanded into a digital device array that takes big data security issues into account. There are many potential impacts in health area. The field of Digital Forensics Science has been tagged as a reactive science by some who believe research and study in the field often arise as a result of the need to respond to event which brought about the needs for investigation; this work was carried as a proactive research that will add knowledge to the field of Digital Forensic Science. The Raspberry Pi is a cost-effective, pocket sized computer that has gained global recognition since its development in 2008; with the wide spread usage of the device for different computing purposes. Raspberry Pi can potentially be a cyber security device, which can relate with forensics investigation in the near future. This work has used a systematic approach to study the structure and operation of the device and has established security issues that the widespread usage of the device can pose, such as health or smart city. Furthermore, its evidential information applied in security will be useful in the event that the device becomes a subject of digital forensic investigation in the foreseeable future. In healthcare system, PII (personal identifiable information) is a very important issue. When Raspberry Pi plays a processor role, its security is vital; consequently, digital forensics investigation on the Raspberry Pies becomes necessary

    Future challenges and recommendations

    Get PDF
    Rapid advances in information technology and telecommunications, and in particular mobile and wireless communications, converge towards the emergence of a new type of “infostructure” that has the potential of supporting a large spectrum of advanced services for healthcare and health. Currently the ICT community produces a great effort to drill down from the vision and the promises of wireless and mobile technologies and provide practical application solutions. Research and development include data gathering and omni-directional transfer of vital information, integration of human machine interface technology into handheld devices and personal applications, security and interoperability of date and integration with hospital legacy systems and electronic patient record. The ongoing evolution of wireless technology and mobile device capabilities is changing the way healthcare providers interact with information technologies. The growth and acceptance of mobile information technology at the point of care, coupled with the promise and convenience of data on demand, creates opportunities for enhanced patient care and safety. The developments presented in this section demonstrate clearly the innovation aspects and trends towards user oriented applications

    The OCarePlatform : a context-aware system to support independent living

    Get PDF
    Background: Currently, healthcare services, such as institutional care facilities, are burdened with an increasing number of elderly people and individuals with chronic illnesses and a decreasing number of competent caregivers. Objectives: To relieve the burden on healthcare services, independent living at home could be facilitated, by offering individuals and their (in)formal caregivers support in their daily care and needs. With the rise of pervasive healthcare, new information technology solutions can assist elderly people ("residents") and their caregivers to allow residents to live independently for as long as possible. Methods: To this end, the OCarePlatform system was designed. This semantic, data-driven and cloud based back-end system facilitates independent living by offering information and knowledge-based services to the resident and his/her (in)formal caregivers. Data and context information are gathered to realize context-aware and personalized services and to support residents in meeting their daily needs. This body of data, originating from heterogeneous data and information sources, is sent to personalized services, where is fused, thus creating an overview of the resident's current situation. Results: The architecture of the OCarePlatform is proposed, which is based on a service-oriented approach, together with its different components and their interactions. The implementation details are presented, together with a running example. A scalability and performance study of the OCarePlatform was performed. The results indicate that the OCarePlatform is able to support a realistic working environment and respond to a trigger in less than 5 seconds. The system is highly dependent on the allocated memory. Conclusion: The data-driven character of the OCarePlatform facilitates easy plug-in of new functionality, enabling the design of personalized, context-aware services. The OCarePlatform leads to better support for elderly people and individuals with chronic illnesses, who live independently. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    New intelligent network approach for monitoring physiological parameters : the case of Benin

    Get PDF
    Benin health system is facing many challenges as: (i) affordable high-quality health care to a growing population providing need, (ii) patients’ hospitalization time reduction, (iii) and presence time of the nursing staff optimization. Such challenges can be solved by remote monitoring of patients. To achieve this, five steps were followed. 1) Identification of the Wireless Body Area Network (WBAN) systems’ characteristics and the patient physiological parameters’ monitoring. 2) The national Integrated Patient Monitoring Network (RIMP) architecture modeling in a cloud of Technocenters. 3) Cross-analysis between the characteristics and the functional requirements identified. 4) Each Technocenter’s functionality simulation through: a) the design approach choice inspired by the life cycle of V systems; b) functional modeling through SysML Language; c) the communication technology and different architectures of sensor networks choice studying. 5) An estimate of the material resources of the national RIMP according to physiological parameters. A National Integrated Network for Patient Monitoring (RNIMP) remotely, ambulatory or not, was designed for Beninese health system. The implementation of the RNIMP will contribute to improve patients’ care in Benin. The proposed network is supported by a repository that can be used for its implementation, monitoring and evaluation. It is a table of 36 characteristic elements each of which must satisfy 5 requirements relating to: medical application, design factors, safety, performance indicators and materiovigilance
    • 

    corecore