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Abstract

Stream-oriented programs allow different opportunities for optimization than pro-
cedural programs. Moreover, as compared to purely synchronous stream-oriented
programs, optimizing for asynchronous stream-based programs is difficult, owing to
the latters' inherent unpredictability. In this thesis, we present several compiler op-
timizations for WaveScript, a high-level, functional, stream-oriented programming
language. We also present a framework for using profiling of stream-graph execution
to drive optimizations; two of the optimizations use this profiled information to gener-
ate noticeable performance benefits for real-world applications written in WaveScript.
Thus, it is shown that profiling presents an important avenue by which to optimize
asynchronous stream-based programs.
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Chapter 1

Introduction

This thesis presents a number of optimization extensions to the compiler for the func-

tional, stream-oriented programming language WaveScript. WaveScript is designed

for writing high-data rate stream-processing applications, such as those that per-

form real-time filtering, audio/video processing, and signal processing more generally

[NGC+08].

WaveScript programs describe asynchronous stream graphs: the data rates be-

tween actors in the graph are not, in general, predictable, and may vary freely. For

this reason, it is difficult to apply optimizations from the fairly large synchronous

data-flow (SDF) domain directly. The approach presented in this thesis is to use

profiling information, gathered during execution of the stream graph, to help infer

the rates and execution costs of each module of the program, and to use that profile

to determine appropriate optimizations to apply during re-compilation.

This thesis describes how support for profiling was added into the existing Wave-

Script compiler; it also describes the optimizations that have been added.

1.1 Stream Programming

Stream-oriented programming represents input as an unbounded, time-ordered se-

quence of data - sometimes called tuples to match database nomenclature. A stream

program filters and transforms this sequence to produce a similarly unbounded out-



put stream. Such a program is typically structured as a composite of simpler stream

"programs," sometimes called operators, or, within the WaveScript compiler, simply

boxes; the output an upstream box is fed into the input of a downstream box.

Though most would argue that procedural or object-oriented programming rep-

resents the dominant paradigm within the software industry, stream programming

is much more relevant for a wide variety of applications, especially those that must

process unbounded sequences of data in real-time. Audio/video processing, medical-

and environmental-sensor monitoring, and financial-data stream mining are examples

of such application domains.

As procedural programs are structured as a set of functions which call one another,

stream programs have the analogous structure of a set of actors connected together.

There is a fundamental difference, though: whereas functions in a procedural pro-

gram pass control between themselves, actors in a stream program pass data. The

difference has very important implications. Code for a (single-threaded) procedural

program specifies the exact order of instructions to run (modulo branch instructions

that depend on input). Code for a stream program only specifies such ordering within

each actor; it does not specify when each actor should be run (other than that it must

have some part of its input stream available). The structure of a stream program is

such that there is no global state accessible by more than one actor; there is only

local, per-actor state. Thus, a stream program requires some further runtime engine

to decide when to run each actor, and how to queue intermediate sections of input

streams at each actor (the way in which WaveScript decides this is discussed later

on).

1.2 WaveScript

Stream-oriented programming is not a new paradigm: it has long been the focus

of DSP programming; however, there are few high-level stream-oriented program-

ming environments, and much chip-specific DSP programming must be done at the

assembly-code level [KL99].



WaveScript specifically targets asynchronous stream programs, in which neither

the data rates between actors, nor the execution times of actors, are specified in

advance. This is in contrast to synchronous stream-processing programs, in which

the data rates between actors are explicitly specified by the programmer.

1.2.1 The Language

WaveScript is a strongly, statically typed, (mostly) functional language, similar in

much of its syntax to ML. In WaveScript, every actor produces a single output stream;

however, a WaveScript program is not an explicit declaration of its actors. Instead,

it is a higher-level functional program which treats streams as first-class objects.

This program is statically elaborated to produce an explicit graph of actors, which

completely describes the stream program as defined in the previous section. Figure 2-5

in the next chapter shows two very short example programs.

1.2.2 The Compiler

The WaveScript compiler, written in Scheme, transforms programs into S-expressions

- the list-based data structures at the core of Scheme, and its syntax - just after

parsing. This intermediate S-expression representation itself looks very much like

simple Scheme code, and is manipulated by a long sequence of mini-passes, each of

which applies transformations using pattern matching on subtrees of the abstract

syntax tree. A "core traverser" walks through the AST and passes subtrees to the

mini-pass. Mini-passes typically use the Scheme function match to implement pattern

matching, and focus only on the syntax elements of interest.

This existing structure has made it very easy to extend the compiler. Though

some changes have been introduced to the intermediate representation's syntax, the

core of most optimizations can be implemented as single mini-passes.



1.2.3 The Back-Ends

The WaveScript compiler targets several different back-ends for execution of the

stream graph. A back-end consists of the target programming language, and some

form of run-time engine also written in that language. The compiler targets several

back-ends, among which are the following:

* XStream, a fairly large engine that includes a memory manager and several

different schedulers, written in C++, described in [GMN+08]

* Scheme code, which is nearly identical to the compiler's intermediate S-expression

representation, and which can be executed when coupled with a small library

of functions - this "simulator" back-end can be run from within the compiler

* Standard ML code for compilation by MLton, a whole-program compiler [Wee06]

In this thesis, though some profiling is performed using the Scheme simulator

back-end, we are mostly concerned with the XStream target, and it is what we will

use to measure performance improvements.

The rest of the thesis is organized as follows. Chapter 2 provides background in-

formation on graph-based, "actor-oriented programming," stream-oriented program-

ming in WaveScript, and some relevant details of the WaveScript compiler. Chapter

3 discusses extensions to the compiler, including two small, illustrative optimizations,

followed by the profiling framework, and concluded by two more substantial opti-

mizations based on profiling. Chapter 4 discusses possibilities for future work, and

Chapter 5 concludes.



Chapter 2

Background

Here we discuss stream programming as an instance of a class of programming models

that are sometimes called "graphical programming" or "actor-oriented programming"

[LN04]. We briefly describe Petri nets, a mathematical formalism that describes actor-

oriented programming models, and then describe WaveScript stream graphs in similar

formal terms. Finally, some further details of the WaveScript language, the compiler,

and its internal representation of programs are presented.

2.1 Actor-Oriented Programming

In procedural programming, the chief abstraction is the function, by which the flow of

program control is managed. In actor-oriented programming, functions may be used,

but the important abstraction of actors is used to manage the flow of data, rather

than program control.

An actor, like a function, is a piece of code which produces output from input.

An actor, though, has an explicit notion of input and output ports, from which it

reads data, and to which it writes data, respectively. An actor is fired, meaning its

associated code is executed, whenever data is available on (some subset of) its input

ports. In an actor-oriented programming, output ports of actors are connected to

input ports of other actors to form a data-flow graph.

The actor is typically provided with instructions to read from input ports and write



to output ports at any point in its code; so, unlike a typical procedural function, an

actor does not need to end execution to produce its output, and it is not inherently

limited in the amount of output it generates during any one firing.

Some actors may be designated as sinks, meaning they have no output ports, or

sources, meaning they have no input ports. Together these essentially form an actor-

oriented program's I/O: sinks are where final results are gathered for presentation to

the user, and sources are where data are initially presented to the program.

Because an actor can be fired whenever data are available on its input ports,

control flow for an actor-oriented program is, in general, non-deterministic. Thus,

there is a great amount of freedom in deciding the execution schedule of such a

program, and there is opportunity for optimization that is very different from that

of a procedural program. For example, a scheduler may run upstream actors many

times, buffering their outputs for later delivery to downstream actors; or it may follow

the data-flow path of every datum produced, traversing the actor graph in a depth-

first manner. In fact, different paradigms within the broad scope of actor-oriented

programming may assign their own semantics to the same actor graphs [LN04]. The

high-level idea, though, is the same: actors are independent entities, with strictly

local code and state, interacting by passing data between connected ports.

WaveScript, a stream-oriented programming language, presents one such paradigm:

an actor is free to fire whenever input is available; there is only one output port per

actor; and no data-flow cycles are allowed.

2.1.1 Other Platforms

A number of platforms are available to support different types of actor- or stream-

oriented programming. Despite some similarities, though, they all differ from Wave-

Script in important ways.

Aurora - since commercialized as StreamBase - is a stream-based query engine

for processing high-volume data [BBC+04]. With a focus on real-time processing, in

which approximate results can be tolerated, it supports graceful degradation through

intelligent load shedding. Its academic successor, Borealis [AAB+05], includes a num-



ber of advanced features such as dynamic revision of streams, dynamic revision of

queries, and multi-host distribution inherited from Medusa [ZSC+03]. The model for

application development provided by Aurora and Borealis is that of query processing,

similar to that of non-streaming relational databases. Every box, or actor1, in an

Aurora stream graph, is an instance of one of a few different types, such as Map,

Filter, Union, or Aggregate. This is the key difference from WaveScript, which em-

ploys a much more general-purpose programming model to support signal-processing

applications - especially those of various physical-science domains - for which such

query processing is insufficient. Though Aurora and Borealis support user-defined

operators, they must be written and compiled separately and are completely opaque

to optimizations provided by the systems.

TelegraphCQ has similar goals to Aurora and Borealis, as it is also a distributed,

stream-based "continuous query" processing system [CCD+]. TelegraphCQ, though

it does expose a language for describing actor graphs, chiefly supports queries written

in a stripped-down version of SQL. Thus, a large part of its focus is on automatic

distribution and adaptation of query plans. Again, despite similarities, it is not

intended for all the same types of signal-processing applications as WaveScript.

StreamIt is a fairly advanced platform that does target signal-processing applica-

tions in which most operators are written by the programmer in a general-purpose

language [TKA]. StreamIt does provide an actor-oriented model, and its program-

ming language is based on Java. Unlike WaveScript, though, its focus is SDF appli-

cations: every operator must be explicit about how many tuples it reads, and how

many it writes, per firing, and these two numbers must not change during execution.

Finally, Ptolemy II is a software system for studying actor-oriented program-

ming in as general a setting as possible [LHJ+01]. Graphical models in Ptolemy

II - programs assembled from operators, any of which may likely be user-defined -

are executed by directors which control the concrete semantics. For example, a single

model (under appropriate constraints), may be excuted under the SDF director, or the

'Though it is not especially unique, WaveScript has inherited some of the nomenclature from
Aurora, such as that of boxes, tuples, and windows.



process-networks (PN) director [Kah74], or the discrete-event (DE) director [IGH+].

Models in Ptolemy II, then, are not strictly classified as stream-processing, and may

be cyclic and highly dependent on feedback. Owing to its great generality - and its

use as a tool for studying actor-oriented programming broadly - its performance is

not suitable for the high-rate applications targeted by WaveScript.

2.1.2 Petri Nets

Petri nets are a very general mathematical formulation for describing actor-oriented

programs. They are described briefly, here, in the language of [Pet77]; WaveScript

stream graphs are then described as a specialization of Petri nets.

A Petri net (V, E) is a bipartite directed graph: V is partitioned into places P and

transitions T such that every edge in E connects one place p E P and one transition

t E T (direction being unimportant). E can be described as a pair of functions

I : T - P(P) and 0 : T -- P(P). I(t) gives the set of places with inputs into t, i.e.

{p E P I (p, t) E E}. Similarly, O(t) = {p E P I (t,p) E E}. Using this language to

describe an actor-oriented program, a transition defines an actor, and a place defines

a queue holding data passed between actors.

A Petri net thus models the static structure of a graphical program: each transition

represents an actor, and each place represents a queue holding data passed between

actors. To describe how the flow of data proceeds during program execution, the

concept of tokens and markings is used. A token represents an individual datum

created as output when an actor fires, and consumed as input when another actor

fires. A marking p : P --+ N+ indicates the number of tokens at every place in a Petri

net; it represents a snapshot in time of the program, in between actor firings.

Figure 2-1 shows a simple marked Petri net with four places and four transitions.

The thick vertical bars represent transitions, the large unfilled circles represent places,

and the small filled circles represent tokens.

Evolution though time of a Petri net's markings is described using a next-state

function 6 : M x T -- M, where M is the set of all possible markings on the Petri

net of interest. Applying 6 to a marking and a transition, (y, t), gives the marking



t3 P3

Figure 2-1: sample marked Petri net: the marking p is {(pi, 2), (P2, 1), (P3, 1), (p4, 4)}

that results from firing t. In the definition of Petri nets, the firing of a transition t

has rigid requirements and behavior: it can only occur when each of its inputs has

at least one token; and after firing, one token is removed from each of its inputs,

and one token is placed into each of its outputs. In other words, the requirement

for firing t is that Vp [(p C I(t)) = (p(p) > 0)], and the next marking p' = 6(1, t)

is equal to p except that Vp [(p E I(t) A p 0(t)) =* (p'(p) = p(p) - 1)] and

Vp [(p E O(t) Ap I(t)) = (p'(p) = p(p) + 1)]. Thus, 6 is actually a partial function

on M x T.

Execution of a marked Petri net can be thought of as a sequence of markings

{p,} where each pi+1 = 6(p, ti) where ti E T (in case no transition can be fired

under a marking pi, we may allow that the execution is "halted" and pi+l = /ji).

Given an initial marking Pto, there are in general many possible executions: each

one is essentially defined by the sequence of transitions {tn}. The definition of Petri

nets specifies 6, but not this sequence. When we describe WaveScript stream graphs

in terms of Petri nets, in the next section, we will specify the rules they follow for

execution.

Though Petri nets are a very useful tool for analysis of suitably modeled systems -

such as graphical programs - we use them here only as a formal description language.

In fact, because WaveScript stream graphs are acyclic, the problems of deadlock and
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Figure 2-2: WaveScript-graph box as a Petri-net fragment

livelock are stripped away entirely.

2.1.3 WaveScript Stream Graphs

It will take a specialization of Petri nets to describe WaveScript stream graphs. In

particular, when a box in a WaveScript graph fires, it reads exactly one tuple from

only one of its input streams, and it may write zero, one, or many tuples to its output

stream (a box with buggy code may produce infinitely many tuples per firing). Thus,

there will not be a one-to-one mapping between Petri-net transitions and WaveScript-

graph boxes.

Figure 2-2 shows how a WaveScript-graph box can be modeled by a small Petri-

net fragment. The box consists of one place, representing its input queue, into which

the input stream flows, and two transitions toutput and tdiscard. When a box fires, it

consumes one tuple and outputs n > 0 tuples. This box firing corresponds to n firings

of toutput followed by one firing of tdiscard. It should be clear that this restriction on

execution forces the fragment to behave like a WaveScript-graph box.

It is important to note, though, that there is no correspondence between tokens

and tuples, other than on their counts: WaveScript tuples carry real information used

~11-1~1C 22



by a box's code; tokens have no such importance assigned to them within the context

of Petri nets.

Finally, a WaveScript-graph box may be a source that takes in no input streams,

but whose place p in the initial marking has an infinite number of tokens (this is a

minor violation of the definition of Petri nets - we may choose instead to say that the

number is as large as that for which the program should be run). It may also be a

sink that takes has no output stream, in which case toutp,t is essentially unnecessary.

Every WaveScript graph has at least one source, and exactly one sink.

Now, given the restriction discussed, and also given that WaveScript stream graphs

are strictly acyclic, it makes sense to use a somewhat simpler language to describe

them. As before, the object is a directed graph (V, E), but here V is the set of

boxes and every edge in E may connect any two boxes, with the following exceptions:

there are no cycles in the graph; the source boxes S C V have only outgoing edges;

and there is one sink box, s V S, with no outgoing edges and only one incoming

edge. There is one other restriction, that is fairly incidental at this point, but will be

discussed further on: every non-source non-sink box has either one or two incoming

edges, but no more. If boxes with more than two input streams are desired, they

must be constructed with multiple two-input boxes.

2.1.4 The WaveScript Stream-Graph Language

In WaveScript, every non-sink box has a single output stream, so a stream can be

defined simply by the box that produces it. That stream may feed into more than

one other box, of course: but every tuple sent by a box is given as input to each of

its downstream neighbors.

In WaveScript, single-input boxes are defined with the iterate construct, with

a C-like syntax. A tiny example is shown in Figure 2-3. This code defines a box

that expects takes in a stream, ins, whose type is expected to be numerical, and

produces a stream outs which simply has 1 added to each element of ins. That is,

if ins is a stream given by the sequence (xo, xl, x 2,...), then outs will be given by

(xo + 1, xl + 1, x2 + 1,...).



outs = iterate (x in ins)

{
emit x+1;

Figure 2-3: Code for a very simple WaveScript-graph box

The fragment (x in ins) indicates that, when the box fires, the tuple produced

on ins that caused the firing will be referred to by x.

The emit statement is a primitive that writes its argument to the output stream.

There may be several emit statements, or none, per iterate box.

WaveScript supports the usual basic data types: integers, floating-point numbers,

booleans, and strings; it also supports strongly typed unions and tuples in the style

of ML. There are three dynamically sized types (aside from strings): arrays, lists,

and the most unique, Sigsegs, or "signal segments." All three are types that are

parameterized by the types of their sub-elements.

Arrays and lists require little further discussion, but Sigsegs are unique to Wave-

Script. A Sigseg is similar to an array in that it is abstractly a sequence of elements

of like type. After creation, though, Sigsegs are normally used as read-only objects.

They can be written to, but the underlying implementation can be assumed to be

copy-on-write. Thus, while Sigsegs are semantically passed by value between boxes,

they have nearly the performance of pass-by-reference objects.2 In reality, to support

operations such as subsegmenting and appending, a Sigseg's concrete implementation

may be as a linked list of intervals, where an interval is typically a pairing of a pointer

into a buffer, along with a number giving its length. For long sequences of data, such

an implementation is typically very efficient; a similar idea, for example, has been

employed by IO-Lite for system-wide buffering and movement of data between I/O

devices, also to great benefit [PDZOO]. Further details of how Sigsegs are implemented

in XStream are given in [GMN+08].

2It should be noted that in WaveScript, it is typically dangerous for a box to emit arrays, as they
are always passed by reference. This issue has not been addressed in any detail, because Sigsegs are
the preferred structures to be passed.



iterate (x in ins)

state {
arr = Array:null;
ind = 0;
startsamp = 0;

}
if ind == 0

then arr := Array:make(128, x);
arr[ind] := x;
ind := ind + 1;
if ind == 128
then {

emit toSigseg (arr, startsamp, nulltimebase);
ind := 0;
arr := Array:make (128, x);
startsamp := startsamp + len;

Figure 2-4: Code for a fixed-size window box

A WaveScript box may have state, which is declared and initialized explicitly with

a state construct inside of the iterate statement. Figure 2-4 shows the code for a

window box; a generalization of this box is used frequently throughout WaveScript

applications, and, along with its inverse, will be discussed in more detail further on.

In this box, a new array is constructed every time ind is zero, which occurs at the

first of every 128 sequential firings; over the course of those firings, the input tuples

are stored, in the order received, in that array. At the end of the 128 firings, a Sigseg

is created - with the array as its underlying buffer - and emitted. The variables

startsamp and nulltimebase - the latter built into the language - are essentially

used to give a timestamp to the Sigseg: because WaveScript's target domain is that of

signal-processing applications, Sigsegs are generally intended for storing time-stamped

data, which are furthermore assumed to represent isochronous samples, and thus

require only a single timestamp each. The timestamps (and especially the variable

nulltimebase here) can essentially be ignored for the purposes of this thesis.

There is only one type of multi-input box in WaveScript, and it is built in as a



primitive: merge takes exactly two input streams (which must have the same type),

and outputs each tuple it receives, unchanged, as soon as it arrives, merge introduces

non-determinism into WaveScript stream-graph execution: the programmer has no

direct control over over how quickly the two input streams will produce their tuples,

and so cannot control the order of their combination by merge. If determinism is

desired, it must be introduced explicitly, e.g. by disrciminating the input streams

and buffering appropriately. Because WaveScript stream graphs are asynchronous,

guarantees on the boundedness of such buffering must be insured by the programmer

by some other means.

Finally, there is one type of source, and it is also a primitive: timer. There is

also syntax for specifying which stream should feed into the sink: it is essentially a

dummy box called BASE which receives only one input stream.

2.1.5 The WaveScript Language

Thus far, only code used to describe the functionality of boxes in a stream graph

has been discussed, but WaveScript itself is actually a language for writing scripts

which themselves evaluate to stream graphs. In other words, a WaveScript script

is statically elaborated by the compiler, and the output itself is the stream-graph

program.

WaveScript, then, is a functional language in which streams are first-class objects.

An iterate construct that emits tuples of type t, for example, is typed generically

as a Stream t, and we may construct functions with type Stream t -> Stream t.

Consider the two pieces of code in Figure 2-5. They look very different, but when

evaluated, they produce the same stream graph: a chain of two boxes, the upstream of

which adds 1 to every tuple as it passes it along, and the downstream of which similarly

adds 2. Note that the type of the function f is (a, Stream a) -> Stream a.

The optimizations discussed in the next chapter are mostly applied after the

"meta-program evalution" stage of the compiler, i.e., after the script has been eval-

uated and a stream graph has been produced. Still, it is important to realize the

distinction between the program before it is statically elaborated, and the stream



si = iterate (x in input) { fun f(c, s) {
emit x+1; iterate (x in s) {

1; emit x+c;
s2 = iterate (x in sl) { }
emit x+2; }

s2 = f(2, f(1, input));

(a) (b)

Figure 2-5: Two WaveScript code fragments that produce equivalent stream graphs:
in (a) the two boxes are described explicitly; in (b) they are described generally, with
one iterate construct, and are instantiated upon application of the function f.

graph produced as a result. Further details on the "intrepret&reify" implementation

used to perform the conversion are described in [NGC+08].

2.2 The WaveScript Compiler

The WaveScript compiler is a multi-pass, source-to-source compiler written in Scheme.

As described, it compiles a WaveScript code into a stream graph. It then transforms

the stream graph into a form suitable for one of its several target back-ends, so called

to distinguish them from simply target languages: a back-end typically consists of a

programming language along with a run-time engine in the same language.

The core part of the compiler's execution is a chain of mini-passes, each of which

transforms the abstract syntax tree. A mini-pass, as its name indicates, may be very

small, affecting only certain parts of the intermediate syntax, but several are quite

large as well.

The first few passes are responsible for parsing, desugaring and typechecking the

code. Then, it is evaluated into an explicit, monomorphic stream graph - that is, a

stream graph in which all of the types have been resolved, so that none are generic

- as described previously. We will be mostly concerned with the stream-graph repre-

sentation, as it is upon this form that the optimizations to be discussed apply (but

there will be one brief occasion to consider the earlier form).



2.2.1 Intermediate Representation

After parsing, WaveScript source code becomes a Scheme S-expression representing

the abstract syntax tree. This intermediate representation allows mini-passes to be

written very easily, with pattern matching: for each pass, the compiler's core traverser

walks down the AST, passing every subtree to the mini-pass, which typically uses the

Scheme match macro to do pattern matching [WD]. 3 Thus, a powerful mini-pass can

potentially be written with little code: it need only consider the pieces of syntax upon

which it must operate, and the rest can "fall through" to the core traverser.

It is instructive to look at the WaveScript code describing a small stream graph,

along with the S-expression describing it at a late stage in the compiler. Figure 2-6

shows WaveScript code that generates a simple three-box stream graph (the first box

being the timer) in (a), and the S-expression describing the graph within the compiler

in (b). The expression in (b) is nearly valid Scheme code; the only difference - aside

from being wrapped in an artificial program form - is that binding forms (lambda and

let) have additional subforms giving the types of the bound variables. In let forms,

the type comes immediately following the variable name; in lambda forms, the list of

types comes right after the list of argument variables.4 Finally, were this to be truly

interpretable Scheme code, suitable functions named timer and iterate would need

to be defined (in fact, the Scheme back-end does just this to simulate stream-graph

execution).

An iterate box, as we know, is built from two arguments: the first is a piece

of code, given by the let-wrapped lambda form in this representation; the second

is the input stream. Here, tmpsmp_19 corresponds to sl in the WaveScript code,

and tmpsmp_21 to s2. We see that the second argument to tmpsmp_19's iterate is

tmpsmp_17, bound to the timer's stream, i.e. WaveScript stream t feeds into the box

defining sl. The input to tmpsmp.21's box is tmpsmp_19, i.e. sl is the input to the

3There are a few different popular versions of match, each with a slightly different syntax;
the version used in the WaveScript compiler is IU-Match, available at the time of this writing
at http://www. bloomington. in.us/ jswitte/scheme.html.

4The VQ_-named arguments, with VQueue-parameterized types, can be ignored; they are used in
Scheme simulation of the stream graph, and are included here only for completeness.



t = timer(l.0);
sl = iterate (C in t) {

state { i = 0; }
emit i;
i := i + I;

s2 = iterate (x in si) {
emit x*x;
emit x+x;

};
BASE <- s2;

(a)

(program
(let ([tmpsmp_17 (Stream #()) (timer '1.0)])

(let ([tmpsmp_19 (Stream Int)
(iterate

(let ([i-l (Ref Int) (Mutable:ref '0)])
(lambda (-_2 VQ_3) (#() (VQueue Int))

(begin
(emit VQ_3 (deref i-l))
(let ([tmpsmp_13 Int (+ (deref i-1) '1)])

(set! i_1 tmpsmp_13))
(let ([tmpsmp_15 (VQueue Int) VQ.3)

tmpsmp-15))))
tmpsmp_17)])

(let ([tmpsmp21 (Stream Int)
(iterate

(let ()
(lambda (x_4 VQ_5) (Int (VQueue Int))

(begin
(let (Ctmpsmp.9 Int (* x_4 x4)])

(emit VQ_5 tmpsmp_9))
(let (Ctmpsmp_7 Int (+ x_4 x_4)])

(emit VQ_5 tmpsmp_7))
(let ([tmpsmp_11 (VQueue Int) VQ.51)

tmpsmp_11))))
tmpsmp_19)])

tmpsmp21I))))

Figure 2-6: A very small WaveScript program, (a), and its internal representation at
a late stage in the compiler, (b)



box defining s2. As interpretable Scheme code, then, the value of the expression is

tmpsmp_21, corresponding to s2, which is the stream that feeds into BASE (the sink).

Note that sl's box has one state variable. This is encoded in the intermediate

representation by the let form wrapping the lambda given to the iterate box bound

to tmpsmp_19; in essence, the box is being rightly described as a closure. Notice also

that the box bound to tmpsmp_21 has a let form without any bindings wrapping its

lambda: s2's box has no state.

Though this S-expression representation is dense when written on the page, with a

little effort, the natural correspondence to its stream graph is apparent. Furthermore,

with the compiler's "core traverser" and an appropriate function using the popular

Scheme match function, we can write mini-passes with considerable ease. Suppose,

for example, we wanted to count the total number of emit statements in the entire

graph. We supply the core traverser with a function of two arguments: the first is

an expression to match, the second is a "fallthrough" function, by which we return

control to the core traverser. It might look as follows:

(let ([count 0])

(lambda (expr fallthru)

(match expr

[(emit ,vq ,x) (set! count (+ 1 count))]

[(program , [p]) count]

[,oth (fallthru oth)])))

This code may be difficult to understand without prior knowledge of the match

macro, but we will walk through it. First, notice that the function is a closure; count

keeps track of the number of emit statements encountered. The match call takes

the expression expr given by the core traverser, along with three pattern-matching

clauses. The first element in each of these three clauses is an S-expression pattern

that expr might take. The symbols emit and program must match exactly; comma-

unquoted symbols may match any expression. If expr's value is equal to this s-

expression - with comma-unquoted symbols replaced by some subform - then this



clause matches, and the match form returns the value of the expression in the second

part of the clause.

Thus, emit statements, as they appear in Figure 2-6, will match the first clause,

causing the counter to be incremented.

Notice the expression , [p]: this indicates that, if this clause matches, match

should recursively apply itself to the subform in the corresponding location of expr's

value. In this example, our intermediate program will match the second clause exactly

once, and the bulk of it - the part wrapped by the program form - will be sent through

match alone. When this recursion is complete, the value of the expression count will

be returned, which will then be the number of emit statements.

Finally, any remaining forms are trivially matched by the third clause, and given

to the fallthru function, which returns control to the core traverser.

The core traverser, when given this function and the intermediate program, will

return the number of emit statements contained; however, one would be hard-pressed

to call this a compiler "pass," since it is not transforming the program. It is important

to note, though, that the program is transformed by each of the match clauses: the

second part of each clause is evaluated to give the value that should replace expr. It

just so happens that, in the code above, the value that replaces the program form is

a number! Suppose instead that we wanted to change the syntax of emits slightly.

We might give match the following clause (along with the fall-through clause):

[(emit ,vq ,x) '(emit_tuple ,x)]

With no other clauses, running such a pass on our program would simply change all

of its emit statements, e.g. (emit VQ_3 (deref i_1)) would become (emit_tuple

(deref i_1)).

This essential mechanism is the basis for writing mini-passes. It will be referred

to again later on, during discussion of the added optimizations.



2.2.2 Compilation to Back-ends

The final pass transforms the intermediate program into source code for one of the

several "back-end" languages. This transformation is not an algorithmically difficult

one, but that fact belies its complexity, as "the devil is in the details" and it is here

that the compiler must interact with foreign specifications.

The profiling system to be discussed requires some changes to the XStream back-

end transformation, but they are not severe. The code-reuse optimization, also to be

discussed, requires further changes to the transformation code, but its explanation

will require little further elaboration of the back-end details.



Chapter 3

Extending the Compiler

Here we describe our extensions to the WaveScript compiler. Two small optimizations

are presented, which give a feel for how the compiler is modified. Next, profiling

of WaveScript stream graphs is discussed, with a description of the modifications

necessary to make it work. Finally, two optimizations that make use of profiling are

presented, along with their measured performance improvements. First, though, we

briefly present four applications written in WaveScript that we use as benchmarks.

3.1 Benchmark WaveScript Applications

The first benchmark is an acoustic marmot-detection program that has been a mo-

tivating application since the inception of WaveScript. We test it offline here, with

several sets of sample data, but it has been deployed for real-time use by biologists

studying marmot alarm calls. It is described in more detail in [NGC+08].

The second benchmark is an EEG, or electroencephalography, filtering application.

It processes brain activity monitored by electrodes placed on a patient's scalp.

The third benchmark is a pipeline-leak detection application. Its input data come

from vibrational and acoustic sensors attached to water pipelines, and its aim is to

detect cracks as early as possible.

The last benchmark, f ilterbank, is borrowed from StreamIt's benchmarks [TKA].

It contains a set of finite impulse response (FIR) filters which process an input signal



at several different rates.

3.2 Small Optimizations

To convey the nature of a mini-pass in the compiler, two small optimizations are

presented. Their performance impacts are not dramatic, but they illustrate techniques

used by the larger optimizations.

3.2.1 Copy Propagation

Copy propagation is the truncation of a redundant chain of variable bindings down

to a single binding, with variable references rewritten as necessary [Muc97]. Though

such redundancy is unlikely in well written code, earlier versions of the WaveScript

compiler included mini-passes that, for convenience, often inserted many such extra

bindings in the intermediate representation. Thus, copy propagation needed to be

addressed.

We show how the S-expression form of the intermediate program makes it par-

ticularly straightforward to implement copy propagation. Recall that every variable

binding occurs in the first subform of a let expression, and the scope of that binding

is the code in the second subform. Our task becomes one of recursing down the sec-

ond subforms of let expressions, while keeping track of the environments induced by

their bindings, as well as of a list of bindings to variables (rather than to compound

expressions).

As an example, Figure 3-1 shows two equivalent intermediate programs: on the

left is an original, and on the right is the transformation desired by propagating

copies. On the left, the variables y_4 and z_5 are redundant: in terms of program

correctness, there is no reason for them to exist; references to them can be replaced

by references to x_3.

Note that, in keeping with the functional nature of WaveScript, mutable variables

must be explicitly declared as such by the programmer. In the intermediate program,

these variables are given parametric types with base type Ref, e.g. as Ref Int in-



(let ( [tmpsmp_9
(Stream #()
(timer '1.0)])

(let ([tmpsmp 1l

(Stream Int)
(iterate

(let ()

(lambda

(--_1 VQ.2)

(#) (VQueue Int))
(let ([x_3 Int 'O])

(let ( y_4 Int x31)
(emit VQ_2 yA4)
(let ([z_5 Int y_41)

(emit VQ_2 z_5))))
Vq_2))

tmpsmp9)])
tmpsmpl 1))

(a)

(let ([tmpsmp_9

(Stream #())
(timer '1.0)])

(let ([tmpsmp-11

(Stream Int)
(iterate

(let ()
(lambda
(-1 VQ2)

(#() (VQueue Int))
(let ( Ex_3 Int '01)

(emit VQ2 x3)
(emit VQ2 x-3))

VQ_2))
tmpsmp_9)])

tmpsmp 11))

(b)

Figure 3-1: The intermediate representation for a short program, (a), and the equiv-
alent representation after applying copy propagation, (b)

stead of Int. Currently our copy-propagation mini-pass ignores mutable variables,

as new ones are never inserted by the compiler (as immutable bindings may be). The

programmer may introduce redundant mutable bindings, but it would be rare (and

indeed strange) for none of them to ever then change value, so that case is ignored

for now.

The approach we take is as follows: our mini-pass matches on iterate forms, and

initializes a substitution mapping of variable names to substitutable variable names.

The mini-pass also matches on let forms, for which it checks each binding to see

whether its right-hand side is a symbol (indicating that it's a variable reference); if

so, it adds an entry to the substitution mapping, (vI, Vr), where vi is the left-hand

side (the variable name to be bound) and v, the right-hand side (the substitutable

variable name). This updated mapping is used to traverse the body of the let form;

the mapping is not valid, and is not used, outside of that body. In the updated let

form, we leave out that binding. Finally, we match on variable references, and we



replace it with its substitution in the current mapping, if there is one.

Below we show the code for the match-clause for matching let forms.

[(let ([,lhs* ,ty* , rhs*]] ... ) ,body)
(let-values ([(tosubst newbinds)

(partition substitutable? (map list lhs* ty* rhs*))])

(define newsubst (append tosubst substs))
(define (newdriver x f) (do-expr x f newsubst))

(if (null? newbinds)
(fallthru body newdriver)
'(let ,newbinds ,(fallthru body newdriver))))]

The partition function takes a predicate returning true or false, and a list of

elements, and splits the list into two. All elements to which application of the pred-

icate returns true are in the first, and all those false in the second. The bindings in

the transformed let form are just the subset of the originals for which there was no

substitution; these are exactly what we call newbinds. If newbinds is empty, then

all the bindings have substitutions, and we do not need a let form; we just replace

it with the processed body.

do-expr is the main function containing our match form. We need to specify it

explicitly, because we need to pass along the new substitution mapping, newsubst

(the original being substs). The driver given to the core traverser only takes two

arguments; we need to use this closure to pass along the mapping.

This is the core piece of code used in copy propagation. The match clause for

variable references is simple: it just checks the mapping substs for a substitution,

and uses it if it exists.

The nested nature of let forms in the intermediate representation (let* and

letrec not being allowed), along with the essential function of the core traverser,

have made it particularly easy to locate substitutions only within their allowed scopes.



3.2.2 Reusing Box Code

In elaboration of a WaveScript program, it is possible that multiple boxes are gener-

ated that share exactly the same code. This is not surprising - in fact, it is encouraged

- given the functionality of WaveScript previously discussed. Previously, though, such

code was not reused, and would become duplicated during translation to the target

back-end. We describe this small optimization of reusing such identical code between

boxes. Though the runtime performance improvement of this optimization is negli-

gible (some small reduction in instruction-cache misses has been measured for some

applications), there is benefit in greatly reduced compile times of the target-language

code. For some applications, the reduction is drastic (around four times faster).

Two iterate boxes are considered identical if they have the same numbers and

types of state bindings (but, of course, potentially different right-hand sides), and if

the code for one can be a-converted to that of the other [Pie]. In determining the

equivalence of two boxes, though, we do not attempt a-conversion of one code to the

other. Instead, we reuse an existing part of the compiler: the rename.vars pass will,

as the name implies, rename every variable in the intermediate program. Thus, it

performs an a-conversion, but gives the caller no control over what the new variable

names will be. The important point, though, is that rename.vars is deterministic,

and does not depend on the names in the initial program: if programs A and B can be

a-converted to each other, then running renamevars on each of them will produce

exactly the same S-expression. 1

Our algorithm, then, uses a simple doubly nested loop to identify identical iterate

boxes, and gives them the same unique template tag (the mechanism for tagging will

be discussed in Section 3.3.1. For the sake of simplicity, it does not remove the

identical code from the intermediate program; redundant code is culled only during

transformation to the back-end (more on this further down). It does, though, replace

the original code with that obtained by running it through rename_vars; this will be

1To be accurate, it is not strictly true that the output of rename.vars will be a program with all
variable names different from those in the input; renamevars simply uses a counter to assign some
unique name to each variable it encounters. Indeed, running the output of renamevars through
rename-vars again will produce exactly the same program.



necessary during back-end transformation, as will be seen shortly.

We can employ one speed-up, though: soon after the WaveScript program is

parsed, before meta-program evaluation (i.e. before the stream graph is produced),

every iterate construct is given an initial template tag. When the meta-program

evaluator creates the stream graph, it opaquely copies the initial template tag to the

iterate box in the graph, from the iterate construct that generated it. Because

duplicate iterate boxes occur largely as a result of distinct instantiations of the

same generically written WaveScript iterate constructs (refer back to Figure 2-5),

boxes with the same initial template tag are likely to be identical. Because of some

degenerate cases (e.g. when the conditional of an if/then/else statement can be

fully statically evaluated), boxes with the same initial template tag are not guaranteed

to be identical; however, it makes the most sense to check equivalence only between

boxes that do have the same initial template tag. Were two boxes to be identical, but

have different initial template tags, it would imply that the WaveScript programmer

wrote two separate, identical iterate constructs - we are not overly concerned about

this case.

Code Generation for XStream

As mentioned, the back-end of focus here is XStream. Because changes to the back-

end transformer - the module that transforms the stream graph into code in the

back-end's language - are necessary, we briefly describe the structure of stream-graph

programs running atop XStream.

Each box is represented as an object of type WSBox, with a member function

iterate() embodying its code. Box state is kept simply as member variables

of the object. Stream connections between boxes are created explicitly with the

WSQuery: : connectOps () member function.

Originally, the XStream transformer created one WSBox subclass per box in the

stream graph, and instantiated exactly one object of each such class. State variables

were transformed into protected member variables.

The new approach simply creates one WSBox subclass per template tag, as all boxes



Table 3.1: Reduction in compile times, and numbers of classes, with box-code reuse

sharing a template tag are known to have identical code. Initial values for the state

variables, unintuitively, are not passed into the constructor. Instead, state member

variables are made public, and they are initialized outside of the constructor, just

after the object's creation - the reason for this is purely one of simplicity, to change

the existing transformer code as little as possible.2

Reductions in Compile Time

In Table 3.1 we show times for compilation of each of the four benchmarks' C++

codes, generated by the WaveScript compiler, with code reuse both on and off. We

also show the corresponding reductions in number of WSBox subclasses. Compilation

was done on an Intel Pentium Dual-based PC, at 2.9 GHz, using g++ version 4.2.3.

It should be noted that, even though the number of classes for EEG is reduced

immensely, much of its compile time also comes from large coefficient tables written

directly in the code.

3.3 Support for Profiling

The more interesting optimizations employ profiling of the stream graph's execu-

tion. As discussed, the goal is to capture metrics about each operator in the stream

graph, and use them to inform optimizations. We would like to flexibly support many

pieces of profiling information, and we describe how this is accomplished within the

WaveScript compiler, although for now we mainly use per-box output-data rates and

2It should be noted that we have little interest in generating "clean" C++ code.

Compile times Class
Benchmark Reuse off Reuse on reduction
Marmot 13s 9s 26%
EEG 57s 28s 64%
Pipeline 6s 5s 25%
FilterBankNew 44s 11s 80%



per-box run times.

3.3.1 Annotations

To support a number of optimizations, especially those that use profiling, a mechanism

for attaching arbitrary metadata to stream-graph boxes was required. Though this

mechanism itself required (minor) changes to many disparate parts of the compiler,

one of its requirements was that adding new pieces of metadata would not require

any further change, except to the optimizations which made use of them directly.

The syntax of the intermediate representation was changed to include an anno-

tation list with every box in the stream graph. An annotation list is essentially a

Scheme-style association list, i.e. a list of key/value pairs (the key always being a

symbol). Figure 3-2 shows the intermediate representation for a very simple box,

before and after the change to add annotation lists.

The change, of course, is a fairly simple one. The (tagged) annotation list be-

comes the first subform of the iterate form. In this example, the annotation list

includes a unique name for the box, as well as its initial template tag, as described

in Section 3.2.2.

The change requires, though, that every match clause that matches against such

a form be updated. A clause that attempted to match with the pattern

(iterate (let ,bindings ,body) ,input)

must now, for example, match with

(iterate (annotations . ,annot) (let ,bindings ,body) ,input)

instead (similarly for timer and merge).

Unfortunately, the compiler, and the behavior desired, are a bit more complex than

this. To support some optimizations - such as code reuse - annotations need to be

inserted before meta-program evaluation, i.e. before the intermediate representation

that describes a stream graph is generated. Before this point, iterate forms may be

treated similarly to other forms, all of which might be required to match against a



(iterate
(let ( [s1l

(lambda

tmpsmp_9)

(Ref Int) (Mutable:ref '0)])
(_2 VQ_3)
(#() (VQueue Int))

(begin
(emit VQ.3 (deref s_1))
(let ([tmpsmp_5 Int (+ (deref s_1) '1)])

(set! s-1 tmpsmp_5))
(let ([tmpsmp_7 (VQueue Int) VQ_33)
tmpsmp_7))))

(a)

(iterate
(annotations [name . s-1551

[initial-template-name . tmp _1])
(let ([s1 (Ref Int) (Mutable:ref 'O)])

(lambda (__2 VQ_3)
(#() (VQueue Int))
(begin

(emit VQ.3 (deref s-1))
(let ([tmpsmp_5 Int (+ (deref s_1) '1)])

(set! si tmpsmp5))
(let ([tmpsmp_7 (VQueue Int) VQ_31)

tmpsmp7))))
tmpsmp_9)

(b)

Figure 3-2: The original intermediate representation for a simple box is shown in (a);
the same box, with annotations attached (italicized), is shown in (b).



more generic pattern, in which the first subform is a comma-unquoted symbol. Such

cases must be recognized, and in some cases split into two; a fair amount of care is

required.

Merging Annotation Lists

Reading a metadatum from an annotation list could not be simpler: the Scheme

function assq is used directly. Adding a metadatum is also easy, assuming it does

not already exist in the annotation list; however, we must consider the more general

case of merging two annotation lists, whose contained metadata may overlap: as will

be seen in Section 3.4, when boxes themselves are merged, their annotation lists must

be merged intelligently. For each metadatum, the proper behavior depends on its

name, and on the context of the merge. Consider merging two annotation lists, L and

R. For each metadatum there are five choices for how to merge:

* left: if the metadatum exists in L, use it; otherwise use the one from R

* right: if the metadatum exists in R, use it; otherwise use the one from L

* left-only: if the metadatum exists in L, use it; otherwise, do not include the

metadatum in the merged list

* right-only: if the metadatum exists in R, use it; otherwise, do not include the

metadatum in the merged list

* manual: use an ad-hoc function to manually generate a new metadatum, from

each in L and R

The merge-annotations function, in addition to taking L and R, takes an asso-

ciation list of hints indicating which of these five behaviors should be used for each

metadatum (and, also, a default behavior for metadatum keys not listed among the

hints).

This very general behavior is not merely theoretical: it is very important to allow

such flexibility, as will be seen in the coming sections.



3.3.2 Data-Rate Profiling

The Scheme simulator, as discussed, provides a working run-time engine for execution

of WaveScript stream graphs. It is not intended for performance-critical deployment,

and is included for use mostly as a verification and testing tool for the programmer.

It is not, therefore, sufficient for providing many types of real run-time profiling

information that might be desired; however, it is absolutely capable of accurately

recording the data rates between boxes, i.e. the number of tuples emitted per box,

because it still processes streams exactly as they would be by a faster back-end.3

Furthermore, when accompanied by knowledge of the sizes of data types in XStream,

it can report these data rates in bytes-per-tuple as well.

Since the Scheme simulator is easily run as a mini-pass within the compiler, it is a

very useful way of capturing this profiling information. When simulation is concluded,

the data rates (of tuples and bytes) are attached as data-rate annotations to their

respective boxes, as described in Section 3.3.1.

For reference, Figure 3-3 shows a high-level view of the flow of the WaveScript

compiler, once profiling has been added. Simulator profiling is performed on the

stream graph, which is created by the meta-program evaluation step. Further metrics

are profiled during back-end execution, to be used during re-compilation.

3.3.3 Profiling Outside of the Compiler

Aside from data rates, most profiled information must be collected during execution

on the back-end that will be used for deployment. In our case, this means profiling

must be done while running the stream graph on XStream.

3Note that while this is usually true, it is not strictly true. As discussed, merge introduces non-
determinism, which is not accounted for here. We assume that programs written in WaveScript force
determinism on their streams, or are not significantly affected by non-determinism; this is the case
with the benchmarks used in this thesis.



WaveScript Compiler

Figure 3-3: A simplified
profiling support added

view of the major stages of the WaveScript compiler, with



Profiling in C++

Fortunately, the Performance Application Programming Interface (PAPI) makes pre-

cise fine-grained profiling of the XStream-based code relatively easy [BDG+00]. We

rely on performance counters within the CPU to track desired variables: for example,

the number of clock cycles passed, or the number of cache misses that have occurred.

Once our program has instructed PAPI to begin tracking a performance counter, a

single function (either PAPIgetvirt_cyc (), or PAPIread()) is used to sample that

counter. Because we wish to gather performance data per box of the stream graph,

the C++ code generated by the compiler must be supplemented as follows. A sam-

ple is taken at the beginning of each box-fire (i.e. WSBox: :iterate() call), and at

the end of each box-fire; the difference is added to a running counter kept for the

box. Each box-fire makes calls to emit(), though, which may proceed to call the

iterate () function of the downstream box. Thus, we also take samples just before,

and just after, every emit () call a box makes, and we subtract their difference from

the box's counter.

It is difficult to measure the overhead of such run-time profiling; we essentially

assume that it is not significant. In any case, profiled information is consistent among

identical runs. We would expect that to be true, since the values of performance

counters in use are saved during context switches (including those for kernel-based

threads). Profiling, though, is still safest to perform on an unloaded computer, to

minimize cache pollution.

Feeding Profiled Information Into the Compiler

This method complicates the desired seamlessness of using profiling to inform op-

timization: a WaveScript program must be compiled once, run on XStream, then

fed back into the compiler along with the new XStream-profiled information. Much

fuss is avoided using annotations, though: the C++ code generated during initial

compilation is modified to print the S-expression of a list of annotation lists (one

per box), which is simply grepped and given to the compiler as a compilation pa-



A: B

Figure 3-4: If boxes A and B form a pipeline, they can be merged into a single box.

rameters file. These annotation lists contain the just-profiled data; they are merged

with those of their respective boxes at an early stage in the compiler, soon after

meta-program evaluation. Note that, now, it becomes critical that the box names

in the intermediate program during re-compilation are the same as those from the

initial compilation. The naming procedures are, indeed, all deterministic within the

compiler; but we must add to the compiler's specification that the naming procedures

stay deterministic, dependant only upon the given WaveScript source code.

3.4 Using Profiles: Box Merging

Box merging is the mechanism by which two - and, by induction, many - boxes are

rewritten as one. Merging the right pairs of boxes is a performance optimization: the

target language's compiler has more opportunity to do its own optimization if code

from one function is inlined with another; and XStream's emit () calls typically have

significant overhead that can be eliminated. Before describing the decision behind

when to perform box merging, we first describe how it is done.



3.4.1 Merging Pipelined Boxes

Two boxes in a pipeline configuration can be merged into one box with the same

functionality. Boxes A and B are in a pipeline configuration when B's only input

stream is A's output stream; A's output stream does not feed into any other box;

and A has only one input stream. Figure 3-4 illustrates this. Note that B's output

stream may feed into many other boxes.

The mechanism to merge is essentially as follows: replace every emit statement in

A's code with B's code. But the value emitted in A must become the input variable

for B, so every time we do this replacement, we wrap B's code with a let form,

binding the input argument to B to the value in the emit statement. Formally, we

separate each box into its state and its code as distinct objects: each box has its

set of state - Astate and B,tate - and its code - Acode and Bcode; each of the latter is

treated as a function of the value by which the respective box is fired. The state for

the merged box is just the union of the two boxes' state sets (assuming no overlap in

state-variable names); their codes are merged using the substitution

[Bcode / emit] Acode

where emit is treated as a function representing the code's emit statement. In the

relevant compiler code, the renamevars function is applied before merging boxes, to

ensure that the state-variable names in A tate and Bstate do not overlap, and so that

Acode and Bcode do not share any free variables.

3.4.2 Identifying Pipelines

Before two pipelined boxes can be merged, they must be identified as having a pipeline

configuration. To do this, we rely on an existing mini-pass, smoosh-together, to

rewrite the intermediate program in a way that makes pipelines fairly easy to identify.

Recall the pattern that iterate boxes match:

(iterate (annotations . ,annot) ,body ,input-stream)



smoosh-together rewrites the program in such a way that, if a box's output

stream is used by only one other box, then it appears directly as the input-stream

variable in the pattern above. In other words, after smoosh-together, all pairs of

pipelined boxes will match this pattern:

(iterate (annotations . ,down-annot)

,down-body

(iterate (annotations . ,up-annot) ,up-body ,up-input-stream))

Here, the outermost iterate construct describes the downstream box, which takes

the stream from the box described by the innermost iterate construct as input.

3.4.3 Deciding When to Merge

The decision of when to merge pipelined boxes is made based on profiling information.

The initial estimation is that two pipelined boxes are good candidates for merging if

the stream between them has a very high data rate, because of the high overhead of

emit statements in XStream. This is particularly true if the downstream box runs

very quickly per firing, because the emit statement may become the dominant cost.

By experimentation, it has been observed that any performance enhancements

from additionally merging boxes with lower data rates is usually negligible. Moreover,

there is a potential reason not to merge boxes unnecessarily. Though the benchmarks

here are only run on a single CPU, ultimately, multi-core and multi-host back-ends

will be desired, and on these platforms, a single box firing always runs on a single

core; merging boxes will potentially reduce parallelism on such systems, so it should

not be done without reason.

Our strategy uses a fairly simple heuristic that has been observed to provide a

performance benefit in practice. If a box is in a pipeline with its downstream neighbor,

and if its output data rate (in bytes) is more than one standard deviation above the

average, then it is merged with that neighbor.



Table 3.2: Speedup using box merging

3.4.4 Performance Benefits

Table 3.2 shows times for trial runs of the benchmark applications, with and without

box merging. Execution was done on an Intel Pentium Dual-based PC running at 2.9

GHz (confined to a single core).

The marmot-detection application sees the most benefit: it is a fairly large pro-

gram, with several high-rate streams around which "small" (in terms of code size and

run time) boxes can be merged. The pipeline-leak detector is close behind, for similar

reasons. EEG and FilterBankNew benefit somewhat less: for these benchmarks, the

"heavier" streams are not much heavier than the rest, so even when their respec-

tive boxes are merged downstream, the performance improvements gained are not as

great.

It should also be noted that the amount of new intra-procedural optimization that

box merging enables is difficult to judge. This may be an area for more research in

the future.

3.5 Using Profiles: Window/Dewindow

The "Window/Dewindow" optimization attempts to directly improve cache locality of

large-enough applications by forcing certain boxes to fire multiple times, sequentially,

before other boxes are allowed to fire. This optimization, then, would appear at first

glance to require changes to the back-end engine, but in fact it does not; instead, it

reuses existing pieces of the WaveScript compiler to modify the intermediate program.

Recall the window and dewindow operators; a fixed-size windowing box was de-

scribed in 2.1.4. In WaveScript, window and dewindow are actually functions that

Benchmark Merging off Merging on Speedup
Marmot 86.241s 79.401s 8.61%
EEG 19.701s 19.019s 3.59%
Pipeline 24.324s 22.886s 6.28%
FilterBankNew 63.368s 62.972s 0.63%
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Figure 3-5: Insertion of window/dewindow pairs to isolate a box: here, box B is
isolated to run multiple times in a row.

create such boxes, the former taking an argument indicating the concrete Sigseg size

to use. window produces a box that fires n times, for some fixed n, and then emits a

single Sigseg containing the last n input tuples it received. dewindow is the inverse:

every time its box fires, it takes a Sigseg as input, and emits its n elements in order.

A window/dewindow pipeline, then, itself inserted in a pipeline in the stream

graph, effectively splits the execution into two parts, forcing the upstream subgraph

to produce n tuples before the downstream subgraph can consume any.

Beyond this, we can isolate a single box by placing window/dewindow pairs both

before and after it. Figure 3-5 shows how this is accomplished: the window/dewindow

pairs are inserted directly before and directly after box B, ensuring that it runs mul-

tiple times sequentially. In the figure, the filled circles attached to streams indicate

that the respective boxes should be merged, using the box-merging mechanism pre-

viously described: window and dewindow boxes are known to be very small and fast,

so there is no reason no to merge them as shown.



3.5.1 Deciding When to Window/Dewindow

Boxes with a long per-firing run time are expected to benefit less from this optimiza-

tion, than boxes with very short run time. Especially if a fast-running box fires many

times, the overhead of an instruction-cache miss of its code will be more significant.

Thus, the decision of when to apply this optimization uses profiling information gath-

ered from execution on XStream, as described in Section 3.3.3, to examine per-box

total run times. It also uses per-box firing counts, obtained from profiling in the

Scheme simulator.

Deciding on a specific heuristic is, as was the case with box merging, not easy.

Once again, there is a reason for not applying the optimization to every box: every

application of it puts further pressure on the data cache. Thus, we use a fairly

conservative approach to identify the boxes most likely to benefit: the same standard-

deviation threshold is used as described in Section 3.4.3, except that rather than using

each box's output data rate, the ratio of its number of firings over its total run time

is used. This simple approach shows some performance benefit, but developing better

heuristics is an area of ongoing research.

3.5.2 Deciding on Window Sizes

Choosing proper window sizes is a similarly difficult decision. In terms of instruction-

cache locality, bigger window sizes are generally better; however, bigger window sizes

put more pressure on the data cache.

In fact, there are two window sizes to consider: that for input, and that for output.

Fortunately, it is an easy enough choice to match the ratio of input window size over

output window size, to the ratio of number of firings over number of tuples emitted.

Given this ratio, we keep the window sizes conservatively small: the smaller of

the two is 16, unless that would force the other to be bigger than 128; in that case,

the larger is 128. Experimentation with the benchmark applications has yieled no

observable improvement for larger window sizes; however, this problem again could

likely benefit from improved heuristics.



3.5.3 Windowing with Arrays Instead of Sigsegs

Though it is quite convenient to reuse the window and dewindow operators directly,

it is wasteful to allocate a new Sigseg for every window of tuples created. It is

much preferable to use a single array, allocated exactly once. This is possible, and

involves only a simple rewrite of window and dewindow, but it relies on two external

guarantees:

* The two boxes upstream and downstream from each created window box must

always run on the same CPU. Using Figure 3-5 as a template, boxes A, B, and

C must all run on the same CPU.4 In our tests, which are all single-core, this

is not a concern, but it can be guaranteed using annotations indicating what

CPU group a box is a member of: boxes in the same CPU group must always

run on the same CPU.

* The run-time scheduler must be depth-first in nature, meaning that a box, if it

emits a tuple during a firing, will not fire again before the downstream box fires.

Were this not the case, the upstream box might write new data into the single

window-array before the downstream box has consumed original data. This is

harder to guarantee automatically; it is a fact about the run-time engine that

must be known to be true. In our case, the XStream scheduler we use is indeed

depth-first.

Alternatively, of course, the entire new pipeline of seven boxes may be merged

together, but this is avoided for several reasons. Refer again to Figure 3-5. If either

A or B contains multiple emit statements, code expansion will occur, putting pressure

on the instruction cache. Even if this is not the case, code locality may be disrupted:

when the code for C - which is lodged somewhere in the middle of the new, seven-

merged box - finally gets to execute (after n runs of the upstream code), it is likely to

emit many tuples of its own, triggering its downstream boxes to run (with a depth-

first scheduler, at least). If there are many boxes further downstream, this makes it

4It should be noted that arrays passed between boxes are passed by reference, a fact which
WaveScript does not attempt to hide.



Table 3.3: Speedup using window/dewindow

less likely that the code for B will still be in the instruction cache, when it comes time

for it to finish (remember that, in the seven-merged box, the code for C is essentially

sandwiched somewhere in the middle of the code for B).

3.5.4 Performance Benefits

In Table 3.3 are shown trial runs of the benchmark applications, with and without the

window/dewindow optimization. The same PC was used as in Section 3.4.4, again

with confinement to a single core.

The marmot detector once again sees the most benefit, likely owing to its program

size. The pipeline-leak detector, which is smaller, sees less improvement. EEG,

though its stream graph is quite large, benefits greatly from code reuse (as seen in

Section 3.2.2), so its instruction-cache locality should not be as problematic; the

case is the same for FilterBankNew, whose graph is essentially structured as several

identical filter pipelines.

3.6 Box Merging and Window/Dewindow

Combining the two optimizations just discussed does not in general give strictly ad-

ditive performance benefit, because the sets of boxes chosen for use by them are

likely to have overlap. In Table 3.4 we present results from trial runs in which the

window/dewindow optimization is applied before the box-merging optimization. The

same PC was used as in Sections 3.4.4 and 3.5.4.

In fact, by manual inspection, it is seen that both optimizations, with the policies

specified, do often want to use the same boxes. Thus, though it has not been explored

Benchmark Win/dewin of Win/dewin on Speedup
Marmot 86.241s 80.593s 7.01%
EEG 19.701s 19.213s 2.54%
Pipeline 24.324s 23.411s 3.90%
FilterBankNew 63.368s 62.868s 0.80%



Table 3.4: Speedup using both window/dewindow and box merging

here, a joint policy would likely be the best option.

Benchmark Both off Both on Speedup
Marmot 86.241s 78.171s 10.32%
EEG 19.701s 18.990s 3.74%
Pipeline 24.324s 22.521s 8.01%
FilterBankNew 63.368s 62.852s 0.82%



Chapter 4

Future Work

There are many areas available for future work. As mentioned, better heuristics for

the two optimizations based on profiling may lead to better performance. Though

support does now exist to profile XStream applications with any of the performance

counters exposed by PAPI, currently only clock-cycle counts are used. Balancing

instruction- and data-cache performance by measuring their respective per-box miss

rates may lead to new insights.

Currently, a new, lighter-weight back-end for WaveScript is in development by the

WaveScope group. It is targeting good multi-core performance, and it is scheduler-

agnostic: every box runs in its own thread. One extension of this thesis would be

to support more aggressive box merging as a way of generating a static schedule,

within the compiler, for this back-end. Our discussion has focused on merging boxes

arranged in pipeline configurations; but if we expand the WaveScript stream-graph

model within the compiler to allow multi-output boxes, and cycles within the graph,

then it will be possible to merge any pair of boxes, whether they are adjacent in the

graph or not. Application of the window/dewindow optimization, along with arbitrary

box merging, will essentially allow the compiler to form its own static schedule. By

merging down a stram graph in this manner until there are just as many boxes as

cores, it is believed that an efficient program can be generated for the new back-end.

A more ambitious extension of this idea is to generate several such groups of n

boxes (n being the number of cores), each being a different representation of the same



stream graph, and to extend the back-end to be able to switch between these repre-

sentations at run time. The profiling currently used only aggregates measurements

over an entire execution; it does not attempt to identify how data rates change over

time, or whether data rates change in response to other changes. The availability of

such information could justify dynamically switching representations at run time.



Chapter 5

Conclusion

Stream-graph programs allow a number of different opportunities for optimization

than strictly procedural programs. Asynchronous stream graphs, in particular, are

difficult to optimize because of their inherent unpredictability. Profiling - during

simulation, and during real execution - can expose information to help drive some

optimizations. More aggressive profiling may lead to better optimizations in the

future.

XStream is a fairly robust engine for running asynchronous stream-graph pro-

grams, but its opacity has made it somewhat difficult to optimize for, from within

the WaveScript compiler. It is believed that better control over scheduling decisions,

and likely also over memory management decisions, would enable better optimiza-

tions by the compiler. This is partly the goal of the. new, lighter-weight back-end

mentioned in the previous section: more research will be done, especially in obtaining

multi-core performance.

Still, as we have shown, there are techniques that can be implemented in the

WaveScript compiler, targeting XStream now, to obtain some performance improve-

ment. While the gains measured here are not especially dramatic, neither are they

negligible: it is clear that using profiled information can inform optimizations for

WaveScript programs. The policies used in this thesis, and the profiled metrics that

those policies use, drive the optimizations to speedups in the 5-10% range for some

realistic applications. As fairly simple policies have been used, and as only one metric



gathered from (non-simulator) execution has been used by them (namely, run time),

there is, furthermore, reason to expect even better gains from this same foundation

in the future.
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