6 research outputs found

    Compiler optimizations for an asynchronous stream-oriented programming language

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 59-61).Stream-oriented programs allow different opportunities for optimization than procedural programs. Moreover, as compared to purely synchronous stream-oriented programs, optimizing for asynchronous stream-based programs is difficult, owing to the latters' inherent unpredictability. In this thesis, we present several compiler optimizations for WaveScript, a high-level, functional, stream-oriented programming language. We also present a framework for using profiling of stream-graph execution to drive optimizations; two of the optimizations use this profiled information to generate noticeable performance benefits for real-world applications written in WaveScript. Thus, it is shown that profiling presents an important avenue by which to optimize asynchronous stream-based programs.by Michael B. Craig.M.Eng

    Constraint programming for wireless sensor networks

    Full text link

    On Design and Applications of Practical Concurrent Data Structures

    Get PDF
    The proliferation of multicore processors is having an enormous impact on software design and development. In order to exploit parallelism available in multicores, there is a need to design and implement abstractions that programmers can use for general purpose applications development. A common abstraction for coordinated access to memory is a concurrent data structure. Concurrent data structures are challenging to design and implement as they are required to be correct, scalable, and practical under various application constraints. In this thesis, we contribute to the design of efficient concurrent data structures, propose new design techniques and improvements to existing implementations. Additionally, we explore the utilization of concurrent data structures in demanding application contexts such as data stream processing.In the first part of the thesis, we focus on data structures that are difficult to parallelize due to inherent sequential bottlenecks. We present a lock-free vector design that efficiently addresses synchronization bottlenecks by utilizing the combining technique. Typical combining techniques are blocking. Our design introduces combining without sacrificing non-blocking progress guarantees. We extend the vector to present a concurrent lock-free unbounded binary heap that implements a priority queue with mutable priorities.In the second part of the thesis, we shift our focus to concurrent search data structures. In order to offer strong progress guarantee, typical implementations of non-blocking search data structures employ a "helping" mechanism. However, helping may result in performance degradation. We propose help-optimality, which expresses optimization in amortized step complexity of concurrent operations. To describe the concept, we revisit the lock-free designs of a linked-list and a binary search tree and present improved algorithms. We design the algorithms without using any language/platform specific constructs; we do not use bit-stealing or runtime type introspection of objects. Thus, our algorithms are portable. We further delve into multi-dimensional data and similarity search. We present the first lock-free multi-dimensional data structure and linearizable nearest neighbor search algorithm. Our algorithm for nearest neighbor search is generic and can be adapted to other data structures.In the last part of the thesis, we explore the utilization of concurrent data structures for deterministic stream processing. We propose solutions to two challenges prevalent in data stream processing: (1) efficient processing on cloud as well as edge devices and (2) deterministic data-parallel processing at high-throughput and low-latency. As a first step, we present a methodology for customization of streaming aggregation on low-power multicore embedded platforms. Then we introduce Viper, a communication module that can be integrated into stream processing engines for the coordination of threads analyzing data in parallel

    Design and evaluation of a compiler for embedded stream programs

    No full text
    Applications that combine live data streams with embedded, parallel, and distributed processing are becoming more commonplace. WaveScript is a domain-specific language that brings high-level, type-safe, garbage-collected programming to these domains. This is made possible by three primary implementation techniques, each of which leverages characteristics of the streaming domain. First, we employ a novel evaluation strategy that uses a combination of interpretation and reification to partially evaluate programs into stream dataflow graphs. Second, we use profile-driven compilation to enable many optimizations that are normally only available in the synchronous (rather than asynchronous) dataflow domain. Finally, we incorporate an extensible system for rewrite rules to capture algebraic properties in specific domains (such as signal processing). We have used our language to build and deploy a sensornetwork for the acoustic localization of wild animals, in particular, the Yellow-Bellied marmot. We evaluate WaveScript’s performance on this application, showing that it yields good performance on both embedded and desktop-class machines, including distributed execution and substantial parallel speedups. Our language allowed us to implement the application rapidly, while outperforming a previous C implementation by over 35%, using fewer than half the lines of code. We evaluate the contribution of our optimizations to this success. Categories and Subject Descriptors: D.3.2 Concurrent, distributed, and parallel languages
    corecore