4,079 research outputs found

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    PFC Topologies for AC to DC Converters in DC Micro-Grid

    Get PDF
    With increasing dominance of renewable energy resources and DC household appliances, the novelty of DC micro grid is attracting significant attention. The key interface between the main supply grid and DC micro grid is AC to DC converter. The conventional AC to DC converter with large output capacitor introduces undesirable power quality problems in the main supply current. It reduces system efficiency due to low power factor and high harmonic distortion. Power Factor Correction (PFC) circuits are used to make supply currents sinusoidal and in-phase with supply voltages. This paper presents different PFC topologies for single phase AC to DC converters which are analyzed for power factor (PF), total harmonic distortion (THD) and system efficiency by varying output power. Two-quadrant shunt active filter topology attains a power factor of 0.999, 3.03% THD and 98% system efficiency. Output voltage regulation of the presented active PFC topologies is simulated by applying a step load. Two-quadrant shunt active filter achieves better output voltage regulation compared to other topologies and can be used as grid interface

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version

    A magnetically coupled multi-port, multi-operation-mode micro-grid with a predictive dynamic programming-based energy management for residential applications

    Full text link
    © 2018 Elsevier Ltd This paper presents the development of a residential micro-grid topology based on a combination of common magnetic and electrical buses. The magnetic bus interfaces two low voltage dc buses linking a PV and a fuel cell to a high voltage dc bus connected to a grid-tied single-phase bidirectional inverter. A battery is used to store the surplus energy of the system and stabilise the dc voltage of the fuel cell bus. A synchronised bus voltage balance (SBVB) technique is used to reduce the conduction losses and increase the soft switching operation range of the converters. To improve the maximum power point tracking (MPPT) performance and system efficiency, appropriate control techniques and compensation blocks are designed. The proposed micro-grid is able to operate in multiple grid-connected and off-grid operation modes according to a predictive 2D dynamic programming-based energy management. A mode selection and transition strategy is developed to select the appropriate operation mode and smooth the mode transition. A detailed study of the micro-grid including steady-state operation, small signal modelling, controller design, and energy management is presented. A prototype of the system is developed, and experimental tests are conducted for an energy management scenario

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Applications of Switch-Mode Rectifiers on Micro-grid Incorporating with EV and BESS

    Get PDF
    A switch-mode rectifier (SMR) can provide adjustable and well-regulated DC output voltage from the available AC source with good line drawn power quality. Depending on the input/output voltage transfer characteristics, the schematics, the operation quadrant, and control, SMRs possess many classifications and application. Typical potential application examples include grid powered motor drives, battery chargers, various power electronic facilities, micro-grids, and grid-connected battery energy storage system (BESS), etc. In micro-grids, the SMR can be employed as the AC generator-followed converter to yield better generating efficiency. The SMR operation of its grid-connected inverter let the grid-to-microgrid (G2M) operation be conductable in addition to the microgrid-to-grid (M2G) operation. As for the electric vehicle (EV), the bidirectional inverter can be arranged to perform G2V/V2G operations in idle case, wherein the SMR operation is made in G2V battery charging

    Hybrid ac/dc microgrids. Part I : Review and classification of topologies

    Get PDF
    Microgrids have been widely studied in the literature as a possible approach for the integration of distributed energy sources with energy storage systems in the electric network. Until now the most used configuration has been the ac microgrid, but dc-based microgrids are gaining interest due to the advantages they provide over their counterpart (no reactive power, no synchronization, increasing number of dc devices, etc.). Therefore, hybrid ac/dc microgrids are raising as an optimal approach as they combine the main advantages of ac and dc microgrids. This paper reviews the most interesting topologies of hybrid ac/dc microgrids based on the interconnection of the ac and dc networks and the conventional power network. After performing a description and analysis of each configuration, a comparative evaluation has been performed to highlight the most important features of each one. The future trends identified during the study also show that several features such as the scalability, modeling or design require further research towards the integration of hybrid microgrids in the power network

    Review of a disruptive vision of future power grids: a new path based on hybrid AC/DC grids and solid-state transformers

    Get PDF
    Power grids are evolving with the aim to guarantee sustainability and higher levels of power quality for universal access to electricity. More specifically, over the last two decades, power grids have been targeted for significant changes, including migration from centralized to decentralized paradigms as a corollary of intensive integration of novel electrical technologies and the availability of derived equipment. This paper addresses a review of a disruptive vision of future power grids, mainly focusing on the use of hybrid AC/DC grids and solid-state transformers technologies. Regarding hybrid AC/DC grids in particular, they are analyzed in detail in the context of unipolar and bipolar DC grids (i.e., two-wire or three-wire DC grids), as well as the different structures concerning coupled and decoupled AC configurations with low-frequency or high-frequency isolation. The contextualization of the possible configurations of solid-state transformers and the different configurations of hybrid transformers (in the perspective of offering benefits for increasing power quality in terms of currents or voltages) is also analyzed within the perspective of the smart transformers. Additionally, the paper also presents unified multi-port systems used to interface various technologies with hybrid AC/DC grids, which are also foreseen to play an important role in future power grids (e.g., the unified interface of renewable energy sources and energy storage systems), including an analysis concerning unified multi-port systems for AC or DC grids. Throughout the paper, these topics are presented and discussed in the context of future power grids. An exhaustive description of these technologies is made, covering the most relevant and recent structures and features that can be developed, as well as the challenges for the future power grids. Several scenarios are presented, encompassing the mentioned technologies, and unveiling a progressive evolution that culminates in the cooperative scope of such technologies for a disruptive vision of future power grids.This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017, and by the FCT Project DAIPESEV PTDC/EEIEEE/30382/2017
    • …
    corecore