59,513 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Product to process lifecycle management in assembly automation systems

    Get PDF
    Presently, the automotive industry is facing enormous pressure due to global competition and ever changing legislative, economic and customer demands. Product and process development in the automotive manufacturing industry is a challenging task for many reasons. Current product life cycle management (PLM) systems tend to be product-focussed. Though, information about processes and resources are there but mostly linked to the product. Process is an important aspect, especially in assembly automation systems that link products to their manufacturing resources. This paper presents a process-centric approach to improve PLM systems in large-scale manufacturing companies, especially in the powertrain sector of the automotive industry. The idea is to integrate the information related to key engineering chains i.e. products, processes and resources based upon PLM philosophy and shift the trend of product-focussed lifecycle management to process-focussed lifecycle management, the outcome of which is the Product, Process and Resource Lifecycle Management not PLM only

    The Role of the Basic Health Program in the Coverage Continuum: Opportunities, Risks and Considerations for States

    Get PDF
    Outlines issues for offering subsidized coverage to those eligible for insurance exchange subsidies by using federal dollars that would otherwise go to those subsidies, including continuity of coverage, impact on exchanges, and financial feasibility

    ROBOSIM: An intelligent simulator for robotic systems

    Get PDF
    The purpose of this paper is to present an update of an intelligent robotics simulator package, ROBOSIM, first introduced at Technology 2000 in 1990. ROBOSIM is used for three-dimensional geometrical modeling of robot manipulators and various objects in their workspace, and for the simulation of action sequences performed by the manipulators. Geometric modeling of robot manipulators has an expanding area of interest because it can aid the design and usage of robots in a number of ways, including: design and testing of manipulators, robot action planning, on-line control of robot manipulators, telerobotic user interface, and training and education. NASA developed ROBOSIM between 1985-88 to facilitate the development of robotics, and used the package to develop robotics for welding, coating, and space operations. ROBOSIM has been further developed for academic use by its co-developer Vanderbilt University, and has been in both classroom and laboratory environments for teaching complex robotic concepts. Plans are being formulated to make ROBOSIM available to all U.S. engineering/engineering technology schools (over three hundred total with an estimated 10,000+ users per year)

    The role of Computer Aided Process Engineering in physiology and clinical medicine

    Get PDF
    This paper discusses the potential role for Computer Aided Process Engineering (CAPE) in developing engineering analysis and design approaches to biological systems across multiple levels—cell signalling networks, gene, protein and metabolic networks, cellular systems, through to physiological systems. The 21st Century challenge in the Life Sciences is to bring together widely dispersed models and knowledge in order to enable a system-wide understanding of these complex systems. This systems level understanding should have broad clinical benefits. Computer Aided Process Engineering can bring systems approaches to (i) improving understanding of these complex chemical and physical (particularly molecular transport in complex flow regimes) interactions at multiple scales in living systems, (ii) analysis of these models to help to identify critical missing information and to explore the consequences on major output variables resulting from disturbances to the system, and (iii) ‘design’ potential interventions in in vivo systems which can have significant beneficial, or potentially harmful, effects which need to be understood. This paper develops these three themes drawing on recent projects at UCL. The first project has modeled the effects of blood flow on endothelial cells lining arteries, taking into account cell shape change resulting in changes in the cell skeleton which cause consequent chemical changes. A second is a project which is building an in silico model of the human liver, tieing together models from the molecular level to the liver. The composite model models glucose regulation in the liver and associated organs. Both projects involve molecular transport, chemical reactions, and complex multiscale systems, tackled by approaches from CAPE. Chemical Engineers solve multiple scale problems in manufacturing processes – from molecular scale through unit operations scale to plant-wide and enterprise wide systems – so have an appropriate skill set for tackling problems in physiology and clinical medicine, in collaboration with life and clinical scientists
    • …
    corecore