5 research outputs found

    Penerapan Sistem Kendali PID untuk KestabilanTwin-Tiltrotor dengan Metode DCM

    Get PDF
    Twin-tiltrotor is a type of multirotor which has two propellers as propulsion located on the right and left of the body and can be moved longitudinally. Twin-tiltrotor has a Vertical Take Off and Landing system, so it can hover anytime and it can fly using fixed wing model. This study aims to design a system that can stabilize while hovering using DCM and PID control methods.DCM is a method that transform data obtained from IMU sensor (accelerometer, gyroscope, and magnetometer) and used as a refrence angle of stability of a tiltrotor controlled by PID algorithm. The results of PID will control the servo and brushless motor.The results of this study shows that the stability of the tiltrotor influenced by the position of the load and center of gravity. Beside that, by using the DCM, the result of conversion of sensor data into an angel, has an accuration ±0.11 for roll angle and ±0.15 for pitch angle. PID value of pitch is Kp 0.8, Ki 0.4, and Kd 0.03, while roll angle is Kp 0.32, Ki 0.03, and Kd 0.003

    Control of VTOL Vehicles with Thrust-Tilting Augmentation

    Get PDF
    International audienceAn approach to the control of a VTOL vehicle equipped with complementary thrust-tilting capabilities that nominally yield full actuation of the vehicle's position and attitude is developed. The particularity and difficulty of the control problem are epitomized by the existence of a maximum tilting angle which forbids complete and decoupled control of the vehicle's position and attitude in all situations. This problem is here addressed via the formalism of primary and secondary objectives and by extending a solution previously derived in the fixed thrust-direction case. The proposed control design is also illustrated by simulation results involving a quadrotor UAV with all propellers axes pointing in the same monitored tilted direction

    Implementação do hardware e software de estabilização de um robô aéreo com dois rotores articulados

    Get PDF
    Trabalho de conclusão de curso (graduação)—Universidade de Brasília, Faculdade de Tecnologia, Curso de Graduação em Engenharia de Controle e Automação, 2016.Este trabalho apresenta o projeto de um robô aéreo de dois rotores articulados, com uma implementação de um sistema eletrônico embarcado com a finalidade de ser um regulador para a estabilização do veículo aéreo. É desenvolvido um método de controle dos atuadores do veículo através de um joystick. O objetivo do trabalho é aplicar os conhecimentos adquiridos no curso e materiais disponíveis do Laboratório de Automação e Robótica (LARA) da Universidade de Brasília em um projeto que servirá como base para trabalhos futuros, já que este será o primeiro bi-rotor desenvolvido em parceria com o LARA. Todo o projeto da parte mecânica e eletrônica são descritos detalhadamente, assim como o desenvolvimento do equacionamento dinâmico do sistema, a aplicação de um algoritmo de fusão sensorial e a aplicação do algoritmo de controle para a estabilização do sistema por simulação. Os resultados obtidos demonstram que os equipamentos eletrônicos escolhidos fornecem todas as informações necessárias para controlar o veículo. Além disso, validam o modelo feito para representação da dinâmica, com um primeiro estudo feito sobre o controle do sistema por simulação.This work describes the design of a bi-rotor articulated aerial robot, with the implementation of an embedded electronic system with the objective of work as an regulator for the stabilization of the aircraft. It is designed an method of controlling the actuators of the vehicle by a joystick. The goal of this work is to apply the knowledge acquired during the undergraduation program and the available materials in the Robotics and Automation Laboratory at University of Brasilia in a project that may be used as basis for future work and studies, since this is the first bi-rotor that is developed in partnership with the Robotics and Automation Laboratory. The complete mechanical and electronic design are described in details. As well as, the modeling of the dynamics of the system, the application of a sensor fusion algorithm and the application of a control algorithm for the system’s stabilization with an simulation. The results demonstrate that the electronic equipments chosen for the work provide all the data needed to control the vehicle. Furthermore, they validate the model that represents the dynamic, with an first study in the system control by simulation
    corecore