9 research outputs found

    Haptic Human Interfaces for Robotic Telemanipulation

    Get PDF
    Abstract -This paper proposes that there are ultimately only two topi cal tactile feedback generation modalities for haptic human interfaces which allow the human operator to handle either (i) temporary VR-based material replicas of the local geometric and/or force profile at the contact areas of an unlimited set of generic objects that could virtually be handled during the manipulation, or (ii) permanent material replicas of a limited set of typical objects. Examples of tactile human interfaces developed by the authors for telerobotic blind tactile exploration of objects, for telerobotic hapto-visual stylus-style tool manipulation are presented to illustrate the proposed approach. A NN architecture allowing for the modelling of the elastic properties of 3D objects from experimental tactile and range imaging data is also presented

    Development of electromagnetic and piezoelectric hybrid actuator system

    Get PDF
    An ordinal force-feedback device typically uses an electromagnetic motor (EMM), which provides an excellent expression of elasticity. However, it is not easy to express the sense of hardness and roughness because the response of the current is delayed due to the inductance of the armature winding. On the contrary, a piezoelectric actuator, which has a rapid response, is good at expressing the sense of hardness and roughness. Thus, if different types of actuators are used in the same actuator system (AS), the weaknesses of each type can be compensated for. In this study, as an ideal force-feedback device, a hybrid actuator system combining an EMM with an ultrasonic motor (USM) and a piezoelectric clutch/brake (piezo-clutch/brake) is proposed and examined. This AS can expand the range of representable feelings. This paper describes the construction of a hybrid AS and some experimental results of a force-feedback display. In this experiment, the feelings of roughness, friction, and elasticity were represented. The feeling of roughness was represented by the on-off control of the piezo-brake at defined positions. The feeling of friction was represented by the PID control of braking using the piezo-clutch. The feeling of elasticity was represented by two methods: the use of the EMM and brake and the use of a combination of the USM, clutch, and brake. As a result, the hardness feeling was realistically represented by the piezo-brake, and the elastic feeling was represented by either the EMM or the USM

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    Design and Analysis of Haptic Interface and Teleoperator Feedback Systems.

    Full text link
    This dissertation analyzes feedback design within haptic interface and teleoperator systems to reveal fundamental tradeoffs between design objectives, uncover intrinsic limitations imposed by hardware, and improve existing design practice. The challenge of haptic rendering and teleoperation is to synthesize a realistic mechanical sensation through feedback control while achieving other satisfactory feedback properties including robustness to hardware, noise attenuation, and stability. Special performance requirements and human-in-the-loop stability issues inherent to haptic rendering and teleoperation mean that certain conventional tools for servo-control design are not applicable. This dissertation addresses the gap in applicable theory by applying linear systems analysis to reveal previously unrecognized algebraic and analytic design relationships within haptic rendering and teleoperation. The introduction of distortion as a new performance metric for haptic rendering and teleoperation is a key contribution of this work and leads to a suite of new design relationships and tools. Important feedback design goals including performance, stability robustness, insensitivity to hardware parameter variations, and noise attenuation present a multi-objective synthesis problem with intrinsic tradeoffs. Furthermore, properties of the hardware including actuator bandwidth limitations, sensor and actuator noise, hardware nonlinearities and lightly damped structural modes constrain the feedback design and achievable goals. The analyses of haptic rendering and teleoperation presented in this dissertation yield relationships that distinguish feasible from infeasible specifications and predict performance as well as other feedback properties that may be expected from a well-tuned controller. Hardware dynamics play a key role in feedback design tradeoffs and limitations. If desired feedback properties are not feasible with given hardware, interpretation of tradeoff relationships and limitations provides direction for hardware re-design.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60859/1/paulgrif_1.pd

    Design and Implementation of a Haptic Device for Training in Urological Operations

    No full text

    Design and implementation of a haptic device for training in urological operations

    No full text
    Abstract—Virtual reality is becoming very important for training medical surgeons in various operations. Interfacing users with a virtual training environment requires the existence of a properly designed haptic device. This paper presents the design and implementation of a new force feedback haptic mechanism with five active degrees of freedom (DOFs), which is used as part of a training simulator for urological operations. The mechanism consists of a 2-DOF, 5–bar linkage, and a 3-DOF spherical joint, designed to present low friction, inertia and mass, and to be statically balanced. The device is suitable for the accurate application of small forces and moments. All five actuators of the haptic device are base-mounted dc motors and use a force transmission system based on capstan drives, pulleys, and tendons. The paper describes the overall design and sizing considerations, the resulting kinematics and dynamics, the force feedback control algorithm, and the hardware employed. Experimental results are provided. Index Terms—Force feedback, haptic devices, training medical simulators, urological operations. I

    Design and implementation of a haptic device for training in urological operations

    No full text
    corecore