1,298 research outputs found

    Laboratory and Field Experimental Study of Underwater Inflatable Co-prime Sonar Array (UICSA)

    Get PDF
    This paper discusses the design and initial testing of a novel hydrophone array system dubbed the Underwater Inflatable Co-prime Sonar Array (UICSA). The UICSA will be a crucial component of an underwater deployable sensing network that can be rapidly deployed using compact autonomous underwater vehicles (AUVs). The UICSA initially is packed in a compact container to fit the payload space of an AUV. After deployment, the UICSA expands to its predetermined full length to acquire sensing data for source localization.  More specifically, the mechanical compression of the UICSA is achieved through a non-rigid array support structure, which consists of flexible inflatable segments between adjoining hydrophones that are folded in order to package the UICSA for deployment. The system exploits compression in hydrophone layouts by utilizing a sparse array configuration, namely the co-prime array since it requires fewer hydrophones than a uniform linear array of the same length to estimate a given number of sources. With two-way compression, the storage, handling, and transportation of the compactly designed UICSA is convenient, particularly for the AUVs with limited payload space. The deployment concept and process are discussed, as well as the various UICSA designs of different support structures are described. A comparison of the various mechanical designs is presented and a novel hybrid-based expansion prototype is documented in detail. Laboratory study results of the UICSA prototype are presented that include water-swollen material tests in a pressurized environment and water tank validation of the inflation process. The UICSA prototype also has been deployed in the Harbor Branch channel to validate the performance, the related field test details and source localization results

    Magneto inductive communication system for underwater wireless sensor networks

    Get PDF
    Underwater wireless sensor networks have found a number of applications in underwater environment monitoring, infrastructure monitoring, military applications and ocean exploration. Among the four possible means of underwater wireless communication, namely acoustic, electromagnetic (EM), magneto-inductive (MI) and optics communication, MI communication enjoys the advantages of being low cost and robust equally in air, water and soil. This dissertation presents design and implementation of a low-power and low-cost MI sensor network node that is suited for long-term deployment of underwater and underground infrastructure monitoring, such as bridge scour and levee scour monitoring. The designed MI sensor node combat the directionality of the single coil MI communication by utilizing 3D coil to both transmit and receive. The presented MI sensor node is tested in air and underwater to show robustness and reliability. The sensor node is designed after thorough analysis and evaluation of various MI challenges such as directionality, short range, decoupling due to mis-alignment of coils, and effect of metal structure. A communication range of 40 m has been achieved by the prototype sensor node. The prototyping cost of a sensor node is less than US$100 and will be drastically reduced at volume production. A novel and an energy efficient medium access control (MAC) protocol based on the carrier sense medium access (CSMA) has also been implemented for the designed sensor node to improve throughput in a dense network --Abstract, page iv

    Cost-Effective and Energy-Efficient Techniques for Underwater Acoustic Communication Modems

    Get PDF
    Finally, the modem developed has been tested experimentally in laboratory (aquatic environment) showing that can communicates at different data rates (100..1200 bps) compared to state-of-the-art research modems. The software used include LabVIEW, MATLAB, Simulink, and Multisim (to test the electronic circuit built) has been employed.Underwater wireless sensor networks (UWSNs) are widely used in many applications related to ecosystem monitoring, and many more fields. Due to the absorption of electromagnetic waves in water and line-of-sight communication of optical waves, acoustic waves are the most suitable medium of communication in underwater environments. Underwater acoustic modem (UAM) is responsible for the transmission and reception of acoustic signals in an aquatic channel. Commercial modems may communicate at longer distances with reliability, but they are expensive and less power efficient. Research modems are designed by using a digital-signal-processor (DSP is expensive) and field-programmable-gate-array (FPGA is high power consuming device). In addition to, the use of a microcontroller is also a common practice (which is less expensive) but provides limited computational power. Hence, there is a need for a cost-effective and energy-efficient UAM to be used in budget limited applications. In this thesis different objectives are proposed. First, to identify the limitations of state-of-the-art commercial and research UAMs through a comprehensive survey. The second contribution has been the design of a low-cost acoustic modem for short-range underwater communications by using a single board computer (Raspberry-Pi), and a microcontroller (Atmega328P). The modulator, demodulator and amplifiers are designed with discrete components to reduce the overall cost. The third contribution is to design a web based underwater acoustic communication testbed along with a simulation platform (with underwater channel and sound propagation models), for testing modems. The fourth contribution is to integrate in a single module two important modules present in UAMs: the PSK modulator and the power amplifier

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges

    Full text link
    Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    Design, Testing and Evaluation of Robotic Mechanisms and Systems for Environmental Monitoring and Interaction

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote aerial data collection. The next generation of UAVs, however, will transform the way that scientists and practitioners interact with the environment. In this thesis, we address the challenges of flying low over water to collect water samples and temperature data. We also develop a system that allows UAVs to ignite prescribed fires. Specifically, this thesis contributes a new peristaltic pump designed for use on a UAV for collecting water samples from up to 3m depth and capable of pumping over 6m above the water. Next, temperature sensors and their deployment on UAVs, which have successfully created a 3D thermal structure map of a lake, contributes to mobile sensors. A sub-surface sampler, the “Waterbug” which can sample from 10m deep and vary buoyancy for longer in-situ analysis contributes to robotics and mobile sensors. Finally, we designed and built an Unmanned Aerial System for Fire Fighting (UAS-FF), which successfully ignited over 150 acres of prescribed fire during two field tests and is the first autonomous robot system for this application. Advisers: Carrick Detweiler and Carl Nelso

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited
    corecore