1,213 research outputs found

    Design and Development of a Surgical Robot for Needle-Based Medical Interventions

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. If diagnosed in a timely manner, the treatment of choice is surgical resection of the cancerous lesions followed by radiotherapy. However, surgical resection may be too invasive for some patients due to old age or weakness. An alternative is minimally invasive needle-based interventions for cancer diagnosis and treatment. This project describes the design, analysis, development and experimental evaluation of a modular, compact, patient-mounted robotic manipulator for lung cancer diagnosis and treatment. In this regard, a novel parallel Remote Centre of Motion (RCM) mechanism is proposed for minimally invasive delivery of needle-based interventions. The proposed robot provides four degrees of freedom (DOFs) to orient and move a surgical needle within a spherical coordinate system. There is an analytical solution for the kinematics of the proposed parallel mechanism and the end-effectors motion is well-conditioned within the required workspace. The RCM is located beneath the skin surface to minimize the invasiveness of the surgical procedure while providing the required workspace to target the cancerous lesions. In addition, the proposed robot benefits from a design capable of measuring the interaction forces between the needle and the tissue. The experimental evaluation of the robot has proved its capability to accurately orient and move a surgical needle within the required workspace. Although this robotic system has been designed for the treatment of lung cancer, it is capable of performing other procedures in the thoracic or abdominal cavity such as liver cancer diagnosis and treatment

    Robotic System Development for Precision MRI-Guided Needle-Based Interventions

    Get PDF
    This dissertation describes the development of a methodology for implementing robotic systems for interventional procedures under intraoperative Magnetic Resonance Imaging (MRI) guidance. MRI is an ideal imaging modality for surgical guidance of diagnostic and therapeutic procedures, thanks to its ability to perform high resolution, real-time, and high soft tissue contrast imaging without ionizing radiation. However, the strong magnetic field and sensitivity to radio frequency signals, as well as tightly confined scanner bore render great challenges to developing robotic systems within MRI environment. Discussed are potential solutions to address engineering topics related to development of MRI-compatible electro-mechanical systems and modeling of steerable needle interventions. A robotic framework is developed based on a modular design approach, supporting varying MRI-guided interventional procedures, with stereotactic neurosurgery and prostate cancer therapy as two driving exemplary applications. A piezoelectrically actuated electro-mechanical system is designed to provide precise needle placement in the bore of the scanner under interactive MRI-guidance, while overcoming the challenges inherent to MRI-guided procedures. This work presents the development of the robotic system in the aspects of requirements definition, clinical work flow development, mechanism optimization, control system design and experimental evaluation. A steerable needle is beneficial for interventional procedures with its capability to produce curved path, avoiding anatomical obstacles or compensating for needle placement errors. Two kinds of steerable needles are discussed, i.e. asymmetric-tip needle and concentric-tube cannula. A novel Gaussian-based ContinUous Rotation and Variable-curvature (CURV) model is proposed to steer asymmetric-tip needle, which enables variable curvature of the needle trajectory with independent control of needle rotation and insertion. While concentric-tube cannula is suitable for clinical applications where a curved trajectory is needed without relying on tissue interaction force. This dissertation addresses fundamental challenges in developing and deploying MRI-compatible robotic systems, and enables the technologies for MRI-guided needle-based interventions. This study applied and evaluated these techniques to a system for prostate biopsy that is currently in clinical trials, developed a neurosurgery robot prototype for interstitial thermal therapy of brain cancer under MRI guidance, and demonstrated needle steering using both asymmetric tip and pre-bent concentric-tube cannula approaches on a testbed

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    Design, Development, and Evaluation of a Teleoperated Master-Slave Surgical System for Breast Biopsy under Continuous MRI Guidance

    Get PDF
    The goal of this project is to design and develop a teleoperated master-slave surgical system that can potentially assist the physician in performing breast biopsy with a magnetic resonance imaging (MRI) compatible robotic system. MRI provides superior soft-tissue contrast compared to other imaging modalities such as computed tomography or ultrasound and is used for both diagnostic and therapeutic procedures. The strong magnetic field and the limited space inside the MRI bore, however, restrict direct means of breast biopsy while performing real-time imaging. Therefore, current breast biopsy procedures employ a blind targeting approach based on magnetic resonance (MR) images obtained a priori. Due to possible patient involuntary motion or inaccurate insertion through the registration grid, such approach could lead to tool tip positioning errors thereby affecting diagnostic accuracy and leading to a long and painful process, if repeated procedures are required. Hence, it is desired to develop the aforementioned teleoperation system to take advantages of real-time MR imaging and avoid multiple biopsy needle insertions, improving the procedure accuracy as well as reducing the sampling errors. The design, implementation, and evaluation of the teleoperation system is presented in this dissertation. A MRI-compatible slave robot is implemented, which consists of a 1 degree of freedom (DOF) needle driver, a 3-DOF parallel mechanism, and a 2-DOF X-Y stage. This slave robot is actuated with pneumatic cylinders through long transmission lines except the 1-DOF needle driver is actuated with a piezo motor. Pneumatic actuation through long transmission lines is then investigated using proportional pressure valves and controllers based on sliding mode control are presented. A dedicated master robot is also developed, and the kinematic map between the master and the slave robot is established. The two robots are integrated into a teleoperation system and a graphical user interface is developed to provide visual feedback to the physician. MRI experiment shows that the slave robot is MRI-compatible, and the ex vivo test shows over 85%success rate in targeting with the MRI-compatible robotic system. The success in performing in vivo animal experiments further confirm the potential of further developing the proposed robotic system for clinical applications

    Kinesthetic Haptics Sensing and Discovery with Bilateral Teleoperation Systems

    Get PDF
    In the mechanical engineering field of robotics, bilateral teleoperation is a classic but still increasing research topic. In bilateral teleoperation, a human operator moves the master manipulator, and a slave manipulator is controlled to follow the motion of the master in a remote, potentially hostile environment. This dissertation focuses on kinesthetic perception analysis in teleoperation systems. Design of the controllers of the systems is studied as the influential factor of this issue. The controllers that can provide different force tracking capability are compared using the same experimental protocol. A 6 DOF teleoperation system is configured as the system testbed. An innovative master manipulator is developed and a 7 DOF redundant manipulator is used as the slave robot. A singularity avoidance inverse kinematics algorithm is developed to resolve the redundancy of the slave manipulator. An experimental protocol is addressed and three dynamics attributes related to kineshtetic feedback are investigated: weight, center of gravity and inertia. The results support our hypothesis: the controller that can bring a better force feedback can improve the performance in the experiments

    Prototype of a tensegrity manipulator to mimic bird necks

    Get PDF
    International audienceThis paper deals with the building of a 2D tensegrity mechanism. The considered mechanism is derived from the Snelson's X-shape mechanism and is used as an elementary part of the bird neck modelling. Indeed, an n-dof manipulator can be obtained by stacking in series n X-shape mechanisms. This paper explains the design and building process of a 1-dof prototype, both on hardware and software aspects, and will be used further to have experimental results on the dynamic modelling, control laws and ac-tuation strategy.Une structure de tenségrité est un assemblage d'éléments en compression (barres) et d'éléments en traction (câbles, ressorts) maintenus ensemble en équilibre [1],[2]. La tenségrité est connue en architecture et en art depuis plus d'un siècle [3] et est adaptée à la modélisation des organismes vivants [4]. Les mé-canismes de tenségrité ont été étudiés plus récemment pour leurs propriétés prometteuses en robotique telles que la faible inertie, la souplesse naturelle et la capacité de déploiement [5]. Un mécanisme de tenségrité est obtenu lorsqu'un ou plusieurs éléments sont actionnés. Ces travaux s'inscrivent dans le cadre du projet AVINECK, auquel participent des biologistes et des roboticiens dans le but principal de modéliser et de concevoir des cous d'oiseaux. En conséquence, une classe de manipulateurs de tenségrité planaire composée d'un assemblage en série de plusieurs mécanismes en X de Snelson [6], c'est-à-dire des mécanismes à quatre barres croisées avec des ressorts sur leurs côtés latéraux, a été choisie comme candidat approprié pour un modèle préliminaire plan d'un cou d'oiseau. Le prototype consiste en un mecanisme en X de Snelson. Les barres sont assemblées selon différents plans pour éviter les collisions internes. Le manipulateur est entraîné par des câbles parallèles aux res-sorts et traversant les axes grâce à des perçages. Chaque câble est attaché à un tambour. Le manipulateur est actionné par deux câbles, ce qui en fait un mécanisme antagoniste, dont on peut contrôler la raideur. Les pièces structurelles (barres, supports, tambours) sont imprimées en 3D en ABS. Chaque liaison pivot entre les barres et les axes est construite avec deux roulements qui assurent un centrage long, et toutes les pièces sont arrêtées axialement avec des colliers d'arbre. Nous avons décidé d'avoir une lon-gueur de barre transversale de 100 mm et une longueur de barre supérieure de 50 mm. Ces dimensions sont adaptées à plusieurs jeux de ressorts disponibles, c'est-à-dire que les ressorts considérés sont tou-jours en tension et ne sont pas trop étendus pour toutes les positions accessibles du manipulateur. Une fois la longueur et la raideur du ressort définies, le modèle statique est calculé afin d'obtenir la force d'entrée maximale pour les câbles. Cette force doit être suffisante pour actionner le mécanisme dans un grand espace de travail et pour résister aux chargements externes. La force appliquée par les câbles est directement liée au rayon du tambour et au couple du moteur. Le rayon du tambour influe également sur la vitesse de translation du câble. Un compromis est fait pour avoir des efforts et vitesses de câbles suffisants. Deux variateurs interagissent avec un microprocesseur sur lequel est programmé la loi de commande. Chaque moteur est équipé d'un codeur pour connaître la position réelle du mécanisme. Le bon compor-tement du mécanisme est assuré par une commande dynamique

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Neurological Disease Diagnosis and Treatment via Precise Robotic Intervention

    Get PDF
    This work focuses on the development and application of mechatronic systems for measurement, diagnosis and treatment of acute and chronic neurological conditions. The development of an automated tendon reflex stimulation device, as well as analysis and classification methods for both automated and manual stimulus delivery will provide the groundwork for improvements to both diagnosis and treatment of neurological injuries. In a similar vein, development of a variable resonance actuator for Magnetic Resonance Elastography imaging enables tissue property measurement of the intervertebral discs, hopefully providing an early marker and better understanding of degeneration. In addition to MRI based spinal tissue property measurements, an MRI guided high precision robot is developed for direct injection into the spinal cord, along with an accompanying image guided control scheme. The novel parallel plane mechanism enables control of 4 degrees of freedom, while the linear piezoelectric actuators in a direct drive configuration enables superior accuracy. Taken together, these robotic device developments constitute contributions to the field of precision medical robotics with applications to physiological understanding of the human body.Ph.D

    Advances of Italian Machine Design

    Get PDF
    This 2028 Special Issue presents recent developments and achievements in the field of Mechanism and Machine Science coming from the Italian community with international collaborations and ranging from theoretical contributions to experimental and practical applications. It contains selected contributions that were accepted for presentation at the Second International Conference of IFToMM Italy, IFIT2018, that has been held in Cassino on 29 and 30 November 2018. This IFIT conference is the second event of a series that was established in 2016 by IFToMM Italy in Vicenza. IFIT was established to bring together researchers, industry professionals and students, from the Italian and the international community in an intimate, collegial and stimulating environment
    • …
    corecore