
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

On Design and Applications of Practical
Concurrent Data Structures

IVAN WALULYA

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

On Design and Applications of Practical Concurrent Data Structures

IVAN WALULYA

Copyright © 2018 Ivan Walulya
except where otherwise stated.
All rights reserved.

ISBN 978-91-7597-815-4
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 4496.
ISSN 0346-718X

Technical report 164D
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: ivanw@chalmers.se

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2018.

ii

On Design and Applications of Practical Concurrent Data Struc-
tures

Ivan Walulya
Department of Computer Science and Engineering, Chalmers University of Technology

ABSTRACT
The proliferation of multicore processors is having an enormous impact on
software design and development. In order to exploit parallelism available
in multicores, there is a need to design and implement abstractions that pro-
grammers can use for general purpose applications development. A common
abstraction for coordinated access to memory is a concurrent data structure.
Concurrent data structures are challenging to design and implement as they
are required to be correct, scalable, and practical under various application
constraints. In this thesis, we contribute to the design of efficient concurrent
data structures, propose new design techniques and improvements to existing
implementations. Additionally, we explore the utilization of concurrent data
structures in demanding application contexts such as data stream processing.

In the first part of the thesis, we focus on data structures that are difficult to
parallelize due to inherent sequential bottlenecks. We present a lock-free vector
design that efficiently addresses synchronization bottlenecks by utilizing the
combining technique. Typical combining techniques are blocking. Our design
introduces combining without sacrificing non-blocking progress guarantees. We
extend the vector to present a concurrent lock-free unbounded binary heap that
implements a priority queue with mutable priorities.

In the second part of the thesis, we shift our focus to concurrent search data
structures. In order to offer strong progress guarantee, typical implementations
of non-blocking search data structures employ a “helping” mechanism. However,
helping may result in performance degradation. We propose help-optimality,
which expresses optimization in amortized step complexity of concurrent opera-
tions. To describe the concept, we revisit the lock-free designs of a linked-list
and a binary search tree and present improved algorithms. We design the algo-
rithms without using any language/platform specific constructs; we do not use
bit-stealing or runtime type introspection of objects. Thus, our algorithms are
portable. We further delve into multi-dimensional data and similarity search.
We present the first lock-free multi-dimensional data structure and linearizable
nearest neighbor search algorithm. Our algorithm for nearest neighbor search is
generic and can be adapted to other data structures.

In the last part of the thesis, we explore the utilization of concurrent data
structures for deterministic stream processing. We propose solutions to two

iv

challenges prevalent in data stream processing: (1) efficient processing on cloud
as well as edge devices and (2) deterministic data-parallel processing at high-
-throughput and low-latency. As a first step, we present a methodology for
customization of streaming aggregation on low-power multicore embedded plat-
forms. Then we introduce Viper, a communication module that can be integrated
into stream processing engines for the coordination of threads analyzing data in
parallel.

Keywords: atomicity, combining, concurrent data structures, lock-free, locking,
multicore, non-blocking, synchronization, stream processing

List of Publications

Appended publications
1. Ivan Walulya and Philippas Tsigas, “Scalable lock-free vector with com-

bining,” in the Proceedings of the 31st International Parallel and Dis-
tributed Processing Symposium, pp. 917–926, IEEE 2017.

2. Ivan Walulya, Bapi Chatterjee, Ajoy K. Datta, Rashmi Niyoliya, and
Philippas Tsigas,“Concurrent lock-free unbounded priority queue with
mutable priorities,” in the Proceedings of the 20th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems, LNCS,
Springer 2018.

3. Bapi Chatterjee, Ivan Walulya and Philippas Tsigas, “Help-optimal and
languageportable lock-free concurrent data structures,” in the Proceedings
of the 45th International Conference on Parallel Processing, pp. 360–369,
IEEE 2016.

4. Bapi Chatterjee, Ivan Walulya, and Philippas Tsigas, “Concurrent lin-
earizable nearest neighbour search in lockfree-kd-tree,” in the Proceedings
of the 19th International Conference on Distributed Computing and Net-
working, pp. 11:1–11:10, ACM 2018.

5. Lazaros Papadopoulos, Dimitrios Soudris, Ivan Walulya, and Philippas
Tsigas, “Customization methodology for implementation of streaming
aggregation in embedded systems,” Journal of Systems Architecture -
Embedded Systems Design, vol. 66-67, pp. 48–60, Elsevier 2016.

6. Ivan Walulya, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vin-
cenzo Gulisano, Marina Papatriantafilou, and Philippas Tsigas, “Viper: A
module for communication-layer determinism and scaling in low-latency
stream processing,” Future Generation Computer Systems, vol. 88, pp.
297–308, Elsevier 2018.

v

vi

Other publications
The following articles were also published during my PhD studies, but not
included in this thesis.

A. Ivan Walulya, Yiannis Nikolakopoulos, Vincenzo Gulisano, Marina Pap-
atriantafilou, and Philippas Tsigas, “Viper: Communication-layer deter-
minism and scaling in low-latency stream processing,” in Euro-Par 2017:
Parallel Processing Workshops, vol. 10659, pp. 129–140, LNCS, Springer
2018.

B. Lazaros Papadopoulos, Ivan Walulya, Philippas Tsigas, and Dimitrios
Soudris, “A systematic methodology for optimization of applications
utilizing concurrent data structures,” IEEE Transactions on Computers,
vol. 65, no. 7, pp. 2019–2031, IEEE 2016.

C. Lazaros Papadopoulos, Ivan Walulya, Paul Renaud-Goud, Philippas Tsi-
gas, Dimitrios Soudris, and Brendan Barry, “Performance and power
consumption evaluation of concurrent queue implementations in embed-
ded systems,” Computer Science - Research and Development, vol. 30, no.
2, pp. 165–175, Springer 2015.

D. Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Pa-
patriantafilou, and Philippas Tsigas, “Deterministic real-time analytics
of geospatial data streams through scalegate objects,” in the Proceedings
of the 9th ACM International Conference on Distributed Event-Based
Systems, pp. 316–317, ACM 2015.

E. Ivan Walulya, Yiannis Nikolakopoulos, Marina, and Philippas Tsigas,
“Concurrent data structures in architectures with limited shared memory
support,” in Euro-Par 2014: Parallel Processing Workshops, vol. 8805,
pp. 189–200, LNCS, Springer 2014.

F. Lazaros Papadopoulos, Ivan Walulya, Philippas Tsigas, Dimitrios Soudris,
and Brendan Barry, “Evaluation of message passing synchronization algo-
rithms in embedded systems,” in the Proceedings of the 14th International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, pp. 282–289, IEEE 2014.

Research Contribution
Paper 1 was authored in collaboration with Philippas Tsigas. I contributed
to the design and implementation of the presented algorithms. Additionally, I
participated in the writing of the paper. Paper 2 builds on previous work by
Ajoy K. Datta and Rashmi Niyoliya extending the work in Paper 1 to build a
concurrent unbounded binary heap. In this paper, I contributed to the design of
the presented algorithms, implementations, and authoring of paper.

In Paper 3, I contributed to the design of the algorithms, proof sketches, and
developed the C/C++ implementations presented in the paper. Additionally, I
developed the benchmark suite utilized for all results presented in the paper.

My contributions to Paper 4 include participation in the design of Nearest
Neighbor Search (NNS) algorithm on the concurrent KD-Tree, proof of cor-
rectness of the NNS algorithm. Implementation of the designed algorithms and
benchmarks used in the evaluation of the algorithm in addition to co-authoring.

Paper 5 is an extension of joint work with Lazaros Papadopoulos in Pa-
pers B, C, F; together, the works were developed for exploiting parallelism
available in low-power embedded systems. In this work, my contributions were
on the design of concurrent data structures and algorithms ported onto the em-
bedded systems. Additionally, I participated in the writing of the papers, while
Papadopoulos performed the bulk of the experiments presented in the papers.

In Paper 6, I integrated ScaleGate (a novel interface for the deterministic
merging of multiple data streams) into Apache Storm Stream Processing Engine,
and extended ScaleGate to include flow-control thus making it usable in a
task-based scheduler as opposed to a thread-based scheduler. Additionally, I
implemented and performed benchmarks for throughput, latency, and energy
measurements on general purpose processors. Benchmarks on Odroid devices
were implemented in collaboration with Dimitris Palyvos-Giannas. Additionally,
I was the lead on the writing of the paper in collaboration with all other authors.
This work was a continuation of collaboration on Paper D.

To my parents, my brothers, and Lynnie.

Acknowledgments

I would like to start by thanking my supervisor Prof. Philippas Tsigas who
encouraged me to pursue a research career, has supported and mentored me
all these years with great insight and wisdom. I am also grateful to my co-
supervisor Prof. Marina Papatriantafilou for great counsel, encouragement,
uplifting discussions, and feedback.

A single name appearing on the cover of this thesis is a misrepresentation of
the efforts that have gone into the work herein. I owe a debt of gratitude to my
co-authors and collaborators that have directly or indirectly contributed to this
work. In no particular order, thank you, Bapi Chatterjee, Yiannis Nikolakopou-
los, Vincenzo Gulisano, Aras Atalar, Paul Renaud-Goud, Lazaros Papadopou-
los, Charalampos Stylianopoulos, Dimitris Palyvos-Giannas, Adones Rukundo,
Daniel Cederman, Anders Gidenstam, Dimitrios Soudris, Brendan Barry and,
Ajoy K. Datta.

I am honored to have Assoc. Prof. Danny Hendler as the faculty opponent
during the thesis defense. I would like to acknowledge members of the grading
committee: Dr. Emmanuelle Anceaume, Prof. Håkan Grahn, Prof. Lasse Natvig,
and Associate Prof. Pedro Petersen Moura Trancoso. I also wish to thank my
examiner Prof. Aarne Ranta, and the follow-up committee for their support
during my studies.

I take this opportunity to thank the administration at the Department of
Computer Science and Engineering. I received tremendous help on adminis-
trative tasks from Eva Axelsson, Rebecca Cyren, Marianne Pleen-Schreiber,
Tiina Rankanen, and Peter Helander. I would also like to extend a token of
appreciation to my managers Tomas Olovsson and Peter Lundin.

Many thanks to all past and present members of the NS group that have
contributed to such a great working environment: Ali, Aljoscha, Amir, Bastian,
Elad, Farnaz, Fazeleh, Georgia, Giorgos, Hannaneh, Iosif, Magnus, Nasser,
Nhan, Olaf, Oscar, Thomas, Valentin, Valentin, Zhang.

I consider myself particularly lucky to be able to call several current and
former members of the department, not just colleagues, but friends. Thank

ix

x

you Alirad, Bhavi, Chloe, Madhavan, Petros, Prajith, Stavros, Stefano, Vagelis,
Yiannis, among others.

Special thanks to all the thirstos, especially Isaac Muganwa for always
pushing me to heights that I might have thought out of reach.

Funding. The work in this thesis was supported by the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2013-
2016) / Grant agreement no. 611183, EXCESS Project.

Ivan Walulya
Göteborg, November 2018

Contents

List of Publications v

Personal Contribution vii

Acknowledgements ix

1 Introduction 1
1.1 Shared-Memory Multicore Systems 5

1.1.1 Caches and Memory Consistency 6
1.1.2 Atomic Primitives . 8

1.2 Synchronization . 9
1.2.1 Blocking Synchronization 10
1.2.2 Non-blocking Synchronization 11
1.2.3 Power of Synchronization Primitives 12

1.3 Concurrent Data Structures . 12
1.3.1 Correctness of Concurrent Data Structures 13

1.4 Non-blocking Concurrent Data Structures 15
1.4.1 Design and Implementation Approaches 15
1.4.2 Concurrent Data Structures for Efficient Data Stream

Processing . 18
1.5 Contributions . 20
Bibliography . 22

2 Scalable Lock-Free Vector with Combining 31
2.1 Introduction . 32

2.1.1 Related Work: . 34
2.2 System Model and Definitions 35
2.3 Algorithm . 37

2.3.1 Overview of the Algorithm 37
2.3.2 Implementation Details 38
2.3.3 Correctness . 46

xi

xii CONTENTS

2.3.4 Memory Management and ABA Problems 49
2.4 Performance Evaluation . 50

2.4.1 Experimental Results and Discussion 51
2.5 Conclusion . 53
Bibliography . 53

3 Concurrent Lock-free Unbounded Priority Queue 59
3.1 Introduction . 60
3.2 Preliminaries . 62
3.3 Algorithm . 63

3.3.1 Lock-free ADT Operations 65
3.3.2 Design Optimizations . 67

3.4 Correctness Proof . 69
3.5 Evaluation . 70
3.6 Conclusion . 75
Bibliography . 75

4 Help-optimal and Language-portable Lock-free Concurrent Data
Structures 81
4.1 Introduction . 82

4.1.1 Overview . 82
4.1.2 Related Work . 85

4.2 Help-optimality: Motivation . 86
4.3 Help-optimal Lock-free Linked-list 89

4.3.1 Design . 89
4.3.2 Correctness and Lock-freedom 93
4.3.3 Amortized Step Complexity 94

4.4 Help-optimal Lock-free BST . 95
4.4.1 Design . 95
4.4.2 Correctness and Lock-freedom 101

4.5 Help-optimality: Specification 101
4.6 Experimental Evaluation . 102

4.6.1 Overview . 102
4.6.2 Experimental Set-up . 103
4.6.3 Performance Results and Discussion 104

4.7 Conclusion . 108
Bibliography . 109

CONTENTS xiii

5 Concurrent Linearizable Nearest Neighbour Search in LockFree-
kD-tree 113
5.1 Introduction . 114

5.1.1 Background . 114
5.1.2 A high-level summary of the work 116

5.2 LockFree-kD-tree: Basic Design 118
5.2.1 Design of the LFkD-tree 118
5.2.2 Sequential Behaviour of the ADT Operations 119

5.3 LockFree-kD-tree: Implementation 120
5.3.1 Lock-free Synchronization: Basics 120
5.3.2 Linearizable ADD, REMOVE and CONTAINS operations 124
5.3.3 Linearizable Nearest Neighbour Search 129

5.4 Correctness and Lock-freedom 140
5.5 A real-life application . 149
5.6 Experimental Evaluation . 150

5.6.1 Experimental Setup . 150
5.6.2 Datasets . 151
5.6.3 Observations and Discussion 152

5.7 Conclusion and Future Work . 156
Bibliography . 156

6 Customization Methodology for Implementation of Streaming Ag-
gregation in Embedded Systems 161
6.1 Introduction . 162
6.2 Related Work . 164
6.3 Streaming Aggregation . 165

6.3.1 Streaming Aggregation description 165
6.4 Customization Methodology . 168

6.4.1 Design Space . 168
6.4.2 Methodology description 170

6.5 Demonstration of the Methodology 171
6.5.1 Platforms description . 171
6.5.2 Experimental Setup . 174
6.5.3 Time-based aggregation results 175
6.5.4 Count-based aggregation results 181
6.5.5 Performance per watt evaluation 184
6.5.6 Discussion of Experimental Results 185

6.6 Conclusion . 189
Bibliography . 190

xiv CONTENTS

7 Viper: A Module for Communication-Layer Determinism and Scal-
ing in Low-Latency Stream Processing 195
7.1 Introduction . 196
7.2 System Model . 198

7.2.1 Data Streaming . 198
7.2.2 Parallelism, determinism and syntactic transparency . . 199
7.2.3 Streaming operators’ performance metrics 201

7.3 Operator- vs communication-layer determinism 201
7.3.1 Limitations of operator-layer determinism 201
7.3.2 Additional potential benefits from determinism provi-

sioning in the SPE-communication-layer 204
7.4 The Viper module . 205

7.4.1 Viper as an SPE module: Apache Storm use case 206
7.5 Evaluation . 210

7.5.1 Intra-Node Parallel Analysis - Setup 210
7.5.2 Intra-Node Parallel Analysis - Scalability 211
7.5.3 Inter-Node Distributed Parallel Analysis - Setup 219
7.5.4 Inter-Node Distributed Parallel Analysis - Scalability . . 220

7.6 Related work . 222
7.7 Conclusions . 222
Bibliography . 223

8 Conclusions and Future Work 227

1
Introduction

In recent years, multicore systems have become ubiquitous; processors in hand-
held devices, laptops, desktop computers to super-computers contain multiple
cores. This emergence of multicore systems is driven largely by demand; demand
for more computing power. For more than four decades, two scaling principles
guided processor design: Moore’s law [1] and Dennard’s scaling [2]. Moore’s
law is an observation that the number of transistors cost-effectively placed on
a chip doubles approximately every two years. Dennard scaling is related to
Moore’s law, in that, the power consumption is proportional to transistor size.
When transistors got smaller, voltage and current scaled down; the power density
stayed the same from one processor generation to the next.

In the early 2000s, the semiconductor industry started experiencing a break
down in Dennard scaling: threshold voltage, current leakage, and subsequent
heat dissipation do not scale with size, creating a physical limit to the practical
size of a transistor – Power Wall. The power wall compelled processor designers
to change their approach; rather than to increase the clock rate of a single
processor, add multiple processors with lower clock rates on a single chip.

A chip with multiple processing units is commonly referred to as multicore
and each processing unit as a core. Generally, the cores communicate through
read and write operations on shared-memory (shared-memory multicores). The
primary objective is to achieve more throughput with parallel executions instead

1

2 CHAPTER 1. INTRODUCTION

of improving the completion time of a single execution.
This shift in processor design has had a significant impact on software design

and implementation as programmers seek to utilize the multiple computing cores
efficiently. In the ideal case, multiple cores are employed to perform a large task
split into sub-tasks; each core independently executes its sub-tasks to comple-
tion. Applications that execute in this manner are considered embarrassingly
parallel. In practice, however, many tasks cannot be easily divided and executed
independently in parallel1; computing cores need to coordinate their actions.

As an analogy, consider a family attempting to assemble an IKEA dining
table. If the whole family is involved in the assembly, they could “probably”
complete the task faster. For this to happen, they need to divide up the task
in order to assemble different sections of the table at the same time. However,
some parts of the table must be assembled in a given order; consequently,
some members may have to wait for others to complete a given component –
synchronization. If one member takes too long on a given task, he risks delaying
others that are waiting – Blocking. Additionally, if the group spends too much
time sharing tools and the instruction leaflet – communication costs, then they
lose the anticipated speed-up. The challenge becomes harder with a larger family.

As with the analogy, multicore program execution typically comprises of
tasks that can be executed in parallel without coordination and tasks that require
coordination among the processes. Coordination is generally required when
processors concurrently access shared resources or objects. The goal is to prevent
inconsistencies that may result from the interleaving of concurrent accesses by
multiple processes.

Initially SC = 0

P1

1: old← SC
2: new ← old + 1
3: SC ← new

P2

1: old← SC
2: new ← old + 1
3: SC ← new

Figure 1.1: Shared Counter

Take for example the shared counter in Figure 1.1 incremented by two

1“No matter how great the talent or efforts, some things just take time. One cannot produce a
baby in one month by getting nine women pregnant.” – Warren Buffett

3

processes. After the two processes complete, we expect that the value of the
counter is incremented by 2. However, one of the increments could be lost due to
processes overwriting each other’s modifications. The program is said to have a
“race condition”, i.e., the outcome of the execution is dependent on the arbitrary
interleaving of events [3].

The need for synchronization in concurrent systems predates multicore
architecture [4, 5]; any program that allows concurrent operations must be
synchronized, regardless of whether the operations are actually executed in
parallel2. Synchronization allows one to explicitly dictate which interleavings are
acceptable and prohibit those that are unacceptable. Generally, this is achieved by
guaranteeing some notion of atomicity, in that, a given sequence of instructions
executed by a single process appears instantaneous to other processes.

In shared-memory multicore systems, synchronization is ordinarily achieved
through mutual exclusion: access to the shared object is guarded by locks.
Segments of the execution that are guarded by locks are referred to as critical
sections. A process that wishes to execute inside a critical section must acquire
the respective lock; acquiring the lock guarantees that instructions executed
inside the critical section appear atomic to other processes. A process releases
the lock on exiting the critical section. The popularity of mutual exclusion locks
is attributed to their simplicity in most use cases and efficient implementation in
presumably all shared-memory platforms.

However, mutual exclusion is associated with several pitfalls; locks are
blocking – arbitrary delay or failure of a process holding a lock blocks other
processes from making progress. Additionally, care must be taken to avoid
deadlocks, priority inversions and convoying.

Non-blocking synchronization has emerged as a solution to many pitfalls
associated with locks. It takes a more optimistic approach where a process
attempts to access a shared object without blocking other processes. Although
non-blocking synchronization was initially desirable for fault-tolerance in asyn-
chronous shared memory systems, recent research has shown that it has the
potential to increase parallelism [6–10].

Correct implementation of a synchronization mechanism is required to satisfy
safety and liveness properties [11]. Informally, safety states that “bad” things
never happen, such as no two processes execute inside the critical section at the
same time. Liveness states that “good” things eventually happen; for example, if
a lock is free, then some requesting process eventually acquires the lock.

2We consider two operations concurrent if their execution interval overlaps in time, parallel if
the operations can actually be executed at the same time.

4 CHAPTER 1. INTRODUCTION

Regardless of whether blocking or non-blocking, synchronization of pro-
cesses is a difficult undertaking for application developers. This complexity
is often hidden away from the developer through concurrent programming ab-
stractions. A common abstraction for synchronizing access to shared data is in
the form of concurrent data structures. In a sequential setting, data structures
organize data for efficient access. The abstraction of a data structure is described
by an Abstract Data Type (ADT), which is an interface definition of operations
that can be executed on the data structure.

In concurrent settings, in addition to implementing the ADT, the data struc-
ture hides details on the interaction of processes that simultaneously call opera-
tions on the data structure. Application developers can utilize a concurrent data
structure without concern for the implementation details as long as it observes
the interface defined by the Abstract Data Type. Hence, the implementation
of efficient, practical concurrent data structure is of paramount importance for
application developers at various levels of expertise to fully exploit parallelism
available in multicore platforms.

Abstraction does not eliminate the complexity of correct synchronization, but
it nevertheless allows us to reason about concurrent interactions at a high-level
of interface operations rather than low-level interleaving of machine instructions.
The designer of a concurrent data structure takes on the difficult task of choosing
how to implement the ADT efficiently and correctly.

Concurrent data structures are generally classified according to safety and
liveness properties that they satisfy. At this level of abstraction, the main safety
requirement is that operations on the data structure appear indivisible, i.e.,
every operation appears to take effect without interruption despite any possible
interleaving with other operations. Various formalizations of this requirement
exist in the literature e.g., Linearizability [12] and Sequential Consistency [13].

Operations on concurrent data structure are associated with different progress
guarantees: blocking or non-blocking. Delay of a process executing a blocking
operation can delay others processes, while, execution of non-blocking opera-
tions cannot delay or prevent other processes from making progress. There are
several levels of non-blocking progress [14].

Concurrent data structures form basic building blocks for more sophisticated
applications. One application that has gained significant interest is Data Stream
Processing (DSP). The interest in Data Stream Processing is a result of the
unprecedented increase in volumes of data generated at high-rates as we integrate
computing in all aspects of our lives from smart watches to self-driving vehicles.
Users require useful insights from this data in real-time; the data has to be
processed in-motion. Stream processing typically has high-throughput and low-
latency constraints and thus an excellent application domain for exploitation of

1.1. SHARED-MEMORY MULTICORE SYSTEMS 5

concurrent data structures in order to efficiently utilize multicore platforms.
In this thesis, we contribute to the body of research on efficient, practical

concurrent data structures in multicore architectures. We present design mech-
anisms that efficiently address potential synchronization bottlenecks without
sacrificing non-blocking progress guarantees. We design algorithms for portable
search data structures that do not rely on the programming language or platform
specific constructs. Additionally, we explore the utilizing of concurrent data
structures in demanding application contexts such as data stream processing.

The rest of this chapter introduces background on shared-memory multicore
architectures, synchronization in shared memory systems and design techniques
for concurrent data structures. Section 1.1 briefly describes a basic shared-
memory architecture, highlighting the effects of cache coherence and memory
consistency on parallel programs. Furthermore, it provides the semantics of vari-
ous read-modify-write instructions available on many shared-memory platforms
that typically underlie implementations of synchronization mechanisms. Sec-
tion 1.2 presents an overview of synchronization mechanisms in shared-memory
multicore architectures. Section 1.3 presents related work, challenges in the de-
sign of concurrent data structures, and highlights how concurrent data structures
are utilized in solving challenges in deterministic parallel data processing. The
contributions of this thesis are summarized in Section 1.5.

1.1 Shared-Memory Multicore Systems

A multicore processor is a processor with multiple independent computational
units (referred to as cores) on a single chip. Multicore systems may contain one
or more multicore processors – multiprocessor. We use the terms processor and
core interchangeably to refer to an independent computational unit. Similarly,
we use the terms processes and threads interchangeably to refer to active threads
of control that potentially share variables in a shared address space.

Figure 1.2 depicts a classical architecture for shared-memory multiproces-
sors, including several processors, each having multiple cores with private and
shared caches, all connected via a shared memory subsystem. Shared-memory
multicores have a single shared address space accessible to all cores. Processing
cores execute independently and communicate through read and write operations
on shared objects in memory. We consider an asynchronous shared memory
model where processes may execute at varying speeds and can experience arbi-
trary delays due to scheduling interrupts, memory page faults and cache behavior.

Single shared address space does not imply single memory; multiple memory
modules may be attached to the system and will appear as a single address space

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Typical architecture for a Shared-Memory Multiprocessor.

to the processors. The shared-memory multiprocessors are classified as either
Uniform Memory Access (UMA) – memory access latency is uniform for all
processors, or Non-Uniform Memory Access (NUMA) – memory latency is
dependent on the memory location and the processor that accesses the location.

1.1.1 Caches and Memory Consistency
The divergence in speeds between processors and memory systems compelled
system designers to develop techniques for hiding latency in accessing memory
systems. For example, write-back store buffers and cache hierarchies between
the cores and memory. Each core typically has a cache hierarchy composed of
private and shared caches. The cores store temporary copies of data in cache
hierarchy for faster access than reading from memory.

Caches create an illusion of fast high-bandwidth memory by exploiting
locality. Programs generally access small portions of memory at any small
interval in time; either an address is accessed repeatedly, and the accesses are
close in time (temporal locality) or adjacent addresses are accessed close in
time (spatial locality). Effectively, bandwidth demands on main memory are
reduced, allowing multiple processors to share the same memory.

Unfortunately, when cores store copies of shared data in caches, reasoning
about executions by different cores is not straight forward3. Replicated copies
of data in different caches may not be up-to-date; accordingly, cores may have
different views of shared memory locations. The first challenge is ensuring

3“multiprocessor synchronization algorithms assume that each processor accesses the same
word in memory, but each processor actually accesses its own copy in its cache. It hardly required a
triple-digit IQ to realize that this could cause problems.” – Leslie Lamport

1.1. SHARED-MEMORY MULTICORE SYSTEMS 7

that processors agree on the value returned by a read to a memory location –
coherence. This is addressed by cache-coherency protocols [15] which ensure
that all caches hold consistent data. The second challenge is determining when
and in what order reads by processors can return values written to different
memory locations – consistency. We cannot always assume that processors
immediately observe changes in memory made by a given processor or that
processors observe changes in the order they were issued.

Initially X = Y = 0

P1

X ← 1
if Y = 0 then

// enter critical section ;

P2

Y ← 1
if X = 0 then

// enter critical section ;

Figure 1.3: Simple algorithm for mutual exclusion

Figure 1.3 illustrates complications that can arise if processors do not have
a consistent view of memory access operations. Assume that the processes P1
or P2 are running on different processors, the program should ensure that either
process P1 or P2 executes the critical section, but not both. The programmer
reasons about the correctness of the program by visualizing its execution, with
each line of the program executed line-by-line in program order and that writes
to a memory address are immediately visible to the other process.

However, if the writes are stalled or buffered and the processes allowed to
continue with the next instruction, then memory accesses may appear reordered.
P1 and P2 proceed to enter the critical section, before either write is effected in
memory. Memory consistency models provide a formal specification on whether
such executions are allowed. Essentially, consistency models act as a contract
between the system hardware and the software on what access orders are legal
when multiple processes access common locations.

Sequential Consistency proposed by Lamport [16] extends the programmers
reasoning about line-by-line execution: it requires that memory accesses appear
to execute one at a time in some global order, and memory accesses by a single
process execute in program order. Sequential consistency guarantees that there is
no ordering of instructions in Figure 1.3 where both P1 and P2 enter the critical

8 CHAPTER 1. INTRODUCTION

section. Writes have to be completed before continuing to the if statement.
Although sequential consistency offers a simple and intuitive programming

model, it inhibits many compiler and hardware performance optimizations.
Therefore, more relaxed (possibly inconsistent) memory models have been
proposed offering substantial performance improvements [17]. Relaxed memory
models call for the programmer to explicitly ensure correctness of the program
using memory fences (or barriers) and atomic read-modify-write primitives to
dictate the appropriate ordering of events.

Modern compiler optimizations may also reorder instructions leading to
inconsistent behavior in multicores programs. Therefore, many programming
languages provide memory consistency models and synchronization primitives.
Explicit synchronization of execution events adds overhead to the execution and
therefore should be used prudently to avoid performance degradation.

1.1.2 Atomic Primitives
Modern multicore architectures provide various read-modify-write hardware
primitives that can atomically read and modify an object in memory. An oper-
ation is atomic if it appears to complete in a single step or instantaneously to
other processes. These atomic instructions are generally used as basic building
blocks for implementing synchronization constructs in shared memory multicore
systems. Figure 1.4 presents semantics of commonly available atomic primitives.

TEST-AND-SET(addr):
temp← addr
addr ← 1
return temp

FETCH-AND-ADD(addr, val):
temp← addr
addr ← addr + val
return temp

COMPARE-AND-SWAP(addr, old, new):
if addr = old then

addr ← new
return true

else
return false

▷ LL/SC pair
LOAD-LINKED(addr):

temp← addr
mark addr
return temp

▷ called after LL
STORE-CONDITIONAL(addr, val):

if IsMarked addr then
addr ← val
return true

else
return false

Figure 1.4: Pseudo-code definitions of common atomic primitives.

Architectures support and hardware implementation details may vary for the
atomic primitives in Figure 1.4 in different platforms. Compare-and-Swap (CAS)

1.2. SYNCHRONIZATION 9

and Load-Linked/Store-Conditional (LL/SC) are universal primitives (details
in Section 1.2.3), thus, can be used to construct simulations of arbitrary atomic
read-modify-write operations including those listed in Figure 1.4.

In contrast to CAS, LL/SC pair verifies that the contents of memory address
have not been modified, instead of verifying if contents at the address match a
given value. This has significant benefits for the programmer using LL/SC over
CAS in avoiding the ABA problem. The ABA problem arises as a consequence
of the fact that matching the contents at a target address with a given value does
not imply that no changes have occurred at the address. A concurrent process
may have changed the contents of the address from A to B and then back to A.
In some implementations this behavior is tolerable, however, in others, it may
lead to incorrect results.

1.2 Synchronization

The need for synchronization arises in every area where multiple entities have to
agree or commit to a given set of steps. In shared-memory multicore processors,
synchronization is used to explicitly dictate which process interleavings are
acceptable and prohibit those that are unacceptable. Synchronization is generally
achieved by guaranteeing some notion of atomicity; a given sequence of instruc-
tions executed by a single process appears instantaneous to other processes.

Synchronization mechanisms are required to be scalable and correct. Scal-
ability in this context implies that the cost of synchronization should not rise
with increasing number of processes or threads. Correctness requires that the
synchronization mechanism satisfy both safety and liveness properties. Infor-
mally, a safety property states that “bad” things never happen, while, liveness
property (progress condition) states that “good” things eventually happen [11].
Schneider et al. [18] more formally define both properties.

Examples of safety properties are: (1) Mutual Exclusion: in any execution, at
most one process is in the critical section – “bad thing” happening is two or more
processes executing in a critical section. (2) Deadlock Freedom: if a process
attempts to enter a critical section, then eventually some process executes inside
the critical section – “bad thing” happening is a deadlock.

Examples of liveness properties include: (1) Starvation Freedom: a process
makes progress infinitely often – the “good thing” is making progress. (2) Live-
lock freedom: processes do not run forever without progress – the “good thing”
is at least one process makes progress.

Note that “good thing” and “bad thing” are not well-defined concepts; there-
fore, some properties are an intersection of both safety and liveness [18]. Fur-

10 CHAPTER 1. INTRODUCTION

thermore, without any notion of progress, a synchronization mechanism would
be correct by halting all processes making it impractical. Similarly, liveness
without safety is trivial but of little practical value.

1.2.1 Blocking Synchronization
Atomicity is most commonly achieved by mutual exclusion using critical sections
guarded by locks. At any point in time, at most one process executes instructions
inside the critical section. A process that requests for a lock held by another
process will block until the lock is released (by busy waiting or yielding), thus
guaranteeing that instructions executed in the critical section appear atomic.
There are relaxations of this requirement, where multiple processes are allowed
to hold a lock and execute inside the critical section as long as no modifications
are performed (ReadWrite locks).

However, locks are blocking - arbitrary delay (scheduling preemption, page-
faults or cache misses) or failure of a process holding a lock blocks other
processes from making progress. Additionally, if a few locks are used to protect
large portions of the program (coarse-grained), they prohibit many executions
that could have correctly run in parallel, thereby reducing parallelism. Fine-
grained locking is more difficult to implement correctly; thus, care must be taken
to avoid well-known pitfalls associated with locks:

1. Deadlocks: Circular dependencies might arise where a process P1 holding
a lock L1 blocks waiting for a lock L2 held by another process P2, while
P2 is also blocked waiting on P1 to release L1. Mechanisms to avoid
deadlocks such as acquiring the locks in a specific order may have a
significant impact on the synchronization overhead.

2. Priority Inversion: If processes share a processor with preemptive schedul-
ing, a high priority process HP may have to yield the processor to a low
priority process LP that holds a lock required by HP . A middle priority
process MP that does not need the lock may preempt the low priority
process - leading to a priority inversion between high priority and middle
priority processes [19]. The system resets on the Pathfinder mission to
Mars popularized priority inversion [20].

3. Convoying: If a process holding the lock is arbitrarily delayed inside
the critical sections, other processes that wish to enter the critical section
queue up waiting for the lock to be released. When the lock is released,
the queued threads form a convoy as they gain exclusive access to the
critical section [14, 21].

1.2. SYNCHRONIZATION 11

As a consequence of their blocking nature, liveness properties associated with
lock-based synchronization are dependent on operating system scheduler [22].
Starvation-freedom and livelock-freedom are guaranteed only if no process
executes inside the critical section forever, and a process that seeks to enter the
critical section is granted access to the critical section unless another process is
already in the critical section.

In an asynchronous shared-memory model, synchronization mechanisms
are required to be resilient to arbitrary delays and failures of processes. Non-
blocking synchronization does not rely on locks; therefore, the arbitrary delay or
failure of any process does not cause delay or failure of other processes.

1.2.2 Non-blocking Synchronization
Non-blocking synchronization techniques guarantee atomicity without mutual
exclusion; consequently, they are resilient to pitfalls associated with mutual
exclusion. Additionally, they do not incur significant performance degradation
due to arbitrary process delay.

Generally, non-blocking techniques are optimistic; each process attempts
to execute independently or locally for as long as possible and publish their
modifications using atomic instructions. An optimistic execution of a process
can be invalidated by a concurrent modification, at which point, publication of
the modifications will fail, and the process will have to repeat the local execution.

In the literature, there are several levels of non-blocking progress guarantees:

1. Wait-freedom [23] – guarantees that every process continues to make
progress regardless of delays or failures of other processes. Wait-freedom
guarantees individual progress; combines non-blocking progress with
starvation freedom.

2. Lock-freedom [24] – guarantees that some process makes progress; ensures
system-wide progress without starvation freedom.

3. Obstruction-freedom [25] – guarantees that a process will make progress
if executed in isolation for long enough (i.e., no interruptions from concur-
rent processes). It does not guarantee progress under contention; starvation
and livelocks may happen if processes are executed concurrently.

Strong progress guarantees such as wait-freedom may be required for sys-
tems with real-time constraints and resiliency requirements. However, they are
non-trivial to achieve efficiently, thus, on modern shared-memory multicore sys-
tems, weaker progress guarantees such as lock-freedom and obstruction-freedom

12 CHAPTER 1. INTRODUCTION

generally suffice, and are easier to implement efficiently [26]. In contrast to
wait-freedom and lock-free, obstruction-freedom is dependent on the scheduler.

1.2.3 Power of Synchronization Primitives

Herlihy [23] constructed an infinite hierarchy of shared objects based on their
ability to solve a classical distributed systems problem in an asynchronous
shared memory system with n processes: wait-free consensus. Consensus is
a coordination problem in which n processes, each with an initial input value
unknown to the others agree on a common output value – decision. The decision
value must be one of the input values. A consensus protocol is wait-free if every
process completes in a finite number of its steps.

A consensus number C(O) of an object type O, is the maximum number of
processes for which wait-free consensus can be implemented using any number
of objects of type O and read/write registers. Wait-free consensus cannot be
implemented in an asynchronous system using read/write registers for more than
one process [27, 28]. Thus, the consensus number for read/write registers is 1.

An object is considered universal in a system of n processes if its consensus
number is at least n (C(O) ≥ n). Some consensus objects are universal in any
arbitrary systems, thus, together with read/write registers, can be used to solve
wait-free consensus for any number of processes, e.g.,CAS or LL/SC.

In the wait-free hierarchy, an object at level l has consensus number l; and
together with atomic read/write registers can implement any wait-free consensus
object at level l or lower, but not objects at higher levels. Universal consensus
objects are desirable in hardware and fundamental to non-blocking synchroniza-
tion: any arbitrary shared object can be implemented wait-free if the hardware
or programming language supports wait-free universal consensus objects.

1.3 Concurrent Data Structures
Concurrent data structures are high-level abstractions for synchronized access to
shared data. They are a fundamental component for building software systems
to exploit parallelism available on multicore systems. Concurrent data structures
are essentially adaptations of abstract data types (ADT) defined for sequential
data structures to support concurrent operations.

Each object has a sequential specification, typically defined as a set of opera-
tions that can be executed on the object and a set of legal operation sequences.
Each operation execution is specified by its pre- and post-conditions. A sequen-
tial object implementation is correct, if any operation called when pre-conditions

1.3. CONCURRENT DATA STRUCTURES 13

are true, terminates with correct post-conditions, and operation sequence is a
subset of legal operation sequences.

Reasoning about concurrent operations is challenging. Firstly, we require
that operations appear atomic, regardless of the execution interval between the
invocation and response of the operation. Secondly, when operations issued by
distinct processes overlap in time, it may be unclear in what order the operations
take effect.

1.3.1 Correctness of Concurrent Data Structures

Safety properties are used to specify the permissible order in which operations
by concurrent processes appear to execute. There are various formalizations of
this requirement such as Linearizability [12] and Sequential Consistency [13].

A history is a log of executions by concurrent processes. A history H is a
finite or infinite sequence of operation invocations and responses. A history is
sequential if; the sequence starts with an invocation and a matching response
immediately follows each invocation. Not all histories are correct; a history is
admissible or legal if it adheres to the object’s sequential specification.

A history defines a partial order on the operations it includes. An operation
op1 happens before the operation op2 inH (denoted: op1 ≺H op2) if the response
to op1 precedes the invocation of op2. Intuitively, the partial order imposes a
notion of real-time ordering on the operations in H . Operations are considered
concurrent if they are unrelated by partial order (neither op1 ≺H op2 nor op2 ≺H
op1). A history H is concurrent if it contains at least one pair of concurrent
operations.

Linearizability [12]: A concurrent object is linearizable if for every history
H there exists a permutation S of all operations in H such that

1. S is sequential and observes the sequential specifications; and

2. For each op1 ≺H op2 then op1 ≺S op2.

Thus, an execution is linearizable if there exists a sequential history S of
operations in the execution that (1) respects the object’s sequential specification,
and (2) observes the real-time ordering of events at all processes. S is referred
to as a linearization of H .

The sequence S may include a subset of pending operations. An operation
may complete all modifications on an object but take arbitrarily long to return a
response. Other operations on the object will observe the effects of the operation
that is yet to return a response. Therefore, by definition of linearizability, there

14 CHAPTER 1. INTRODUCTION

exists a single instant in time –linearization point, between invocation and
response where an operation appears to take effect.

A conventional approach to show that a concurrent execution is linearizable
is to define a linearization point for every operation in the execution history.
Intuitively, the order induced by a sequence of linearization points preserves the
real-time ordering of non-overlapping operations.

Additionally, linearizability is composable; a composition of linearizable
histories is linearizable. This property is fundamental; concurrent objects can
be designed, verified and implemented independently then combined to make a
larger object.

Linearizability strictly requires operations to observe real-time order for all
processes. However, in some cases, the real-time order of events at different
processes may not be significant. Sequential Consistency is a correctness con-
dition that exploits this relaxation in precedence ordering of operations [13].
Formally, an execution is sequentially consistent if there exists a permutation S
of all operations in a concurrent history H such that:

1. S is sequential and observes the sequential specifications; and

2. For each op1 ≺H ∣pi op2 then op1 ≺S∣pi op2.

Essentially, instead of preserving the real-time behavior of non-overlapping
operations at all processes, it only preserves the program order of operations
issued by the same process. Sequential consistency is a weaker condition than
linearizability; every linearizable sequence is also sequentially consistent, but
the reverse is not true. Additionally, sequential consistency is not composable. In
order to enhance parallelism and performance, several relaxations of correctness
conditions for concurrent data structures have been proposed [29–34].

The choice of synchronization mechanism to satisfy the safety properties of a
concurrent data structure generally dictates the liveness or progress conditions as-
sociated with the data structure operations. Correctness can trivially be achieved
using a single lock to guard the entire data structure (coarse-grained locking);
however, this restricts parallelism and may lead to performance degradation.
Multiple distinct locks can protect different portions of the data structure (fine-
grained locking) leading to more efficient exploitation of available parallelism.

1.4. NON-BLOCKING CONCURRENT DATA STRUCTURES 15

1.4 Non-blocking Concurrent Data Structures
Herlihy [23] presented general techniques for constructing a wait-free implemen-
tation of any sequential object (generally referred to as universal constructions).
However, this approach is costly for practical purposes; the method requires
copying the entire data structure for some operations and does not allow con-
current updates to the data structure. Consequently, tremendous effort has been
made to construct more efficient and practical non-blocking data structures by
exploiting specific semantics of the data structures [35–38].

A non-blocking update operation typically involves reading a memory lo-
cation, taking steps locally based on the value returned by the read, and then
modify the memory location using read-modify-write atomic primitives such as
CAS (which compares the previously read value to the current value and only
executes the modification if these are the same). The CAS only fails due to a
concurrent modification4, in which case the steps are restarted. The execution
time of a single operation cannot bounded as it may fail and retry arbitrarily.

Many concurrent data structures are represented as linked structures. Pro-
cesses access the data structure through shared pointer variables to specific nodes
in the link. The non-blocking concurrent queue by Michael et al. [39] is a classic
example of this representation; processes access the link structure through either
the head or tail pointers. Local steps start with allocating a new node and then
entering a retry loop in which modifications are made to the new node based on
the current state of the data structure, and an optimistic attempt is made to add
the new node to the data structure if the a priori state as has not changed.

Memory allocation performed with linked structures results in significant
memory management overheads. There are several memory management schemes
proposed for programming environments without automatic garbage collec-
tion [40–47].

1.4.1 Design and Implementation Approaches
(A) Helping

In various implementations of non-blocking data structures [39,48–50], a modify
operation may require more than a single atomic step to complete or to update
multiple memory locations. Consequently, concurrent operations may observe
the shared data structure in an inconsistent transient state. This inconsistency may

4Success does not guarantee that there were no concurrent modifications as we explained in ABA
problem (Section 1.1.2).

16 CHAPTER 1. INTRODUCTION

(1) block other operations from making progress, and (2) cost other operations
extra steps (e.g., traversing nodes that are logically deleted).

Operations that observe the inconsistency, help complete the operation so
that either they can ensure progress or that other operations do not pay that
cost associated with the inconsistency. Helping was initially conceived for
achieving wait-freedom [23]; it is also used in several lock-free implementations
to coordinate access to shared data structures [39, 49, 51]. Censor-Hillel et
al. [52] proposed a formal definition of help in wait-free algorithms based on
linearization order: a process p helps an operation op2 by another process q if a
step by p determines that op2 is linearized before some other operation.

In many cases, helping necessitates that the helper has information about the
operation that requires the help. Descriptor objects introduced in the cooperative
technique by Barnes [51] contain sufficient information on a pending operation
to allow concurrent threads to complete the operation. The main idea is to detach
operations from the executing threads. Thus, if a thread t1 reads a descriptor
allocated by another thread t2, thread t1 can complete the pending operation
ensuring system-wide progress. This approach is akin to locking, except that,
instead of a thread owning a lock, the lock belongs to an operation. Thus, the
delay of a thread does not block other threads from completing the operation.

Harris [48] introduced the idea of pointer-marking as a pragmatic solution
for operations that require more than one atomic primitive to complete correctly.
In his approach, a thread declares its intention to delete a node by marking the
next pointer of the node to prevent concurrent operations from modifying the
pointer. Then physically deleting the node from the list after.

Challenges: Helping may result in performance degradation for the data struc-
ture especially when read-only operations such as CONTAINS are compelled to
perform writes during helping. These performance concerns have resulted in
designs where read-only operations traverse data structure nodes while ignoring
concurrent operations that would otherwise have solicited for help [50, 53–58].

Furthermore, pointer marking requires an atomically markable reference,
which is expensive or unavailable in some programming languages. A typical
mechanism for pointer marking involves utilizing some of the bits in the pointer
value for distinguishing the pointer from the marked version of the pointer. Al-
though this is an elegant and practical approach in programming languages such
as C/C++, it is not portable to languages where the developer has no access to
object references or pointers. Java introduced AtomicMarkableReference which
maintains an object reference along with a mark bit, however, this is expensive
as it utilizes internal objects which create an extra level of dereferencing. As
critical components for exploiting multicore processors, designs of concurrent

1.4. NON-BLOCKING CONCURRENT DATA STRUCTURES 17

data structures have to be portable; should not rely on architecture or language
specific constructs.

(B) Synchronization Bottlenecks

If many threads attempt to modify a shared variable simultaneously, the resulting
memory contention may lead to performance degradation, and the shared variable
becomes a hotspot [59, 60]. The shared variable could be a lock for blocking
synchronization or a global variable modified by atomic primitives in non-
blocking synchronization [39, 61, 62]. Performance degradation is largely a
result of cache invalidation as processes read and modify the shared variable.

Traditionally, hotspots in both blocking and non-blocking concurrent data
structures are addressed by utilizing fine-grained synchronization. This approach
fits naturally to data structures that allow concurrent access to different elements
in the structure: bags [63], hash tables [64, 65], linked-lists [49, 57], skip-
lists [53, 66] and search trees [50, 54–56]. However, some data structures
have inherent synchronization bottlenecks where contention cannot be trivially
managed with fine-grained synchronization: queues [39,67], priority-queues [68,
69], and stacks [34, 61, 70]. A well-known approach to reducing contention is
backoff [9, 59, 70, 71].

Another popular technique to reduce synchronization bottlenecks is for a
single process to combine and execute requests on behalf of other processes.
Combining has several benefits: 1) eliminate memory contention due to “hotspot”
shared variables, and 2) improved cache locality for the combiner thread. Com-
bining was first introduced in software combining trees [72], where requests
starting at the leaves of a static tree are combined up the tree. However, static
combining trees imply that operations suffer significant synchronization over-
heads regardless of the level of contention. Combining funnels proposed by
Shavit et al. [73] reduce the overheads by employing dynamic trees.

Oyama et al. [74] proposed a different approach to managing potential
synchronization bottlenecks. A shared data structure is protected by a single
lock and processes wishing to access the data structure announce their requests
in a LIFO list structure. A process that acquires the lock executes in addition to
its request, pending requests by other processes and then discards the list.

Hendler et al. introduced flat-combining [75]; in contrast to Oyama et al., the
announcement list typically contains one record per concurrent thread accessing
it. If a thread accesses the list for the first time, it adds a record entry to the
list which it uses to publish subsequent access requests. After writing each
request, the thread attempts to acquire the global lock. A thread that acquires
the lock (combiner) scans the list for pending requests, applies them to the

18 CHAPTER 1. INTRODUCTION

underlying data structure, and then writes responses back to the associated
records in the list.

Challenges: Combining as well as flat-combining techniques are typically
lock-based, and consequently blocking. Fatourou and Kallimanis presented
universal constructions that use a FAA and an LL/SC object for implementing
combining technique with wait-free progress guarantees [76]. The idea is to
have a process that wants to execute an operation, find out which operations
have been announced, apply these operations to a local copy of the object, then
finally change the global object pointer to refer to this local copy. However,
these constructions do not cope well with large shared objects as they copy the
state of the object, then apply changes to the local copy. Fatourou et al. [77]
presented algorithms for efficiently handling shared objects with large state size,
however, these approaches include dedicated threads that apply updates to the
data structure. Consequently, compromising the non-blocking progress guaran-
tees in [76]. Therefore, it remains an open challenge to develop mechanisms for
reducing synchronization overheads in concurrent data structures with inherent
bottlenecks that cannot be trivially managed with fine-grained synchronization.

1.4.2 Concurrent Data Structures for Efficient Data Stream
Processing

Interest in Data Stream Processing is a result of the unprecedented increase
in volumes of data generated at high-rates that need to be processed in real-
time. Stream Processing Engines (SPEs) are generally modeled as directed
graphs where vertices are processing operators, and the edges are continuous
streams of data between the operators. For example StreamCloud [78], Apache
Storm [79], Apache Flink [80] and Saber [81]. Parallelism in SPEs is paramount
for achieving high-throughput and low latency processing.

Pipeline and task parallelism are extracted naturally from the directed graphs
with independent operators or tasks assigned to different processing units. How-
ever, data parallelization or fission [82–86], which involves replicating instances
of operators careful orchestration of operators’ execution is required to preserve
determinism. Determinism is required to ensure consistent results independently
of the way in which the analysis is parallelized.

Additionally, power consumption has gained significance as a metric for
evaluating computing systems. Consequently, there is a growing trend towards ef-
ficient utilization of both general-purpose multicore architectures and low-power
embedded multicore devices. Benefits of utilizing low-power embedded devices
are two-fold: (1) can be deployed as edge and fog devices for close-to-the-source

1.4. NON-BLOCKING CONCURRENT DATA STRUCTURES 19

analysis minimizing latency for time-critical applications, (2) they often provide
increased performance per watt in comparison with traditional general-purpose
multicore servers.

Challenges: Attempts to guarantee determinism in SPEs under execution of
parallel instances of an operator rely on dedicated merge-sorting operators. These
operators are either added to continuous queries by query compilers [78, 84, 85]
or left for developers to place within their streaming applications in SPEs, such as
Apache Storm [79]. Minimizing the computational overhead introduced by such
dedicated operators is challenging, especially for one-at-a-time, fine-grained low
latency tuple processing.

Additionally, deploying dedicated merge-sorting operators in-between the
query operators results in a higher number of threads in SPEs such as Storm [79]
or Flink [80] or in scheduling overheads for SPEs with schedulers [78, 87, 88]
ordering operators’ execution, thus degrading throughput and increasing energy
consumption. In many cases, the merge-sorting operators become a bottleneck
reducing the benefits of parallelizing query operators.

With a growing interest in deploying stream processing applications at the
cloud, fog, and edge architectures in order to satisfy different application con-
straints, we need to be able to port these applications to various platforms
efficiently. However, modern embedded systems provide different characteristics
and features (such as memory hierarchy, data movement options, OS support,
etc.) depending on the application domain that they target. The impact of each
one of these features on performance and energy consumption of the whole
system, when running a specific application, is often hard to predict at design
time. This problem becomes even harder when developers attempt to improve
more than one metric simultaneously.

20 CHAPTER 1. INTRODUCTION

1.5 Contributions
The contributions of this thesis are solutions to challenges in developing efficient
and practical concurrent data structures. Additionally, we explore the utilization
of concurrent data structures for efficient data stream processing in both low-
power embedded and general-purpose multicore systems.

Data Structures with Potential Synchronization Bottlenecks (Chapter 2
and 3)

Dynamic vectors are among the most commonly used data structures in appli-
cations development. They provide constant time random access and resizable
data storage. Additionally, they provide constant time insertion (PUSHBACK) and
deletion (POPBACK) at the end of the sequence. However, concurrent PUSHBACK

and POPBACK are required to atomically modify the vector storage and the size
variable, creating a synchronization bottleneck. Moreover, bounds checking as
required for random-access operations further increase the memory contention
on the size variable of the vector.

In Chapter 2, we present a lock-free vector that addresses potential synchro-
nization bottlenecks by utilizing the combining technique. The design utilizes
the combining technique without compromising the lock-free progress guarantee
and correctness of the data structure. Combining in this context implies that
a given thread completes operations on behalf of other threads, and, the size
variable is only updated after executing a batch of tail PUSHBACK and POPBACK

operations.
In Chapter 3, we extend the concurrent lock-free vector to implement an

unbounded heap-based priority queue. Priority queues are a fundamental data
structure used as a base component in many applications that require priority
ordering or scheduling. Priority queues are generally difficult to parallelize
as the element with the highest priority creates a bottleneck. Furthermore,
many applications, such as Dijkstra’s single-source-shortest-path and Adaptive
Huffman Trees require changing the priorities of items at runtime. We present
the first concurrent lock-free unbounded binary heap that implements a priority
queue with mutable priorities. The operations are provably linearizable. We
also designed an optimized version of the algorithm by combining concurrent
operations that substantially improves the performance.

Lock-free Concurrent Search Data Structures (Chapter 4 and 5)

An optimized helping strategy improves the overall performance of a lock-
free algorithm. In Chapter 4, we propose help-optimality, which essentially

1.5. CONTRIBUTIONS 21

implies that no operation step is accounted for exclusive helping in the lock-free
synchronization of concurrent operations. As a rationale behind the term help-
optimality, we would like to underline our aim to optimize a lock-free design
with respect to the number of (CAS execution) steps incurred in helping under
the constraints such as an optimal memory footprint and an optimal amortized
step complexity.

To describe the concept, we revisit the designs of a lock-free linked-list and
a lock-free binary search tree and present improved algorithms. Our algorithms
employ atomic single-word compare-and-swap (CAS) primitives, are linearizable,
and do not rely on any language/platform specific mechanism. Concretely, we
use neither bit-stealing from a pointer nor runtime type introspection of objects.
Therefore, our algorithms are portable.

In Chapter 5, we extend concurrent search to multi-dimensional data and
similarity search. The popularity of in-memory databases has led to a significant
interest in the index structures that can support Nearest Neighbor Search with
dynamic concurrent addition and removal of data. We design the first concurrent
lock-free multidimensional data structure that supports Nearest Neighbor Search
(NNSEARCH) and ensuring the linearizability of NNSEARCH. LockFree-kD-
tree (LFkD-tree): a lock-free concurrent kD-tree, which implements an abstract
data type (ADT) that provides the operations ADD, REMOVE, CONTAINS, and
NNSEARCH. Our algorithm for NNSEARCH is generic and can be adapted to
other multidimensional data structures.

Concurrent Data Structures for Efficient Data Stream Processing (Chap-
ter 6 and 7)

In Chapter 6, we propose a step-by-step exploration methodology for the cus-
tomization of streaming aggregation implemented in embedded systems. The
methodology is based on: (1) the identification of the parameters of the streaming
aggregation operator that affect the evaluation metrics, and (2) the identification
of the embedded platform-specific features that affect the evaluation metrics
when executing streaming aggregation. These parameters compose a design
space. The methodology provides a set of implementation solutions. For each
solution, the application and the platform parameters have different values. In
other words, each customized streaming aggregation implementation is tuned
differently, so it provides different results for each evaluation metric. Develop-
ers can perform trade-offs between metrics, by selecting different customized
implementations. Thus, instead of evaluating solutions in an ad-hoc manner, the
proposed approach provides a systematic way to explore the design space.

Furthermore, motivated by the observation that the deterministic execution

22 CHAPTER 1. INTRODUCTION

of streaming operators requires expensive synchronization to merge-sort streams
delivered by multiple operator instances (or data sources), in Chapter 7, we
study the limitations of operator-layer parallelism and how communication-layer
determinism can overcome these. We propose Viper, a module that encapsulates
and reduces the synchronization costs, enabling deterministic execution to be
provided transparently in the communication layer of an SPE. We provide
evidence that such a module can be leveraged by SPEs, by integrating it into
Apache Storm, a representative SPE of one-at-a-time analysis paradigm, for low
latency processing. Our evaluation shows that, with Viper, the throughput of
parallel operators increases by up to 70% and at half of the energy consumption.

Bibliography
[1] Gordon E. Moore, “Cramming more components onto integrated circuits,” Elec-

tronics Magazine, vol. 86, no. 1, pp. 82–85, 1998.

[2] Robert H. Dennard, Fritz H. Gaensslen, Yu Hwa-Nien, V. Leo Rideovt, E. Bassous,
and Andre R. Leblanc, “Design of ion-implanted mosfet’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[3] Robert H. B. Netzer and Barton P. Miller, “What are race conditions?: Some issues
and formalizations,” ACM Letters on Programming Languages and Systems, vol. 1,
no. 1, pp. 74–88, 1992.

[4] Edsger W. Dijkstra, “Solution of a problem in concurrent programming control,”
Communications of the ACM, vol. 8, no. 9, pp. 569, 1965.

[5] Edsger W. Dijkstra, “The structure of the “the”-multiprogramming system,” Com-
munications of the ACM, vol. 11, no. 5, pp. 341–346, 1968.

[6] Daniel Cederman, Bapi Chatterjee, Nhan Nguyen, Yiannis Nikolakopoulos, Marina
Papatriantafilou, and Philippas Tsigas, “A study of the behavior of synchronization
methods in commonly used languages and systems,” in Proceedings of the Inter-
national Parallel and Distributed Processing Symposium. 2013, pp. 1309–1320,
IEEE.

[7] Vincent Gramoli, “More than you ever wanted to know about synchronization: Syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms,”
in Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 2015, pp. 1–10, ACM.

[8] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis, “Asynchronized concur-
rency: The secret to scaling concurrent search data structures,” in Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems. 2015, pp. 631–644, ACM.

BIBLIOGRAPHY 23

[9] Aras Atalar, Paul Renaud-Goud, and Philippas Tsigas, “Analyzing the perfor-
mance of lock-free data structures: A conflict-based model,” in Proceedings of the
International Symposium on Distributed Computing. 2015, pp. 341–355, Springer.

[10] Aras Atalar, Paul Renaud-Goud, and Philippas Tsigas, “How Lock-free Data Struc-
tures Perform in Dynamic Environments: Models and Analyses,” in Proceedings
of the International Conference on Principles of Distributed Systems. 2017, pp.
23:1–23:17, Schloss Dagstuhl.

[11] Leslie Lamport, “Proving the correctness of multiprocess programs,” IEEE Trans-
actions on Software Engineering, vol. 3, no. 2, pp. 125–143, 1977.

[12] Maurice Herlihy and Jeannette M. Wing, “Linearizability: A correctness condi-
tion for concurrent objects,” ACM Transactions on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, 1990.

[13] Leslie Lamport, “How to make a correct multiprocess program execute correctly on
a multiprocessor,” IEEE Transactions on Computers, vol. 46, no. 7, pp. 779–782,
1997.

[14] Maurice Herlihy and Nir Shavit, The art of multiprocessor programming, Morgan
Kaufmann, 2011.

[15] John L. Hennessy and David A. Patterson, Computer architecture: a quantitative
approach, Elsevier, 2011.

[16] Leslie Lamport, “How to make a multiprocessor computer that correctly executes
multiprocess programs,” IEEE Transactions on Computers, vol. C-28, no. 9, pp.
690–691, 1979.

[17] Sarita V. Adve and Kourosh Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, 1996.

[18] Bowen Alpern and Fred B. Schneider, “Defining liveness,” Information Processing
Letters, vol. 21, no. 4, pp. 181–185, 1985.

[19] Butler W. Lampson and David D. Redell, “Experience with processes and monitors
in mesa,” Communications of the ACM, vol. 23, no. 2, pp. 105–117, 1980.

[20] Mike Jones, “What really happened on mars rover pathfinder,” The Risks Digest,
vol. 19, no. 49, pp. 1–2, 1997.

[21] Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price, “The convoy phenomenon,”
ACM SIGOPS Operating Systems Review, vol. 13, no. 2, pp. 20–25, 1979.

[22] Maurice Herlihy and Nir Shavit, “On the nature of progress,” in Proceedings of the
International Conference on Principles of Distributed Systems. 2011, pp. 313–328,
Springer.

[23] Maurice Herlihy, “Wait-free synchronization,” ACM Transactions on Programming
Languages and Systems, vol. 13, no. 1, pp. 124–149, 1991.

[24] Maurice Herlihy, “A methodology for implementing highly concurrent data objects,”
ACM Transactions on Programming Languages and Systems, vol. 15, no. 5, pp.
745–770, 1993.

24 CHAPTER 1. INTRODUCTION

[25] Maurice Herlihy, Victor Luchangco, and Mark Moir, “Obstruction-free synchroniza-
tion: Double-ended queues as an example,” in Proceedings of the IEEE International
Conference on Distributed Computing Systems. 2003, pp. 522–529, IEEE.

[26] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit, “Are lock-free concurrent
algorithms practically wait-free?,” Journal of the ACM, vol. 63, no. 4, pp. 31:1–
31:20, 2016.

[27] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM, vol. 32, no. 2,
pp. 374–382, 1985.

[28] Michael C. Loui and Hosame H. Abu-Amara, Memory requirements for agreement
among unreliable asynchronous processes, vol. 4, pp. 163–183, JAI press, 1987.

[29] James Aspnes, Maurice Herlihy, and Nir Shavit, “Counting networks,” Journal of
the ACM, vol. 41, no. 5, pp. 1020–1048, 1994.

[30] Nir Shavit and Asaph Zemach, “Diffracting trees,” ACM Transactions on Computer
Systems, vol. 14, no. 4, pp. 385–428, 1996.

[31] Yehuda Afek, Guy Korland, and Eitan Yanovsky, “Quasi-linearizability: Relaxed
consistency for improved concurrency,” in Proceedings of the International Confer-
ence on Principles of Distributed Systems. 2010, pp. 395–410, Springer.

[32] Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas, “The
lock-free k-lsm relaxed priority queue,” in Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 2015, pp. 277–
278, ACM.

[33] Nir Shavit and Gadi Taubenfeld, “The computability of relaxed data structures:
Queues and stacks as examples,” Distributed Computing, vol. 29, no. 5, pp. 395–407,
2016.

[34] Adones Rukundo, Aras Atalar, and Philippas Tsigas, “Brief announcement: 2d-
stack – a scalable lock-free stack design that continuously relaxes semantics for
better performance,” in Proceedings of the ACM Symposium on Principles of
Distributed Computing. 2018, pp. 407–409, ACM.

[35] Doug Lea, Concurrent programming in Java: design principles and patterns,
Addison-Wesley Professional, 2000.

[36] Mark Moir and Nir Shavit, “Concurrent data structures.,” 2004.

[37] Maurice Herlihy and Nir Shavit, The Art of Multiprocessor Programming, Morgan
Kaufmann Publishers Inc., 2008.

[38] Daniel Cederman, Anders Gidenstam, Phuong Ha, Håkan Sundell, Marina Papatri-
antafilou, and Philippas Tsigas, “Lock-free concurrent data structures,” Program-
ming Multicore and Many-core Computing Systems, vol. 86, pp. 59, 2017.

[39] Maged M. Michael and Michael L. Scott, “Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms,” in Proceedings of the ACM Symposium
on Principles of Distributed Computing. 1996, pp. 267–275, ACM.

BIBLIOGRAPHY 25

[40] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele, Jr., “Lock-free
reference counting,” Distributed Computing, vol. 15, no. 4, pp. 255–271, 2002.

[41] Maurice Herlihy, Victor Luchangco, and Mark Moir, “The repeat offender problem:
A mechanism for supporting dynamic-sized, lock-free data structures,” in Proceed-
ings of the International Conference on Distributed Computing. 2002, pp. 339–353,
Springer.

[42] Maged M. Michael, “Hazard pointers: Safe memory reclamation for lock-free
objects,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 6, pp.
491–504, 2004.

[43] Keir Fraser, “Practical lock-freedom,” PhD thesis, University of Cambridge, 2004.

[44] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir, “Nonblocking
memory management support for dynamic-sized data structures,” ACM Transactions
on Computer Systems, vol. 23, no. 2, pp. 146–196, 2005.

[45] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan Walpole,
“Performance of memory reclamation for lockless synchronization,” Journal of
Parallel and Distributed Computing, vol. 67, no. 12, pp. 1270–1285, 2007.

[46] Anders Gidenstam, Marina Papatriantafilou, Hakan Sundell, and Philippas Tsigas,
“Efficient and reliable lock-free memory reclamation based on reference counting,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 8, pp. 1173–
1187, 2009.

[47] Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas, “Nbmalloc:
Allocating memory in a lock-free manner,” Algorithmica, vol. 58, no. 2, pp. 304–
338, 2010.

[48] Timothy L. Harris, “A pragmatic implementation of non-blocking linked-lists,” in
Proceedings of the International Symposium on Distributed Computing. 2001, pp.
300–314, Springer.

[49] Timothy L. Harris, “A pragmatic implementation of non-blocking linked-lists,” in
Proceedings of the International Conference on Distributed Computing. 2001, pp.
300–314, Springer.

[50] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel, “Non-
blocking binary search trees,” in Proceedings of the ACM Symposium on Principles
of Distributed Computing. 2010, pp. 131–140, ACM.

[51] Greg Barnes, “A method for implementing lock-free shared-data structures,” in
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures.
1993, pp. 261–270, ACM.

[52] Keren Censor-Hillel, Erez Petrank, and Shahar Timnat, “Help!,” in Proceedings of
the ACM Symposium on Principles of Distributed Computing. 2015, pp. 241–250,
ACM.

26 CHAPTER 1. INTRODUCTION

[53] Håkan Sundell and Philippas Tsigas, “Fast and lock-free concurrent priority queues
for multi-thread systems,” Journal of Parallel and Distributed Computing, vol. 65,
no. 5, pp. 609–627, 2005.

[54] Shane V. Howley and Jeremy Jones, “A non-blocking internal binary search tree,” in
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures.
2012, pp. 161–171, ACM.

[55] Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas, “Efficient lock-free binary
search trees,” in Proceedings of the ACM Symposium on Principles of Distributed
Computing. 2014, pp. 322–331, ACM.

[56] Aravind Natarajan and Neeraj Mittal, “Fast concurrent lock-free binary search trees,”
in Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 2014, pp. 317–328, ACM.

[57] Mikhail Fomitchev and Eric Ruppert, “Lock-free linked lists and skip lists,” in
Proceedings of the Symposium on Principles of Distributed Computing. 2004, pp.
50–59, ACM.

[58] Joel Gibson and Vincent Gramoli, “Why non-blocking operations should be selfish,”
in Distributed Computing. 2015, pp. 200–214, Springer.

[59] Anant Agarwal and Mathews Cherian, “Adaptive backoff synchronization tech-
niques,” in Proceedings of the 16th Annual International Symposium on Computer
Architecture. 1989, pp. 396–406, ACM.

[60] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit, “Scalable concurrent counting,”
ACM Transactions on Computer Systems, vol. 13, no. 4, pp. 343–364, 1995.

[61] R Kent Treiber, Systems programming: Coping with parallelism, International
Business Machines Incorporated, Thomas J. Watson Research Center New York,
1986.

[62] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup, “Lock-free dynamically
resizable arrays,” in Proceedings of the International Conference on Principles of
Distributed Systems. 2006, pp. 142–156, Springer.

[63] Håkan Sundell, Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas,
“A lock-free algorithm for concurrent bags,” in Proceedings of the ACM Symposium
on Parallelism in Algorithms and Architectures. 2011, pp. 335–344, ACM.

[64] Nhan Nguyen and Philippas Tsigas, “Lock-free cuckoo hashing,” in Proceedings of
the IEEE International Conference on Distributed Computing Systems. 2014, pp.
627–636, IEEE.

[65] Maged M. Michael, “High performance dynamic lock-free hash tables and list-
based sets,” in Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures. 2002, pp. 73–82, ACM.

[66] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit, “A simple optimistic
skiplist algorithm,” in Proceedings of the International Conference on Structural
Information and Communication Complexity. 2007, pp. 124–138, Springer.

BIBLIOGRAPHY 27

[67] Anders Gidenstam, Håkan Sundell, and Philippas Tsigas, “Cache-aware lock-
free queues for multiple producers/consumers and weak memory consistency,” in
Proceedings of the International Conference on Principles of Distributed Systems.
2010, pp. 302–317, Springer.

[68] Nir Shavit and Itay Lotan, “Skiplist-based concurrent priority queues,” in Proceed-
ings of the International Parallel and Distributed Processing Symposium. 2000, pp.
263–268, IEEE.

[69] Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas, “The
lock-free k-lsm relaxed priority queue,” in Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 2015, pp. 277–
278, ACM.

[70] Danny Hendler, Nir Shavit, and Lena Yerushalmi, “A scalable lock-free stack
algorithm,” in Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures. 2004, pp. 206–215, ACM.

[71] John M. Mellor-Crummey and Michael L. Scott, “Algorithms for scalable syn-
chronization on shared-memory multiprocessors,” ACM Transactions on Computer
Systems, vol. 9, no. 1, pp. 21–65, 1991.

[72] Pen-Chung Yew, Nian-Feng Tzeng, and Lawrie, “Distributing hot-spot addressing
in large-scale multiprocessors,” IEEE Transactions on Computers, vol. C-36, no. 4,
pp. 388–395, 1987.

[73] Nir Shavit and Asaph Zemach, “Combining funnels: A dynamic approach to
software combining,” Journal of Parallel and Distributed Computing, vol. 60, no.
11, pp. 1355–1387, 2000.

[74] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa, “Executing parallel
programs with synchronization bottlenecks efficiently,” in Proceedings of the
International Workshop on Parallel and Distributed Computing for Symbolic and
Irregular Applications. 1999, vol. 16, Citeseer.

[75] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir, “Flat combining and the
synchronization-parallelism tradeoff,” in Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures. 2010, pp. 355–364, ACM.

[76] Panagiota Fatourou and Nikolaos D. Kallimanis, “A highly-efficient wait-free
universal construction,” in Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures. 2011, pp. 325–334, ACM.

[77] Panagiota Fatourou and Nikolaos D. Kallimanis, “Revisiting the combining syn-
chronization technique,” in Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 2012, pp. 257–266, ACM.

[78] Vincenzo Gulisano, StreamCloud: An Elastic Parallel-Distributed Stream Process-
ing Engine, Ph.D. thesis, Universidad Politécnica de Madrid, 2012.

[79] “Apache Storm,” http://storm.apache.org/, 2017.

28 CHAPTER 1. INTRODUCTION

[80] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” IEEE Data Engineering Bulletin, vol. 36, no. 4, 2015.

[81] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch, “Saber: Window-based hybrid stream
processing for heterogeneous architectures,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2016, pp. 555–569, ACM.

[82] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm, “A
catalog of stream processing optimizations,” ACM Computing Surveys, vol. 46, no.
4, pp. 46:1–46:34, 2014.

[83] Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-Lung Wu,
“Elastic scaling of data parallel operators in stream processing,” in Proceedings of
the International Parallel and Distributed Processing Symposium. 2009, pp. 1–12,
IEEE.

[84] Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu, “Auto-
parallelizing stateful distributed streaming applications,” in Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques.
2012, pp. 53–64, ACM.

[85] Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu, “Safe data
parallelism for general streaming,” IEEE Transactions on Computers, vol. 64, no. 2,
pp. 504–517, 2015.

[86] Sai Wu, Vibhore Kumar, Kun-Lung Wu, and Beng Chin Ooi, “Parallelizing stateful
operators in a distributed stream processing system: How, should you and how
much?,” in Proceedings of the International Conference on Distributed Event-Based
Systems. 2012, pp. 278–289, ACM.

[87] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik, “Aurora:
a new model and architecture for data stream management,” The International
Journal on Very Large Data Bases, vol. 12, no. 2, pp. 120–139, 2003.

[88] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alexander
Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik, “The
design of the borealis stream processing engine.,” in Conference on Innovative Data
Systems Research, 2005, vol. 5, pp. 277–289.

PAPER I

Ivan Walulya and Philippas Tsigas

Scalable Lock-Free Vector with Combining

In the Proceedings of the
31st IEEE International Parallel and Distributed Processing Symposium

pp. 917-926, IEEE 2017.

2
Scalable Lock-Free Vector with

Combining

Abstract
Dynamic vectors are among the most commonly used data structures in pro-
gramming. They provide constant time random access and resizable data storage.
Additionally, they provide constant time insertion (PUSHBACK) and deletion
(POPBACK) at the end of the sequence. However, in a multithreaded system, con-
current PUSHBACK and POPBACK operations attempt to update the same shared
object, creating a synchronization bottleneck.

In this paper, we present a lock-free vector design that efficiently addresses
the synchronization bottlenecks by utilizing a combining technique on PUSHBACK

and POPBACK operations. Typical combining techniques compromise progress
guarantees. Our design introduces combining without sacrificing lock-freedom.
We evaluate the performance of our design on a dual socket NUMA Intel server.
The results show that our design performs comparably at low contention, and out-
performs prior concurrent blocking and non-blocking vector implementations at
high contention, by as much as 2.7x.

31

32 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

2.1 Introduction

A vector is a fundamental abstract data type that similar to an array, stores a
linear sequence of arbitrary objects. Elements in the vector can be randomly
accessed using a non-negative integer referred to as an index. In contrast to an
array, the vector data structure can grow and shrink in size as elements are added
or removed after its initialization. In addition to random access, the vector also
provides tail operations: PUSHBACK which appends an element to the tail end of
the vector, and POPBACK that removes an element from the end the vector.

Implementations of the vector data structure such as the Java Collections
vector and the C++ STL vector are used in a myriad of applications. These
vector implementations do not support concurrency nor thread-safety. However,
multicores/multiprocessors have become ubiquitous; proliferating into all spectra
of computing systems ranging from ultra-low power embedded systems to
supercomputers. Furthermore, in order to scale to hundreds of cores, architecture
designers are opting for Non-Uniform Memory Access (NUMA) [1].

This growth in the prevalence of multicores and shift to NUMA system design
poses new challenges for application developers and increases the importance
of scalable implementations of concurrent data structures. Concurrent data
structures allow for multiple processes to access and modify overlapping regions
of the data structure at the same time, resulting in high performance on multicore
systems. In addition to improved performance, concurrent data structures are
often characterized by their safety and liveness properties (blocking or non-
blocking).

Synchronization of concurrent access to a shared object is commonly achieved
using mutual exclusion locks. A lock guarantees that, while a process holds
the lock, no other process can access the protected object. Exclusive access
can significantly diminish parallelism, and if a process stalls while holding a
lock, it may cause other processes to wait for arbitrarily long periods of time
(blocking). Moreover, process inter-dependence of lock-based implementations
introduces vulnerabilities such as deadlocks, livelocks, priority inversions and
convoying [2].

Non-blocking techniques have emerged to address both scalability and
progress pitfalls associated with the utilizations of locks. Non-blocking data
structures provide three widely accepted levels of progress guarantees: (1) ob-
struction-freedom: any process that executes in isolation will complete an arbi-
trary operation in a finite number of steps [3]. (2) lock-freedom: at least one
process will complete its operation in a finite number of steps [4]. (3) wait-free-
dom: every process will complete its operation in a finite number of steps [4].

Although several universal constructions exist for implementing concurrent

2.1. INTRODUCTION 33

data structures from sequential equivalents [2, 5–7], the vector which is ubiqui-
tous in sequential libraries has received little attention. Intel TBB library [8]
provides a lock-based vector implementation without POPBACK tail operation.
Dechev et al. proposed the first lock-free vector implementations in [9]. Feldman
et al. proposed a wait-free vector design that utilizes the fast-path-slow-path
technique [10].

However, non-blocking as well as blocking vector implementations do not
scale at high thread1 count due to the contention from conflicting PUSHBACK and
POPBACK tail operations. In these implementations, all concurrent PUSHBACK

and POPBACK operations synchronize on a single point which becomes a hot
spot, resulting in sequentialized execution.

Combining is an efficient technique for reducing contention on the data
structure [6, 11–13]. In this technique, multiple operations are batched together
and executed by only one process on the data structure. A process that requires
to execute an operation, announces the operation by placing a request on a list,
then tries to get ownership of a global lock. The process that manages to acquire
the lock handles in addition to its own operation, operations announced by other
processes. This technique has been utilized to design common concurrent data
structures such as queues, priority queues, stacks [12, 14] . The combining
based implementations have been shown experimentally to outperform their
fine-grained locking counterparts. However, these implementations are blocking;
while a process holds the combiner lock, other processes wait for the process to
either release the lock or complete the operation requests.

In this paper, we present, to the best of our knowledge, the first non-blocking
concurrent vector design with combining. The design utilizes the combining
technique without compromising the lock-free progress guarantee and lineariz-
ability provided by the data structure. We evaluated the performance (throughput
in operations per second) of our design against prior vector implementations on
a dual socket Intel server with 16 logical cores and hyper-threading enabled. The
empirical results show that our vector performs comparably with prior imple-
mentations at low-levels of thread contention, and outperforms as we increase
the number of threads. The results also show that our vector scales well across
sockets of the NUMA server.

1the terms ”process” and ”thread” are used interchangeably in the paper to refer to a unit of
execution in a shared address space.

34 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

2.1.1 Related Work:

Dechev et al. presented LFvector – the first lock-free vector design and im-
plementation in the literature [9, 15]. The design utilizes a shared descriptor
object to synchronize concurrent PUSHBACK and POPBACK operations. As these
operations require atomically updating the vector size and data array, a thread
must first acquire the shared descriptor object. Concurrent threads can help
complete the operation associated with the descriptor. Random access operations
are wait-free since they proceed without modifying the shared descriptor object.
However, these operations have no bounds checking mechanism, which is left
up to the applications developer.

Feldman et al. presented WFvector – a wait-free vector implementation
that stores elements contiguously in memory [10]. The algorithm also exploits
descriptor objects to indicate that an operation is in progress. In contrast to
LFvector, this approach does not modify a single global descriptor value, instead,
places descriptors at the last element and tail positions, then modifies the vector
after acquiring both positions. Resizing the vector involves copying over ele-
ments from the old to a new object to allow for contiguous storage. Wait-freedom
is achieved using the fast-path slow-path technique [16]. Additionally, the imple-
mentation includes versions of PUSHBACK and POPBACK (FAAvector) that are
efficient when executed without inverse operations, i.e.,PUSHBACK operations
executed without concurrent POPBACK.

WFvector, as well as LFvector, do not scale with increasing concurrency as
tail operations (PUSHBACK, POPBACK) are serialized when threads attempt to
either modify the shared descriptor value or write descriptors at the end of the
vector. Thereby, create a synchronization bottleneck. Our empirical evaluation
shows that; the loss of scalability is exacerbated as we increase concurrency
across multiple sockets of a NUMA architecture.

Previous attempts to improve on the efficiency of concurrent algorithms with
potential synchronization bottlenecks started with combining trees [17]. The
general approach is to have a single thread perform operations announced by
other threads. Combining trees exhibited significant synchronization overheads
which were improved upon by Shavit [18] with combining funnels that use
dynamically built trees of combined operations.

Oyama et al. [13] presented a lock-based combining technique with a list
of announcements implemented using a stack. Therefore, announcements are
processed in LIFO order and then removed from the list. A combiner has to serve
all requests that are announced during its execution, which can lead to starvation.
This approach also experiences significant overheads as each thread has to
repeatedly perform CAS operations until it successfully adds an announcement

2.2. SYSTEM MODEL AND DEFINITIONS 35

onto the stack.
Hendler et al. introduced a coarse grained locking technique referred to as

flat-combining [11]. In contrast to Oyama et al., the announcement list typically
contains one record per concurrent thread accessing it. If a thread accesses the
list for the first time, it adds a record entry to the list which it uses to publish
subsequent access requests. After writing each request, the thread attempts to
acquire the global lock. A thread that acquires the lock (combiner), scans the
list for pending requests, applies them to the underlying data structure, and then
writes responses back to the associated records in the list. Threads spin as they
wait for the combiner to complete their pending requests or release the lock.
Predefined thread records imply that the combiner has to traverse the entire list
regardless of whether it contains active requests. Furthermore, similar to Oyama
et al., flat-combining is blocking (a thread preempted while holding a lock causes
all others to wait) and suffers from pitfalls associated with locks.

Fatourou and Kallimanis presented universal constructions that uses a FAA
and an LL/SC object for implementing combining technique with wait-free
progress guarantees [19]. The idea is to have a process that wants to execute an
operation, find out which operations have been announced, apply these operations
to a local copy of the object, then finally change the global object pointer to
refer to this local copy. However, these constructions do not cope well with
large shared object as they copy the state of the object, then apply changes to
the local copy. In [12], Fatourou et al. presented algorithms for efficiently
handling shared objects with large state size, however this approach includes
dedicated unique threads that apply updates to the data structure. Consequently,
compromising the wait-free progress guarantee in the prior work.

In this paper, we utilize combining techniques without relaxing the lock-free
progress guarantees of a concurrent vector. Contrary to flat-combining where
an announcement list contains a request record for each thread, we utilize an
unbounded array-based queue for combining. With a queue, a combiner traverses
a collection of only active requests.

2.2 System Model and Definitions

We consider an asynchronous shared memory model with a finite set of n
processes p1, ..., pn where n may exceed the number of physical processors,
and each process may exhibit fail-stop behavior. Processes communicate by
executing atomic operations on predefined shared objects. A process may
suspend execution at any time for arbitrarily long, and we cannot differentiate
between fail-stop and suspended processes.

36 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

We assume a sequentially consistent [20] memory model2 to simplify the
presentation of the pseudo-code. However, modern compilers and architectures
provide weaker guarantees that allow instruction reordering for performance
reasons. This necessitates the use of atomic instructions and explicit memory
fences to ensure sequentially consistent memory accesses. An instruction is
atomic if the invocation and response occur with a guarantee of isolation from
concurrent executions.

In addition to atomic read and write instructions, the system supports Compare-
And-Swap (CAS) and Fetch-And-Add (FAA) atomic read-modify-write instruc-
tions. The CAS(address, old, new) instruction; checks if the current value at
a memory location (address) is equivalent to the given value old, and only if
true, changes the value of address to the new value (new) and returns TRUE;
otherwise the memory location remains unchanged and the instruction returns
FALSE. The FAA(address, incr) operation adds incr to the value at memory
location address and returns its previous value. Both instructions are commonly
available in modern processors.

We assume that a Vector implements a multiset (or bag) abstract data type
which contains elements that allow for random access using a non-negative index.
The Vector is resizable and supports PUSHBACK, POPBACK, RESERVE, READ,
WRITE and SIZE operations [9].

A PUSHBACK operation appends an element to the end of the vector and
increments the vector size. A POPBACK operation removes an element from
the end of the vector, decrements the vector size and returns the removed item.
The RESERVE operation takes an argument n and adjusts the vector capacity to
be able to contain at least n elements. This operation has no effect on the size
or elements of the vector. A READ operation reads the value at a given index,
while as the WRITE operation writes a given value at a specified index. The SIZE
operation returns the number of elements in the vector.

To demonstrate the correctness of our concurrent vector design, we verify
safety and liveness properties. The safety property that we use is lineariz-
abilty [21], which generally implies that an operation on the vector appears to
the rest of the system to ”take effect” instantaneously at some point during the
interval of its execution. The liveness property that we use is lock-freedom [4];
lock-freedom requires that infinitely often some process will complete its opera-
tion in a finite number of steps regardless of failed or delayed processes.

2Sequentially consistent means that the result of an execution is the same as if the operations
were executed in the order specified by the program

2.3. ALGORITHM 37

2.3 Algorithm
In this section, we present an overview of our vector algorithm with combining
technique. We then provide details of the algorithm implementation along with
the pseudocode, correctness proofs, ABA avoidance and memory management.

2.3.1 Overview of the Algorithm
Our concurrent vector design is largely based on the lock-free dynamically
resizable arrays [9]. The design structure is shown in Figure 2.1. It is comprised
of an array of arrays for storing elements, a Descriptor object that describes the
vector’s size and a reference to the active queue segment of pending operations.
Similar to Intel’s concurrent vector [8], the vector does not store all elements in
contiguous memory and elements are not relocated when the vector is resized.
Instead, elements are stored in a two-level array with every new memory block
allocated having twice the size of the most recently added block. The size of the
first element array is a power of 2, and thus the sizes of the subsequent arrays
are always powers of 2.

Descriptor objects introduced in the cooperative technique by Barnes [22]
contain sufficient information on a pending operation to allow concurrent threads
to complete the operation. Thus if a thread t1 reads a descriptor allocated
by another thread t2 , thread t1 can complete the pending operation ensuring
system-wide progress. Descriptors have also been exploited to represent ‘before’
and ‘after’ versions of a memory location allowing concurrent readers access
to content of the memory location during progress of a write operation. This
technique further allows for rollback of the write operation. To maintain the

Vector Announcement Queue

Descriptor

head tail

⋅ size t size
⋅ Queue* batch

⋅ Queue* next

Figure 2.1: Vector Design. Threads add operation descriptors to the announce-
ment queue before attempting to apply them to the vector. Vector size is only
updated after using up a queue segment.

semantics of a vector ADT, tail operations PUSHBACK and POPBACK need to

38 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

modify the data storage array and the size of vector atomically. Thus, a Descriptor
object is exploited to atomically modify multiple disjoint memory locations and
also allow for cooperative execution of operations.

We utilize the queue to store pending operations for concurrent threads.
A thread announces its operation by adding it to the queue, then proceed to
complete the operation or help other pending operations complete.

Figure 2.2 presents type definitions and declarations for global variables. We
extend the Descriptor object to encapsulate information about the queue. We
simulate an unbounded array-based queue by using a linked-list of bounded
queues.

Each queue is represented by a fixed-length array of QSize cells, head, tail,
and next pointers. We pack two values into 64-bit head ⟨hindex:32,hcount:32⟩
with the hindex and tail representing the index values in the array and the hcount
indicates the number of successfully completed operations. We make the as-
sumption that the value of QSize does not exceed 232. The cells in the array are
initialized with a reserved null value ⊥.

The operation descriptor – WriteDescr contains the type of operation per-
formed by the thread: PUSHBACK, POPBACK. The Vector structure holds a
pointer to the current descriptor object as well as pointers to the data storage
arrays. In the pseudo-code, th info represents the thread-local state.

For the PUSHBACK operation, a thread creates a new write descriptor object
containing a new item, then obtains an index i in by performing a FAA on the
queue tail. It then attempts to add its write descriptor to the queue at index i. If
successful, the operation continues to either complete all operations in the queue
before its index or back-off and wait for its operation to be completed by others.
The POPBACK operation proceeds in a similar fashion, except that, it starts off
with a null value and terminates with either a return value or EMPTY if the vector
is empty.

In PUSHBACK and POPBACK operations, threads attempt to complete pending
operations as indicated by the write Descriptor objects appearing earlier in
the queue before continuing with the their own operation. Random access
operations (RESERVE, READ, WRITE and SIZE) execute without modifying
current Descriptor or the size of the vector.

2.3.2 Implementation Details
In this section, we present a detailed description of our vector data structure de-
sign. The pseudo-code of our implementation is presented in Algorithm 2.1–2.5.
In this pseudo-code, we use “&” to obtain the address of an object, “	” to read
the contents of a memory location (dereferencing) and “.” for field access of a

2.3. ALGORITHM 39

▷ Vector consists of data storage array
▷ and a descriptor

1: struct Vector { ▷ Array of arrays of node pointers
2: Node** vdata;
3: Descr* descr;
4: }
5: struct Descr {
6: size t size;
7: Queue* batch;
8: }
9: struct Node {

10: value t value;
11: }

▷ Global vector initialized
12: Vector* vector← ⟨init values⟩

17: struct WriteDescr {
18: bool pending;
19: Node* v new;
20: OpType op;
21: }

22: struct Queue {
23: void* items[QSize];
24: size t tail;

▷ ⟨hindex:32, hcount:32 bit⟩
25: size t head;
26: Queue* next;
27: }

28: OpType {PUSH, POP};

Figure 2.2: Type definitions for the vector structure, operation Descriptor,
WriteOp Descriptor along with the Bounded Queue structure.

struct. Additionally, when multiple items are packed into a single word, then
we use “⟨x, y, z⟩” notation to represent the packed word and the symbol “↝” to
reference a subfield of the word.

We reserve two special “null” values, ⊥, and ⊺ that are never enqueued to the
queue of pending operations. Additionally, we assume the existence of a function
At(i) which accepts a vector index i and returns cell in a given sub-array of
the vector. The function maps a given index into a bucket and returns the cell
associated with the index i in that bucket.

The function newDescr creates a new Descr object, while as the func-
tion newWriteDescr creates a new WriteDescr object. The functions At,
AllocateBucket, GetBucket, and Reserve are left unchanged from the
implementations in [9], thus not presented in this paper.

(A) PUSHBACK Operation

The pseudo–code for the PUSHBACK operation is presented in Algorithm 2.1. A
thread executing the PUSHBACK operation starts off by creating a new WriteDescr
with details about the new element. The thread then attempts to announce the
operation by adding it to an active queue segment (AddToBatch). After
announcing the operation, the thread continues to Complete the pending
operation if not already completed by other threads. We discuss Complete
in Section (C).

40 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

1 PushBack(thInfo* th, E elem)
2 q ← vector.batch ;
3 wop ← newWriteDescr(true, elem, PUSH);
4 ⟨m index,m q⟩ ← AddtoBatch(q, wop);
5 while wop.pending do
6 Complete(wop, m q, m index);
7 return ;

Algorithm 2.1. The PUSHBACK operation

(B) AddToBatch Phase

In the AddtoBatch phase, a thread executing an operation adds the write
descriptor wop representing the operation details to the queue so as to enlist
help from other threads to complete the operation. The pseudo-code of the
AddToBatch is presented in Algorithm 2.2.

1 AddtoBatch(Queue* q, WriteDesc* wop)
2 while true do
3 if q.tail ≥ QSize then
4 if q.next = null then
5 new q ← newQueue(wop);
6 new q.tail ← 1;
7 if CAS(&q.next , null, new q) then
8 myindex ← 0 ;
9 q ← new q;

10 break;
11 q ← q.next;
12 continue;
13 else
14 myindex ← FAA(q.tail) ;
15 if myindex ≤ QSize then
16 if CAS(&q.items[myindex] , ⊥, wop) then
17 break; ▷ late entry
18 vec q ← vector.batch ;
19 while vec q ≠ q ∨ vec q.hindex < m index do

Backoff() ▷ Backoff for a threshold.
20 vec q ← vector.batch ; ▷ Advance to next queue.
21 UpdateSize(vec q);
22 if threshold then
23 return ⟨myindex,q⟩

Algorithm 2.2. The ADDTOBATCH operation

To add a write descriptor wop to the queue, a thread attempts to find a queue
segment that has free cells. If none exists; the thread creates one, initialized to
contain the write descriptor wop as the first element of the array (Algorithm 2.2,
line 3–10). We use CAS operation to synchronize concurrent initialization of a

2.3. ALGORITHM 41

segment, hence only one thread succeeds and the others fail the operation.
Otherwise, a thread obtains an array index i by performing an FAA on the

tail value of the queue segment (Algorithm 2.2, line 14). If the index i is greater
than or equal to QSize, the thread will retry to find a new segment and index
(Line 15). If the index i is less than the queue size QSize, the thread attempts
to atomically replace the value at Q[i] with wop (Q[i] ∶⊥z→ wop, Line 16).
If the CAS operation succeeds, the thread has successfully added its operation
descriptor to the queue and can continue to complete the operation. The CAS
operation may fail due to an interfering Complete operation as discussed in
Section (C).

Multiple threads can concurrently add operations to the queue, these opera-
tions will be completed in FIFO order. Thus, a thread may be required to wait
for operations appearing before its operation in the queue to be completed. If a
thread observes that there are pending operations enqueued before its operation,
the thread performs a back-off routine to allow earlier operations to be completed
(Algorithm 2.2, line 19–23).

1 UpdateSize(Queue* q)
2 if q.hcount = QSize ∧ q.next ≠ null then
3 newD ← newDescr();
4 newD.size ← vec q.size + vec q.hcount;
5 newD.batch ← vec q.next;
6 if ¬CAS(&vector.descr, q, newD) then
7 ▷ Free descriptor.

Algorithm 2.3. The UPDATESIZE operation

To ensure progress, the back-off is bounded so that a thread is not delayed
indefinitely in case operations appearing earlier in the queue were not completed.
A thread calls the Backoff routine for a threshold or until its operation is
completed by other threads, then returns. Additionally, during Backoff, the
thread can help advance the completion of operations from one queue segment
to the next by calling the UpdateSize routine.

The UpdateSize routine updates the size of the vector, which is only
update after using up a queue segment. Updating the size in batches allows us to
reduce the number of updates on the size variable, thus, minimizing the effects
of tail operations on random access operations.

(C) Complete Operation in Detail

The pseudo-code for the Complete operation is presented in Algorithm 2.4.
The Complete involves execution of operations announced in the vector’s
queue batch: add items in PUSHBACK operation descriptors to the vector storage

42 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

1 Complete(mywop, myq, myindex)
2 batch ← vector.batch;
3 while true do
4 head ← batch.head;
5 ⟨hindex,hcount⟩ ← head;
6 ▷ Gaps found.
7 if batch.items[hindex] = [⊥ ∨ ⊺] ∧ ¬mywop.pending then
8 return; ▷ was just helping.
9 if hindex = QSize then

10 UpdateSize(batch); ▷ Advance to next queue.
11 batch ← vector.batch;
12 continue;
13 ▷ linearize with push operation.
14 if CAS(&batch.items[hindex] , ⊥, ⊺) then
15 new head ← ⟨hindex +1 ,hcount⟩; ▷ update head
16 CAS(&batch.head , head, new head);
17 continue;

18 if batch.items[hindex] = ⊺ then
19 new head ← ⟨hindex +1 ,hcount⟩;
20 CAS(&batch.head , head, new head);
21 continue;

22 wop ← batch.items[hindex];
23 δ ← (wop.op = POP) ? − 1 ∶ 1;
24 if ¬ wop.pending then
25 new head ← ⟨hindex +1 ,hcount +δ⟩;
26 CAS(&batch.head , head, new head);
27 continue;
28 index ← hcount + ((wop.op = POP) ? − 1 ∶ 0); ▷ Operation determines index
29 pos ← batch.size + index;
30 ▷ Check for empty vector, if operation is POP
31 bucket ← GetBucket(pos);

32 if vec.vdata[bucket] = null then
33 AllocateBucket(vec, bucket);

34 addr ← At(vec, cur.offset + hcount);
35 val ← addr∧;

36 if wop.pending ∧ wop.op = PUSH then
37 CAS(addr , val, wop.v new);
38 wop.pending ← false;
39 else if wop.pending then
40 CAS(&wop.v new , null, val);
41 markNode(pos);
42 wop.pending ← false;
43 new head ← ⟨hindex +1 ,hcount +δ⟩;
44 CAS(&batch.head , head, new head);

Algorithm 2.4. The COMPLETE operation

2.3. ALGORITHM 43

arrays, and return items to pending POPBACK operation descriptors.
To complete an operation from the queue segment, a thread extracts the

hindex field of the head value (Q.head↝hindex) which represents the current
index in the segment. After reading the hindex, the thread proceeds to access the
operation at the corresponding array cell.

However, the array cell can be in one of three states:
1. The cell value is ⊥, which implies that the corresponding AddToBatch

operation has not completed adding item to the queue.
2. The cell value is a write descriptor (wop) which implies that the AddToBatch

operation completed successfully.
3. The cell value is ⊺, which implies that the cell value was overwritten by

an interfering Complete operation before the AddToBatch succeeded.
This ultimately indicates the failure of the corresponding AddToBatch
operation.

If a thread helping to complete operations on behalf of other threads observes
that the target cell is in state 1 or state 3, the thread returns (Algorithm 2.4,
line 7). This gives the slow thread an opportunity to complete its AddToBatch
operation (state 1) or the thread that invalidated the target cell to continue with
the Complete phase.

With the three possible values at the queue cell, and a possibly interfering
write operation by a concurrent AddToBatch, a thread completing an opera-
tion from the queue attempts to write a ⊺ at the hindex with a CAS operation,
Q.items[hindex] ∶ ⊥ z→ ⊺ (Algorithm 2.4, Line 14). If the CAS succeeds,
the thread considers the slot empty and that the corresponding AddToBatch
execution failed. Then, proceeds to update the head value of the queue segment.

However, if the CAS fails, then either an interfering Complete operation
already rendered the cell invalid in which case the thread attempts to help update
the hindex (Q.head ∶ ⟨hindex,hcount⟩ z→ ⟨hindex + 1,hcount⟩) or the cell
contains a write descriptor. Additionally, if a thread observes an invalid cell, it
updates the segment head before continuing (Algorithm 2.4, Line 18).

If the array cell contains a write descriptor wop, the thread proceeds to help
complete the operation. We use the δ which depends on the type of operation and
the hcount to determine the target index in the vector. We maintain the hcount as
the aggregate change in vector size due to operations successfully completed in a
given queue segment. Algorithm 2.4(Line 28–30), we compute a target position
based on the type of operation; we also check if the vector is empty and return
EMPTY to a pending POPBACK operation.

Depending on the nature of the pending operation, PUSHBACK or POPBACK, a
thread continues to either write the item to the storage array or read at item from
storage array and adding it to the operation descriptor. A thread updates the head

44 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

value (Q.head ∶ ⟨hindex,hcount⟩z→ ⟨hindex+1,hcount+δ⟩ and proceeds with
the next item in the queue (Algorithm 2.4, Line 44).

The function markNode (Algorithm 2.4, Line 41) is used to indicate that an
item has been deleted from the vector. We employ the pointer marking technique
described by Harris [23]. Random access operations may attempt to execute at
indexes that are higher than the current size of the vector. On reading a marked
node, the thread observes that the current operation is executed out of bounds.

A thread continues to complete operations from the queue segments, until:
(1) the thread gets to the end of a segment and its operation has already been
completed, (2) the thread whose operation has already completed observes
contention from concurrent threads. Therefore, a thread only returns from the
Complete operation after its operation has been completed, and it has also
attempted to help other threads complete their operations.

(D) popback Operation

Algorithm 2.5 presents the POPBACK operation. Similar to PUSHBACK, a thread
executing the POPBACK operation starts off by creating a new WriteDescr with
details about operation. Then, attempts to announce the operation by adding
it to an active queue segment (AddToBatch). The thread returns from the
AddToBatch after having its operation completed by a concurrent thread, or
backing-off for the threshold duration. If the operation was not completed, the
thread calls Complete to help complete any pending operations enqueued
before its operation, then complete its own operation. After which the thread
returns either a value taken from the back of the vector or EMPTY if the vector
did not contain any items.

1 PopBack(thInfo* th, E elem)
2 q ← vector.batch ;
3 wop ← newWriteDescr(true, elem, POP);
4 ⟨m index,m q⟩ ← AddtoBatch(q, wop);
5 while wop.pending do
6 Complete(wop, m q, m index);
7 elem ← wop.v new.value;
8 return elem;

Algorithm 2.5. The POPBACK operation

(E) Read-Write Operations with bounds checking

In this section, we describe the implementations of random access operations
READ and WRITE. We augment these operations with bounds checking to deal
with cases where the index is greater than the current size of the vector. Failure to

2.3. ALGORITHM 45

do so implies that READ–WRITE operations cannot be linearized with concurrent
POPBACK or PUSHBACK executions.

One solution to identify whether a position is within bounds, is to check the
current size of the vector. This involves threads reading the vector descriptor on
every random access operation. If every update on the vector size changes the
vector descriptor, threads incur significant overhead reading the size value each
time before a random operation.

We reduce this overhead by having the vector descriptor changed only when
traversing from one operation queue segment to the next. In this way, the size of
the vector is only update after approximately every QSize tail operations, instead
of after every operation. Thus the random access operations proceed as detailed
below:

READ: For a READ operation, a thread compares the index with the vector size
value by reading the vector descriptor. If the index is still greater than the size
value plus QSize, then it is considered out of bounds and the read operation
returns null. If the index is within QSize of the size value, the thread reads the
vector batch (Q.head↝hcount) to ascertain the actual size of the vector.

If the index is within the current size bounds, the thread proceeds to read the
node pointer stored at the vector index. Then checks that the value has not been
marked by a concurrent POPBACK operation. If true, the thread returns the value
associated with the index, otherwise, it considers the position out of bounds. In
summary, we use both the vector size and bit-marking to guarantee that read
operations are linearized correctly with concurrent tail operations.

WRITE: In addition to bounds checking, the WRITE operation attempts to
modify the value at a given index i. Therefore, it starts off with bounds checking
as described for the READ operation above, on reading the current node and
confirming that it has not been previously marked, proceeds to create a new node
with the value Vnew and swap with the old node (At(i) ∶ {Vold} z→ {Vnew}) .
The operation uses a CAS instruction in an attempt to replace the current value
with the new node returning true if successful and false if it fails.

size: The size operation returns the size stored in the current vector size plus
the value of Q.head↝hcount.

(F) Elimination Backoff

Hendlar et al. [24] proposed the elimination backoff for the lock-free stack,
in which concurrent PUSH and POP operations exchange data and complete

46 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

without contending at the actual data structure. An array is typically used as the
elimination area to allow for opposite pairs of operations to collide and cancel
out. Threads set a timeout for the elimination procedure, on timing out without a
collision with an inverse operation, the thread attempts to access the underlying
data structure directly.

Similar to a concurrent stack, PUSHBACK and POPBACK operations of the
vector are converse in nature and concurrent executions can exchange data and
cancel out without contending for access to the data structure. For correctness,
this is considered equivalent to a POPBACK operation happening immediately af-
ter a PUSHBACK. Thus, we can optimize performance by utilizing the elimination
backoff strategy.

Naturally, this raises the question as to why we do not utilize Elimination in
all cases for opposite PUSHBACK and POPBACK. We observed that the elimination
technique is more suited to workloads with approximately equivalent PUSHBACK

and POPBACK workloads. For skewed workloads, many operations can not be
canceled out at the elimination layer, thereby incurring the overhead without
reducing the contention on the underlying data structure.

2.3.3 Correctness

To demonstrate the correctness of our concurrent vector design, we verify safety
(linearizabilty [21]) and liveness (lock–freedom [4]) properties. This section
presents proofs sketches that support our arguments for the linearizability and
lock-freedom of our concurrent vector design.

(A) Linearizability
Linearizability is a correctness property which requires that each operation
should appear to take effect instantaneously at some point (linearization point)
between its invocation and response [21]. This definition implies that the real-
time ordering of operations is preserved, and a concurrent execution history3

yields an equivalent legal sequential history of the same executions that is
consistent with the real-time order. A history is sequential if the first event is
an invocation, and each invocation except possibly the last one is followed by a
matching response.

3A history is a finite sequence of operation invocations and responses. In a history H, an operation
is a pair consisting of an invocation and a matching response. A legal history respects the sequential
specifications of the object.

2.3. ALGORITHM 47

Consequently, a linearizable concurrent vector comprises of a concurrent
history that can be reordered to yield a sequential history that is correct according
to a definition of a sequential vector and is consistent with the operations’ real-
time ordering.

Identifying a linearization point for each operation is one popular approach
to show that a concurrent object is a linearizable implementation of a sequentially
specified object. Ordering concurrent operations according to the linearization
points, every concurrent history is equivalent to some sequential history. In the
sequential history, if one operation precedes another, then that operation must
have taken effect before the later call.

We denote the linearization point of an operation op as Hj(op), and an
operation op1 precedes op2 (op1 ≺ op2) if the linearization point of op1 happens
before that of op2.

Definition 2.1. An object is a linearizable vector implementation if it satisfies
the following requirements4. We denote the logical vector as V and a cell at
index k of the vector as V [k].

1. For each thread Ti adding a sequence of items
k ∈ {1,2,} to the vector, Ek ≺ Ek+1.

2. Let Dk be the POPBACK operation that returns the item at index k, and Ek
the PUSHBACK operation that added the item to the vector, then Ek ≺ Dk.

3. Dk+1 ≺Dk and there is at most one POPBACK operation that returns the
item at index k.

4. The size value is always equivalent to the number of items in the vector.

Lemma 2.1. A PUSHBACK operation Ek is always linearized before a later
PUSHBACK Ek+1 by same thread.

Proof. During a PUSHBACK operation, a thread either successfully announces its
operation to a queue segment using a CAS instruction or fails and retries after
acquiring a new index and probably a new queue segment.

Pending operations in the queue are applied to the vector in FIFO order and
an operation only returns after the queue head has moved past its index in the
queue. Therefore, Ek is linearized before Ek+1.

4For clarity we assume that all the items are unique, however the proof can easily be modified to
hold without this assumption

48 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

Lemma 2.2. A PUSHBACK operationEk is always linearized before the matching
POPBACK Dk that removes item from the vector.

Proof. Similar to the PUSHBACK operation, the POPBACK operation is added
to the operations array where operations are completed in FIFO order. The
linearization point is either at (Algorithm 2.4, line 30) if the vector is empty or at
(Algorithm 2.4, line 41) when the vector executes CAS to mark the vector array
cell thus making the operation visible to concurrent random access operations.
A POPBACK operation that succeeds as above, only executes after all prior
PUSHBACK operations are completed.

Lemma 2.3. An element that is successfully added to a queue segment is applied
to the vector at most once.

Proof. AddToBatch operation succeeds only if the CAS execution in Line 16
of Algorithm 2.2 succeeds, otherwise, the segment cell is invalidated by a
concurrent Complete operation (Algorithm 2.4, line 18).

In the Complete operation, there are two main challenges; first we must
ensure that operations are not added to the queue after we have advanced the
queue head (Q.head) past a given index. This is dealt with as explained in
section (C), and empty slots are invalidated with a CAS (&q.ids[index],⊥,⊺).

The other challenge is ensuring that if two threads are concurrently executing
an operation taken from the same index of the queue, only one of these threads
succeeds and the operation is applied at most once to the vector. A thread reads
the value at the target vector slot (Algorithm 2.4, line 35), and only completes
the operation if it is the first thread to do so with a CAS in Algorithm 2.4 line 37
or line 40 . Other attempts fail to complete the operation.

Lemma 2.4. Dk+1 ≺ Dk and there is at most one POPBACK operation that
returns the item at index k

Proof. This follow directly from Lemma 2.3

Theorem 1. Our algorithm is a linearizable implementation of a dynamic vector

Proof Sketch. Lemma 2.1–2.4 show that given a sequentially specified vector
object, we identify specific linearization points mapping an arbitrary concurrent
execution history of our concurrent vector design to meet the specifications. For
concurrent PUSHBACK and POPBACK, each operation that was successfully added
to a cell in the queue of pending operations is essentially linearized before the
CAS that moves the hindex past the cell occupied by the operation.

2.3. ALGORITHM 49

(B) Lock–freedom

Lock-freedom is a progress guarantee that infinitely often some process will
complete its operation in a finite number of steps despite arbitrary delay or failure
of any other processes.

Theorem 2. The presented concurrent vector algorithm is lock-free

Proof Sketch. In our design, random access operations do not modify the vector
descriptor or vector queue; they are wait-free. For tail operations, threads acquire
slots in the queue of pending operations using FAA, which always returns an
index. Although, the returned index my be larger than QSize, the thread retries
and this indicates that other operations have taken indexes less than QSize After a
thread has been granted a cell in the queue, this cell is only invalidated by threads
that have already completed announcing their operations in the queue. Thus,
announcement of an operation only fails, after another thread has guaranteed
that its operation will succeed. Announcing an operation guarantees that the
operation will definitely complete before other threads can move the queue index
past the given cell. Consequently, system wide progress is guaranteed; proposed
algorithms are lock-free.

2.3.4 Memory Management and ABA Problems
The presented algorithms do not rely on any memory management or reclamation
mechanism. For our implementation, we utilize SSMEM [25] , a memory
allocator with epoch-based garbage collection [26]. While efficient, epoch-
based memory reclamation schemes allow for unbounded growth in unreclaimed
objects due to thread delay or failure. This is still an open problem, which we
are actively investigating. DEBRA by Brown [27], is an attempt at solving the
problem using signaling to detect thread failures on Posix based systems.

Additionally, CAS-based implementations are prone to the ABA problem [28];
a thread Th1reads a value A from a shared memory location, Th2 changes the
value to B and then Th2 or another thread changes it back A. When Th1 exe-
cutes a CAS instruction on the location, it succeeds erroneously as if the location
has not been changed since last read by Th1.

In a concurrent vector, the ABA problem can occur in two cases: (a) an
element A is stored at a vector index multiple times, (b) a freed object is reused
while some threads still hold references to the object. In our implementation,
(a) is solved by storing the elements in garbage collected nodes and only store
pointers to these nodes in the data array. The memory reclamation scheme
implicitly solves (b).

50 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

2.4 Performance Evaluation
In this section, we evaluate the performance of our concurrent lock-free vector
compared to several concurrent vector implementations in the literature. In our
experiments, we compare the performance of the following implementations:

1. LFBatchElimTH: Our implementation of a lock-free vector with combining,
elimination and a threshold as described in Section 2.3.2

2. LFvector: Lock-Free dynamic resizable array [9] which is the first Descriptor-
based lock-free concurrent vector design.

3. TBBvector: Lock-based vector implementation from Intel’s Thread Building
Blocks [8], PUSHBACK is implemented with a fetch-and-add on the vector size
and this vector does not support POPBACK operation.

4. STL+Mutex: STL vector made thread-safe with a mutex lock. Similar to [9],
we experimented with multiple lock synchronization primitives (mutex, ticket-
locks, spin-locks), however the mutex lock was the best performing. Thus, we
only include results for the mutex lock in the evaluation.

5. WFvector: Wait-free vector design that utilizes fast-path slow-path technique
to achieve wait-freedom [10]. Additionally, the vector design offers tail opera-
tions that are synchronized using FAA (FAAvector - no POPBACK operation),
and thus does not allow complement operations i.e. if one supports PUSHBACK,
POPBACK is not supported.

Hardware Platform We performed our evaluations on a dual-socket server
with a 3.4 GHz Intel E5-2687W-v2 having 16 physical cores (32 hardware
threads by hyper-threading), 16 GB of RAM, running Ubuntu 13.04 Linux. All
the algorithms were implemented in C/C++, compiled with gcc version 4.9.2,
O2 optimization and TCMalloc enabled for the STL implementations [29] to
reduce dynamic memory allocation overheads. We manually pin software threads
onto hardware threads so as to leverage CPU affinity within sockets.

Benchmark For this evaluation, we generate various workload distributions
(PUSHBACK, POPBACK,READ and WRITE) ∈ {(100,0,0,0), (50,50,0,0),
(70,10,10,10), (50,30,10,10), (25,25,25,25), (10,10,40,40)} as we vary
the number of execution threads ∈ {2,4,8,12,16,20,24,28,32}. We measure
throughput performance as the number of successful operations per second. Each
measurement represents the average over 6 runs with each thread executing 106

operations on a shared vector object. Each operation is a: PUSHBACK(+),

2.4. PERFORMANCE EVALUATION 51

POPBACK(−), random access READ(r) or random access WRITE(w) with a
probability based on the workload distribution. We initialize the vector with a
number of elements (N = 215) to reduce effects of empty POPBACK operations
in our analysis.

(a) 100+/0−/0w/0r (b) 50+/50−/0w/0r (c) 70+/10−/10w/10r

(d) 20+/0−/40w/40r (e) 25+/25−/25w/25r (f) 10+/10−/40w/40r

0

10

20

0

5

10

15

0

4

8

12

16

0

25

50

75

0

5

10

15

20

25

10

20

30

40

2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

#threads

T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)

FAAvector LFBatchElimTH LFvector STL+Mutex TBBvector WFvector

Figure 2.3: Throughput: Performance results for different implementations
with PUSHBACK(+), POPBACK(−), random access WRITE(w) and random access
READ(r) percentage workload distributions as we increase active threads for
each distribution.

2.4.1 Experimental Results and Discussion
Figure 2.3 shows the results of our experiments with the vector implementations.
In the figure, the throughput in million-operations/per second is plotted on the
y-axis of each diagram, while the number of threads is plotted on the x-axis. As
FAAvector and TBBvector do not support POPBACK operation, we only include
them in distributions that exclude the POPBACK operation (Figure 2.3 a & d).

We observe that for workloads that exclude the POPBACK operation (Fig-
ure 2.3 (a) & (d)), FAAvector and TBBvector significantly outperform other
designs. Given that they do not support conflicting POPBACK and PUSHBACK

operations, FAAvector and TBBvector do not incur any performance penalties
that are paid by the other implementations that cater for inverse operations. As
we increase the number of threads to have executions on the second socket (more
than 16 threads), performance degrades for both; with the FAAvector degrading
more than the TBBvector.

The LFvector scales poorly for all workloads as we increase the number of

52 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

threads to execute on both sockets of the server. We attribute the degradation in
performance to the increase in contention and the latency resulting from cache
misses in the NUMA architecture. With POPBACK and PUSHBACK operations
having to update the descriptor value of the vector, this results in significant de-
lays due to cache misses as the threads have to update the invalidated value of the
descriptor after each successful operation. This is exacerbated on the dual socket
architecture. Inter-socket communication cost is much higher than intra-socket
costs between cores on the same socket. In contrast, LFBatchElimTH offers

(a) 100+/0−/0w/0r (b) 70+/10−/10w/10r

(c) 20+/0−/40w/40r (d) 10+/10−/40w/40r

6

9

12

15

8

12

16

10

20

30

40

50

15

20

25

30

35

40

45

2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

#threads

T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)

LFBatch LFBatchElim LFBatchElimTH

LFvector STL+Mutex

Figure 2.4: Performance results with optimizations proposed in Section (F).

performance similar to the LFvector for threads running on a single socket (≤ 16)
and scales well across server sockets (threads > 16) for all workload distributions.
It performs on average 2.76 times as many operations as the LFvector at high
contention. The major reason for the scalability is that combining reduces con-
tention on the vector descriptor and cache-miss storm that occurs every time the
value of the descriptor is changed and invalidates the values held in the cache by
each thread. On failure to complete any CAS operation, threads do not attempt
to re-read the descriptor value and re-execute the CAS at same memory location.
Consequently reducing contention, resulting in better scalability.

2.5. CONCLUSION 53

Wait-Free implementation does not scale with increasing thread count; per-
forms worse than STL+Mutex, and the performance further deteriorates when
threads are executed on both sockets (more than 16 threads). The poor perfor-
mance is attributed to the synchronization costs associated with the tail operations
(PUSHBACK, POPBACK), and the cost of maintaining the vector in contiguous
memory. Each tail operation involves at least four CAS operations without
contention, and these expand with increasing contention.

Degradation in TBBvector, FAAvector, and LFvector for READ/WRITE domi-
nated workloads as we increase threads to occupy both sockets of the server was
unexpected due to the random access and independent nature of these operations.
The degradation is a result of bounds checking that is added for the benchmark-
ing so as not to access invalid memory. Bounds checking involves reading the
current size of the vector, which inherently requires a read of the descriptor [30].

Figure 2.4 compares the performance of our vector design with various
optimization techniques implemented as described in Section (F). LFBatch:
vector with combining, LFBatchElim: vector with combining and elimination,
LFBatchElimTH: vector with combining, elimination and a threshold before
combining.

2.5 Conclusion

We presented a scalable and NUMA efficient design and implementation of
a lock-free vector. The design augments a prior lock-free vector design with
combining synchronization technique without compromising the progress guar-
antees.

We compared our vector design with prior implementations both lock-based
and non-blocking using micro-benchmarks. We observed that our implementa-
tion performs as well as the most efficient vector design, and it out performs it
on NUMA architectures for all workload distributions. Our lock-free combin-
ing technique can be utilized to improve the efficiency of other lock-free data
structures with potential synchronization bottlenecks (i.e., stacks and queues).

Bibliography
[1] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali, “A

case for numa-aware contention management on multicore systems,” in Proceedings
of the international conference on Parallel architectures and compilation techniques.
2010, pp. 557–558, ACM.

54 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

[2] Maurice Herlihy and Nir Shavit, The Art of Multiprocessor Programming, Morgan
Kaufmann Publishers Inc., 2008.

[3] Maurice Herlihy, Victor Luchangco, and Mark Moir, “Obstruction-free synchroniza-
tion: Double-ended queues as an example,” in Proceedings of the IEEE International
Conference on Distributed Computing Systems. 2003, pp. 522–529, IEEE.

[4] Maurice Herlihy, “Wait-free synchronization,” ACM Transactions on Programming
Languages and Systems, vol. 13, no. 1, pp. 124–149, 1991.

[5] Phong Chuong, Faith Ellen, and Vijaya Ramachandran, “A universal construction
for wait-free transaction friendly data structures,” in Proceedings of the ACM
Symposium on Parallelism in Algorithms and Architectures. 2010, pp. 335–344,
ACM.

[6] Panagiota Fatourou and Nikolaos D. Kallimanis, “A highly-efficient wait-free
universal construction,” in Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures. 2011, pp. 325–334, ACM.

[7] Maurice Herlihy, “A methodology for implementing highly concurrent data objects,”
ACM Transactions on Programming Languages and Systems, vol. 15, no. 5, pp.
745–770, 1993.

[8] Intel, “Reference for intel threading building blocks,” https://www.
threadingbuildingblocks.org/, 2016.

[9] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup, “Lock-free dynamically
resizable arrays,” in Proceedings of the International Conference on Principles of
Distributed Systems. 2006, pp. 142–156, Springer.

[10] Steven Feldman, Carlos Valera-Leon, and Damian Dechev, “An efficient wait-free
vector,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 3, pp.
654–667, 2016.

[11] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir, “Flat combining and the
synchronization-parallelism tradeoff,” in Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures. 2010, pp. 355–364, ACM.

[12] Panagiota Fatourou and Nikolaos D. Kallimanis, “Revisiting the combining syn-
chronization technique,” in Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 2012, pp. 257–266, ACM.

[13] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa, “Executing parallel
programs with synchronization bottlenecks efficiently,” in Proceedings of Interna-
tional Workshop on Parallel and Distributed Computing for Symbolic and Irregular
Applications. 1999, pp. 182–204, World Scientific.

[14] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy, “The adaptive priority
queue with elimination and combining,” in Proceedings of International Symposium
on Distributed Computing. 2014, pp. 406–420, Springer.

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/

BIBLIOGRAPHY 55

[15] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup, “Understanding and
effectively preventing the aba problem in descriptor-based lock-free designs,” in
Proceedings of the IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing. 2010, pp. 185–192, IEEE.

[16] Alex Kogan and Erez Petrank, “A methodology for creating fast wait-free data
structures,” in Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 2012, pp. 141–150, ACM.

[17] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie, “Distributing hot-spot
addressing in large-scale multiprocessors,” IEEE Transactions on Computers, vol.
36, no. 4, pp. 388–395, 1987.

[18] Nir Shavit and Asaph Zemach, “Combining funnels,” Journal of Parallel and
Distributed Computing, vol. 60, no. 11, pp. 1355–1387, 2000.

[19] Panagiota Fatourou and Nikolaos D. Kallimanis, “A Highly-efficient Wait-free
Universal Construction,” in Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures. 2011, pp. 325–334, ACM.

[20] Leslie Lamport, “How to make a multiprocessor computer that correctly executes
multiprocess programs,” IEEE Transactions on Computers, vol. C-28, no. 9, pp.
690–691, 1979.

[21] Maurice Herlihy and Jeannette M. Wing, “Linearizability: A correctness condi-
tion for concurrent objects,” ACM Transactions on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, 1990.

[22] Greg Barnes, “A method for implementing lock-free shared-data structures,” in
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures.
1993, pp. 261–270, ACM.

[23] Timothy L. Harris, “A pragmatic implementation of non-blocking linked-lists,” in
Proceedings of the International Conference on Distributed Computing. 2001, pp.
300–314, Springer.

[24] Danny Hendler, Nir Shavit, and Lena Yerushalmi, “A Scalable Lock-free Stack
Algorithm,” in Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures. 2004, pp. 206–215, ACM.

[25] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis, “Asynchronized concur-
rency: The secret to scaling concurrent search data structures,” in Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems. 2015, pp. 631–644, ACM.

[26] Keir Fraser, “Practical lock-freedom,” PhD thesis, University of Cambridge, 2004.

[27] Trevor Alexander Brown, “Reclaiming memory for lock-free data structures: There
has to be a better way,” in Proceedings of the ACM Symposium on Principles of
Distributed Computing. 2015, pp. 261–270, ACM.

56 CHAPTER 2. SCALABLE LOCK-FREE VECTOR WITH COMBINING

[28] Maged M. Michael, “Hazard pointers: Safe memory reclamation for lock-free
objects,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 6, pp.
491–504, 2004.

[29] Sanjay Ghemawat and Paul Menage, “Tcmalloc : Thread-caching malloc,” http:
//goog-perftools.sourceforge.net/doc/tcmalloc.html, 2009.

[30] Bapi Chatterjee, Ivan Walulya, and Philippas Tsigas, “Help-optimal and language-
portable lock-free concurrent data structures,” in Proceedings of the International
Conference on Parallel Processing. 2016, pp. 360–369, IEEE.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

PAPER II

Ivan Walulya, Bapi Chatterjee, Ajoy K. Datta, Rashmi Niyoliya and Philippas
Tsigas

Concurrent Lock-free Unbounded Priority Queue with
Mutable Priorities

In Proceedings of the
20th International Symposium, Stabilization, Safety, and Security of Distributed

Systems
To appear, LNCS, Springer 2018.

3
Concurrent Lock-free Unbounded

Priority Queue

Abstract
The priority queue with DELETEMIN and INSERT operations is a classical inter-
face for ordering items associated with priorities. Some important algorithms,
such as Dijkstra’s single-source-shortest-path, Adaptive Huffman Trees, etc. also
require changing the priorities of items in the runtime. Existing lock-free priority
queues do not directly support the dynamic mutation of the priorities. This paper
presents the first concurrent lock-free unbounded binary heap that implements a
priority queue with mutable priorities. The operations are provably linearizable.
We also designed an optimized version of the algorithm by combining the con-
current operations that substantially improves the performance. For experimental
evaluation, we implemented the algorithm in both C/C++ and Java. A number
of micro-benchmarks show that our algorithm performs well in comparison to
existing implementations.

59

60 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

3.1 Introduction

A priority queue orders a set of items by a numerical cost – often called priority
– associated with each item. In its most general form, a priority queue abstract
data type (ADT) is defined by two operations – INSERT and DELETEMIN. An
INSERT(k, elem) inserts an item elem with priority k and a DELETEMIN()
removes an item with the highest priority from the set of objects. Priority queues
are widely used at operating system kernels as well as in user-space. Some
well-known applications are discrete event simulations [1], graph search [2],
operating systems schedulers [3], SAT solvers [4] and many others. Several
of them, such as Dijkstra’s single-source-shortest-path (SSSP) algorithm [5],
Adaptive Huffman Trees [6], etc. require updating the priorities after inserting the
items. In today’s application settings, the underlying datasets grow immensely
at runtime necessitating the employed data structure to be adaptable to size
variations.

At the same time, the proliferation of multi-core systems have essentially
mainstreamed the concurrent data structures. Concurrent data structure designs
are evaluated on consistency (correctness) and progress guarantees in addition
to scalability with increasing number of processing threads. The most common
consistency framework used in concurrent settings is linearizability [7], which
relates a concurrent execution on an object to its sequential specification. Lin-
earizability requires that an operation appears to take effect instantaneously at a
single linearization point between the operation’s invocation and its response.

Consistency may be trivially achieved using mutual exclusion locks that
serialize the access to the entire data structure, also called coarse-grained lock-
ing. However, it severely limits the concurrent operations. Even if the number
of locks increase, i.e. fine-grained locking, they are still vulnerable to pitfalls
such as deadlock, priority inversion and convoying. An alternative approach
is lock-free implementation. In a lock-free concurrent data structure, at least
one non-faulty processing thread is guaranteed to complete its operation in a
finite number of steps. Effectively, lock-free data structures foster both scala-
bility and progress guarantee. A stronger progress guarantee is wait-freedom,
which ensures that all the non-faulty processes finish their operations in a finite
number of steps. However, most often wait-freedom results in poor performance.
Another approach to implement consistent concurrent data structure is using
software transactional memory (STM) [8]. However, the performance of such
implementations largely depends on the design of the STM. Unsurprisingly, us-
ing STM to design concurrent data structures has often resulted in unacceptable
performance [9].

Thus, an efficient and scalable unbounded concurrent lock-free data structure

3.1. INTRODUCTION 61

implementing a mutable priority queue, i.e. one which offers updating priorities
of items dynamically, is highly sought-after in a large number of applications.

Based on the employed data structure, a priority queue implementation can
be categorized primarily as: (a) heap*-based, and (b) skip-list-based.

The previous attempts on heap-based concurrent priority queues have largely
been blocking (lock-based) or impractical non-blocking designs. Hunt et al. [10]
presented a fine-grained lock-based heap, which locks each node separately and
operations release and re-acquire locks after each step in bubble-up to prevent
deadlocks with concurrent bubble-down operations. Tamir et al. [11] extended
the work of [10] by including operations, called CHANGEKEY, to update the
priority of items. The focus of their work is on the CHANGEKEY operations,
which they show that improves the overall performance of Dijkstra’s SSSP
algorithm.

The first attempt to implement a non-blocking concurrent heap was by
Herlihy [12]. However, this wait-free algorithm required copying the entire
heap making the implementation inherently sequential and of little practical
interest. Barnes [13] proposed a wait-free algorithm to address the drawbacks of
Herlihy. His definition of the wait-free property is different from the generally
accepted definition. Additionally, no implementation of this algorithm exits.
Israeli et al. presented a wait-free algorithm for heap-based priority queues [14]
which utilizes atomic primitives† that are not implemented in existing hardware
platforms.

Dragicive et al. [9] designed a lock-free heap that uses STM for concurrency
control. Their design offered poor performance due to the overhead of the STM.
We point out that all the previously available concurrent heaps are bounded to
a fixed size allocated at the initialization. There are available works on skip-
list-based concurrent priority queues – Shavit et al. [15], Tsigas et al. [16], etc.
Alistarh et al. [17] proposed an approximate DELETEMIN operation in skip-lists.
However, the skip-list-based implementations face difficulty to implement the
algorithms that require mutable priorities at the runtime: observably, the overall
performance of the algorithm degrades [11].

We present CoMPiQ - a Concurrent lock-free unbounded heap-based Mutable
Priority Queue. The Table 3.1 summarily contrasts our contributions with the
relevant existing works.

In the paper, first we present the system model and the sequential specifica-
tion of the heap data structure (Section 3.2). Then, we describe the lock-free
design of the heap in detail (Section 3.3). We present the proof of linearizability
and lock-freedom of the concurrent operations (Section 3.4). We implemented

*In this work, by a heap we mean a binary heap.
†SC2 which validates and writes to two disjoint memory locations atomically

62 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

Table 3.1: Concurrent Priority Queues

Paper Data Struc-
ture

Progress
Guarantee

Mutable
Priority

Unbounded Practical Imple-
mentation

Herlihy [12] Heap Wait-free No No No
Hunt et al. [10] Heap Lock-based No No Scales poorly
Shavit et al. [15] Skip-list Lock-free No Yes Yes
Tsigas et al. [16] Skip-list Lock-free No Yes Yes
Dragicive et al. [9] Heap Lock-free No No Scales poorly
Tamir et al. [11] Heap Lock-based Yes No Yes
CoMPiQ Heap Lock-free Yes Yes Yes

the algorithm in both C/C++ and Java. We describe the micro-benchmarks that
we used to evaluate the algorithm, wherein we also discuss the performance
with respect to the design optimizations. Our experiments demonstrate that the
presented algorithm performs well in comparison to the existing counterparts
(Section 3.5).

3.2 Preliminaries
We consider an asynchronous shared memory system with a finite set of n
processing threads p1, ..., pn where n may exceed the number of physical pro-
cessors. In addition to the atomic read and write instructions, the system
supports Compare-And-Swap (CAS) atomic read-modify-write instructions. The
CAS(address, old, new) instruction checks if the current value at a
memory location (address) is equivalent to the given value old, and only if
true, changes the value of address to the new value (new) and returns TRUE;
otherwise the memory location remains unchanged and the instruction returns
FALSE.

The ADT mutable priority queue is defined by the following operations:
• INSERT(k, elem): An INSERT(k, elem) inserts an item elem with priority
k to the heap. We assume that k belongs to a totally ordered set. INSERT
is typically a void procedure, however, we return a cross-reference to the
insert item instance which can be used in the CHANGEKEY procedure‡.In
case there is an item elem′ available in the heap with the same priority
k, the item elem gets inserted and the two items elem and elem′ can
have arbitrary order by their indexes. Thus, the heap allows items with
duplicate priority.

• DELETEMIN(): A DELETEMIN removes an item with highest priority
‡In our implementation, the INSERT operations never returns a null or fails to make any change

due to the reason of finding the heap full. The heap is never full as long as we have sufficient system
memory available.

3.3. ALGORITHM 63

from the heap and returns that item itself. DELETEMIN returns a special
item EMPTY making no changes in the heap, if there are no items in the
heap.

• CHANGEKEY(it, k2): A CHANGEKEY(it, k2) changes the heap so that an
item elem referenced by the iterator it, if existing in the heap, is placed at
the priority k2. It returns EMPTY if the item referenced by it was deleted
from the priority queue.

In our work, a heap data structure implements a mutable priority queue. A
heap is implemented by way of a resizable array. Thus, it contains items that
allow for random access using a non-negative index. The array is considered
virtually divided in levels. In the array, the root of the heap occupies the index 1
and is considered to be at the level 0. The left and the right children of the item
at the index i are at the indexes 2i and 2i+ 1, respectively. We have considered a
minheap, which means that the heap maintains the following heap property.

Heap property: An item elem1 with priority k1 has higher priority than
the item elem2 with priority k2, if k1≤k2. Thus, a parent always has a smaller
priority compared to its children and the root has the highest priority. Moreover,
no item exists at level l unless the level l − 1 is completely full.

To demonstrate the correctness of our concurrent heap design we verify the
safety and liveness properties. The safety property that we use is linearizability
[7], whereas, the liveness is proved as lock-freedom [18].

Lock-free Implementations utilizing CAS are prone to the ABA problem [19]:
a thread P reads a value A from a shared memory location, a concurrent thread
P̂ changes the value to B and then P̂ or another thread changes it back A;
when P executes a CAS instruction on the location, it succeeds erroneously
as if the location has not been changed since last read by P . Several memory
management solutions have been proposed to address the ABA problem [19, 20].
For ease of exposition, we assume the availability of a non-blocking memory
management and garbage collection.

3.3 Algorithm
Our heap implementation utilizes the lock-free dynamic resizable arrays [21]
as the underlying container, which offers both unbounded storage and lock-free
progress guarantees. The ADT operations consist of a series of steps, such as
modifying the size and then appending an item to the heap, or swapping the item
at the root with the item at the bottom, or for that matter swapping any two items
in case of a CHANGEKEY, followed by restoring the heap property. Each step
comprises of at least one atomic primitive execution over a shared memory word.

64 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

The procedures HEAPIFYUP and HEAPIFYDOWN restore the heap property.
In order to achieve lock-free synchronization on concurrent access, we apply

the cooperative technique described by Barnes [22]. The main idea is to detach
operations from the executing threads. A thread that wishes to execute an
operation on a slot of the array, creates a description of the work that it needs to
perform, and writes the descriptor on the slot: we call it marking the slot. The
operation can be completed by any thread that encounters the descriptor, which
comes handy to ensure lock-freedom if the thread that initiated the operation is
delayed or crashes.

Please note that marking is not locking a slot. It can be thought as shutting
the door of a slot after putting down the description of all that is to be done
inside. Thus any concurrent thread instead of busy waiting at the door actually
carries the description with itself and tries to finish the work initiated by another
thread in case that thread could not finish in time.

In our design, we maintain a global descriptor which encapsulates the
current size of the heap and allows atomic modification of the size value and
the associated heap slots with a sequence of CAS instructions. Additionally, we
use descriptor objects at the slots during HEAPIFYUP and HEAPIFYDOWN calls.
The threads calling HEAPIFYUP or HEAPIFYDOWN synchronize by way of
executing CAS at these descriptors.

1: type Heap {
2: Slot *vdata[][];
3: Info *hdescr;
4: }
5: OpType {HPUP, HPDOWN};

▷ Heap initialized
6: Heap* heap← ⟨vdata, ⟨1, null⟩⟩

(a)

1: type Info {
2: bool pending;
3: size t size;
4: size t pos;
5: OpType op;
6: Elem *old, *new;
7: Info *lup, *rup;
8: }

(b)

1: type Slot {
2: Elem *elem;
3: Info *info;
4: }
5: struct Elem {
6: value t key;
7: T *item
8: }

(c)

Figure 3.1: Type definitions for the heap structure, Descriptors and initialization.

Data types and heap initialization are given in Figure 3.1. The Heap structure
holds pointers to the data storage arrays and a descriptor object, Figure 3.1a -
section 3.3 to 4. A descriptor object, Figure 3.1b, maintains information about
the state including the current size of the heap. Therefore, we initialize the heap
with a dummy descriptor object with size 1, Figure 3.1a - section 3.3. To store
auxiliary data with the priorities, our design maintains the heap as an array of
pointers to item nodes. Each slot in the heap has a pointer elem to an Elem
and a pointer info to an Info object which records the state of the slot: stable
or transient due to an update, Figure 3.1c. An Info descriptor stores enough
information, such that a thread encountering a slot in a transient state can help

3.3. ALGORITHM 65

advance the operation.

3.3.1 Lock-free ADT Operations
The mutable priority queue operations in the lock-free heap are shown by flow-
charts in Figures 3.2 and 3.4. The main procedures called by these operations are
shown in Figures 3.3, 3.5 and 3.6. The pseudo-codes of each of the operations,
their subroutines, and detail descriptions thereof are presented in the extended
version of the paper [23]. For ease of exposition, the flow-chart based presen-
tation of the algorithm is recursive. However, our implementation is fully non
recursive as presented in the pseudo-code in the [23].

Info ojects:- gd: Heap Global Descriptor, od: An operation’s descriptor.k, k1, k2 represent
priorities starting at 0 (highest priority), whereas s, l,m, etc. represent the slot indexes.

DELETEMIN()

Check at gd the heap size and
if ∃ a pending operation.

CAS od at gd to register.

No pending operation
and ∃ items

Successful

k = COMPLETEWRITE(od).

Pending operation

COMPLETEWRITE(gd).

Unsuccessful

Return
Min.

Return
EMPTY.

∄ any
item

HEAPIFYDOWN(1, k).

INSERT(k)

Check at gd if ∃ a pending operation.

CAS od at gd to register.

No pending operation

Pending operation

COMPLETEWRITE(gd).

Unsuccessful

Return.

Successful

COMPLETEWRITE(od).

HEAPIFYUP(size,0).

(i) (ii)(ii)

Figure 3.2: INSERT and DELETEMIN operations in CoMPiQ.

The INSERT and DELETEMIN operations, Figure 3.2 (i) and (ii), start with
an attempt to modify the size of the heap, this is achieved by registering the
operation by way of executing a CAS to write its descriptor at the heap’s global
descriptor. That initiates the preliminary phase of the operation. The registered
operation is considered pending until it is ready to call the procedures for
restoring the heap property. The threads that encounter this operation, can
help complete the preliminary phase.

The steps to complete the preliminary phase are taken in the procedure
COMPLETEWRITE, see Figure 3.3. COMPLETEWRITE first fixes the bottom
of the heap and then depending upon the type of restoration required: HPUP

66 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

or HPDOWN, release the root or bottom. This procedure helps in scaling the
method because it releases one end of the heap as soon as the preliminary phase
is completed. In case of DELETEMIN operation calling COMPLETEWRITE, it
returns the priority of the bottom-most item in the heap.

COMPLETEWRITE(od)

CAS to mark bottom.
Successful

CAS at root
to release od. Return.Help(size, bd).

Unsuccessful

bd: descriptor at the bottom slot.

OT← od.OPTYPE.

OT = HPUP.

CAS exchange
items b/w

root and bottom.
CAS delete
bottom slot.

Return
priority
at the

bottom.
OT =

HPDOWN.

Figure 3.3: COMPLETEWRITE procedure.

A CHANGEKEY operation, Figure 3.4, starts with checking the size of the
heap at the global descriptor to verify if the item with the priority that it desires
to change exists in the heap. Thereafter, it attempts to register itself by marking
the slot of the item, and calls HEAPIFYUP or HEAPIFYDOWN as needed. If
the marking fails, it helps the operation that would have marked the slot and
thereafter reattempts marking.

Check at gd
if heap size ≥ s.

CHANGEKEY(it, k2)

False

True

CAS od at s
to register.

Help(s, s.D).
Unsuccessful

Successful

Return.

it.k > k2?

True

False
it.k = k2?

False

True

Return.

Help(s, od).

od.OPTYPE
← HPUP.

od.OPTYPE
← HPDOWN.

Figure 3.4: CHANGEKEY operation in CoMPiQ.

In the Figure 3.5, the procedures HEAPIFYUP and HEAPIFYDOWN are
shown. They take two inputs: the index of the source slot where it starts and
the priority of the destination. HEAPIFYUP keeps on exchanging the item with
its parent up the heap until the destination priority is set at the slot such that
heap property is restored. On the other hand, HEAPIFYDOWN traverses down
the heap to do the same. To exchange the item of the current node with that
of either the parent or a child, a CAS is used to first put a descriptor over there
and thereafter exchange is done atomically. If CAS fails then HELP is called to
first help the obstructing operation and then reattempt. The helping procedure
ensures lock-freedom.

The HELP call is all about synchronization between concurrent HEAPIFYUP
and HEAPIFYDOWN procedures. At a conflict, HEAPIFYDOWN is given priority.
HEAPIFYUP allows the HEAPIFYDOWN to gain ownership of a child slot. This
is done by marking the slot with a so called flat descriptor that stores the old
information as well. This information is carried by the descriptor at the heap

3.3. ALGORITHM 67

HEAPIFYUP(s, k)

CAS at the parent p of
s to mark.

HEAPIFYUP(p, k).

Successful

Return.

Help(p, p.D).

Unsuccessful

CAS to exchange items.
CAS to release s.

p.priority
< k?

False

True

CAS to release p.

HEAPIFYDOWN(s, k)

HEAPIFYDOWN(m,k).

Successful

False

m.priority
> k?

True

CAS at left child l
of s to mark.

Help(l, l.D).

Unsuccessful

CAS at right child r
of s to mark.

Help(r, r.D).

Unsuccessful

Successful

Return.

Find minm
of l and r
by priority.

CAS to exchange items
between s andm.
CAS to release s
and other child. CAS to releasem.

(ii)(i)

s.priority
< k?

TrueFalse

s.priority
> k?

Return.

TrueFalse

Figure 3.5: HEAPIFYUP and HEAPIFYDOWN procedures.

slots, thereby other concurrent operations help accordingly. A HEAPIFYDOWN
after completing its own task, restores the information of HEAPIFYUP if that
existed at the slot previously.

Please note that, we compare the items at the slots according to their priorities.
Moreover, the higher the value of a priority, the lower is the priority as per the
min-heap property.

3.3.2 Design Optimizations
We add two optimizations: (1) “bit-reversal” to ensure that the consecutive
INSERT operations traverse different subtrees up the heap to restore heap property
[10]. (2) Elimination of INSERT by handing the items off to the concurrent
DELETEMIN operations, instead of having the DELETEMIN uproot an item out
of position from the end of the heap. An eliminated INSERT operation can return
immediately without even attempting to register itself. Below a brief description
of the elimination technique is given.

Elimination Optimization: We observe that the DELETEMIN operation lifts
an item from the bottom slot in the heap and heapifesDown the heap, while as
the INSERT operation appends an item to the end of the heap and heapifies Up

68 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

the heap. Therefore, we can optimize by allowing the INSERT to hand-off its
item to a concurrent DELETEMIN. Thus, the DELETEMIN takes an item from
a pending INSERT instead of dislodging one from the end of the heap. Once
an INSERT operation successfully hands-off its item, it returns without calling
HEAPIFYUP.

We utilize elimination arrays as suggested by Hendlar et. al [24], with
each INSERT operation having a dedicated slot in the array. The DELETEMIN
operation traverses the array sequentially until it finds a pending INSERT or
gets to the end of the array. If the DELETEMIN operation fails to eliminate a
pending INSERT, it proceeds with displacing the last item in the heap, otherwise
it continues with the item taken from the the pending INSERT as described below.

After eliminating a pending INSERT operation (lifting its item from the
elimination array), the DELETEMIN compares the lifted item to the item at the
root of the heap. If the lifted item has a higher priority, the DELETEMIN returns
the lifted item without having to call HEAPIFYDOWN. Otherwise, it proceeds to
place the lifted item and returns the item previously at the root.

HEAPIFYDOWN(m,k).

Successful

False

m.priority
> k?

True

CAS at left child l
of s to mark.

Help(l, l.D).

Unsuccessful &
OT = HPDOWN.

CAS at right child r
of s to mark.

Help(r, r.D).

Unsuccessful &
OT = HPDOWN.

Successful

Return.

Find minm
of l and r
by priority.

CAS to exchange items
between s andm.
CAS to release s
and other child.

CAS to releasem.

.

Return.

X

CAS mark with a fat descriptor
that includes the old one. If left

child then CAS mark the right one.
CompleteX .

CAS back previous descriptor
(probably updated).

Unsuccessful &
OT = HPUP.

Help(s, od).

Read destination
priority k and

OPTYPE OT at od. OT = HPDOWN.

HEAPIFYUP(s, k)

OT =

HPUP.

Figure 3.6: HELP procedure in CoMPiQ.

3.4. CORRECTNESS PROOF 69

3.4 Correctness Proof
Theorem 1. The ADT operations implemented by CoMPiQ are linearizable.

To prove linearizability, we define the linearization point of each ADT oper-
ation. We order the operations, which have definitely returned, according to their
linearization points, thus obtaining a sequential history of execution. Thereby,
it is shown that the concurrent history of execution of a finite number of ADT
operations is equivalent to a sequential history. By induction, any concurrent
execution is thus shown to be equivalent to a definite sequential history. Addi-
tionally, we need to show that each of the ADT operations necessarily brings the
heap in a state that satisfies the heap property before its completion.

Proving lock-freedom requires that infinitely often some non-faulty process-
ing thread will complete its operation in a finite number of steps regardless of
the failed or delayed threads. To prove lock-freedom, we shall show that no
operation op busy-waits (by holding locks, for example) when obstructed by a
concurrent operation op′ and goes to help op′ to finish its operation. It may well
be that op is repeatedly obstructed by concurrent operations opi, i ∈ {1,2, . . .}
never letting it complete its own operation, however, by virtue of the same proto-
col it is proved that at least one non-faulty thread completes its operation in finite
number of steps. Under the constraints of space, we sketch the two proofs here.

Proof. The linearization points of the ADT operations are the following:

1. INSERT: An INSERT(k, elem) operation begins with checking the global
descriptor gd of the heap. If it finds that there is a pending concurrent
operation, it goes to first help that by calling a COMPLETEWRITE(gd).
Thus, an INSERT starts taking steps for itself only after the successful CAS
that registers it. After that, INSERT calls COMPLETEWRITE to write its
descriptor, and on completion, a HEAPIFYUP is called. The HEAPIFYUP
finally makes the item elem part of the heap with the successful CAS.
Thus for an INSERT operation that successfully performs this CAS step, its
linearization point is there. In case it gets helped by a concurrent operation
the successful CAS that finally makes the item elem part of the heap is
the linearization point. However, in either case the CAS of linearization
point is performed before the completion of INSERT. For detail, see [23].
Clearly, the linearization point of an INSERT operation is between its
invoke and return.

2. DELETEMIN: Depending on the return, there can be following cases:

(a) DELETEMIN returns EMPTY: The linearization point is at the atomic

70 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

read step where the DELETEMIN reads that the heap-size is 1 i.e.
it contains a the dummy descriptor object.

(b) DELETEMIN returns an item elem: In this case, where it registers
itself by a successful CAS at gd, it is guaranteed that it will itself
complete if not obstructed, or will get helped by a concurrent opera-
tion. Also, once the descriptor od is written, a concurrent INSERT or
DELETEMIN operation treats the root of the binary heap as deleted.
Thus, the return of the concurrent operation treats the DELETEMIN
that successfully put the descriptor as if it had already returned.
Therefore, the linearization point of a DELETEMIN in this case is at
the step where it registers itself.

Thus, the linearization point of a DELETEMIN is between invoke and
return.

3. CHANGEKEY: Similar to an INSERT, a CHANGEKEY terminates after
its item is relocated from one slot to another by way of calling a HEAPI-
FYUP or a HEAPIFYDOWN. The CAS where the item will be visible to
every operation with its modified priority is the linearization point of a
CHANGEKEY operation. When a CHANGEKEY returns without making
any changes in the heap, its linearization point is at the atomic read step
where it reads the size of the heap.

Furthermore, it can be observably determined that no operation returns before
the heap property is restored by calling either a HEAPIFYUP or a HEAPIFY-
DOWN procedure. Any write on a shared memory word in the algorithm happens
by way of only a CAS. A dummy descriptor at the root ensures that no null
pointer is dereferenced. Clearly, the heap invariant is maintained across the
linearization points of the ADT operations.

Theorem 2. The ADT operations implemented by CoMPiQ are lock-free.

Proof. We can observe in the algorithm that a concurrent write at any shared
word happens only using a CAS. Further, if op1 and op2 are any two concurrent
operations, at no point after the failure of a CAS, op1 or op2 repeats the same
CAS step without helping the other operation. This methodology ensures that at
least one of the processes do finish its operation in a finite number of steps.

3.5 Evaluation
In this section, we present an evaluation of our lock-free heap using micro-
benchmarks and a parallelized implementation of Dijkstra’s SSSP algorithm

3.5. EVALUATION 71

described in [11]. For the micro-benchmark, we compare the heap-based con-
current priority queue implementations described below:

1. CoMPiQ: Our implementation of a lock-free heap as described in section 3.3
with elimination optimization.

2. LB-Heap: A fine grained locking implementation by Hunt et. al. [10]. Re-
leases locks and re-aquires them on each iteration of the heapifyup operation
to prevent deadlocks with concurrent heapifydown operation.

3. Champ: . Modification of LB-Heap to remove redundant unlock and lock
operations. Deadlocks are prevented using tryLock() in the heapifyup and
only releasing already acquired locks if a subsequent tryLock() fails. We
received Java code from the authors, reimplemented it in C/C++ and included
the exponential back-off and bit-reversal scheme [10] to reduce contention.

4. STL-Heap: The C++ STL std::priority queue<T>made thread-safe
with a single global lock (coarse-grained locking). We experimented with
multiple lock synchronization primitives, however the mutex was the best
performing.

Methodology: We performed our evaluations on a dual-socket server with
a 3.4 GHz Intel E5-2687W-v2 having 16 physical cores (32 hardware threads
by hyper-threading), 16 GB of RAM, running Ubuntu 13.04 Linux. All the
algorithms in the micro-benchmark were implemented in C/C++, compiled with
gcc version 4.9.2, -O3 and run as part of the ASCYLIB library [25]. Additionally,
we pin software threads onto hardware cores so as to leverage CPU affinity within
sockets. We utilize SSMEM [25] with epoch-based garbage collection [26].

We measured throughput as Million operations per second (Mops/s), while
varying the number of threads, initial heap size and contention (parallel-work:
work performed by threads outside accessing the heap). We do not expect the
concurrent heap to be repeatedly accessed by threads without work in between
so we simulate this work by varying parallel-work (pw), thus giving a more
realistic evaluation than just stress testing. The lower the parallel-work, the more
contention experienced by threads accessing the heap. We varied the number
of items in the heap before starting the measurements with (k ∈ {210,217,220}).
Operations on the heap are randomly chosen with a distribution of 50% Insert and
50% DeleteMin operations. Priorities for inserted items where selected uniformly
at random from the range of all 64-bit integers. Each experiment run for 5
seconds, we present the average over 6 runs for each parameter configuration.

72 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

pw=1 pw=10 pw=100 pw=1000

0

2

4

6

0

2

4

6

0

2

4

6

k
=

2
1
0

k
=

2
1
7

k
=

2
2
0

10 20 30 10 20 30 10 20 30 10 20 30

#Threads

T
h

ro
u

g
h

p
u

t(
M

o
p

s
/s

)

Champ CoMPiQ LB−Heap STL−Heap

Figure 3.7: Throughput Insert/DeleteMin operations executed uniformly and
randomly independent on the heap implementations as we vary the number of threads and
parallel-work (pw) in CPU cycles. K represents the initial number of items in the heap.

Throughput: Figure 3.7 presents measured throughput in Million operations
per second (Mops/s) as we vary the contention in parallel-work (pw) in CPU
cycles and the number of threads. We present three sets of graphs for three initial
sizes of the heap (k ∈ {210,217,220}), this is to show the effect of heap size on
the execution time of the operations.

The figure shows that with small initial size 210 (row 1, Figure 3.7), at
low thread contention, the single lock implementation STL-Heap outperforms
other implementations. This attributed to the low overheads incurred by STL-
Heap using mutual exclusion, and high overheads on both the multi-lock LB-
Heap, Champ and lock-free CoMPiQ. Similar observation about the single-lock
implementation was made in previous works [10, 16].

Champ optimizes on the heapifyup operation of LB-Heap by removing
redundant unlock and re-lock operations in uncontended cases, however,
in case of contention, failure to acquire a lock, results in releasing locks held,
and an attempt to reacquire them. On modern architectures with private caches,
a process that releases a lock has a much higher probability of reacquiring the
lock if it attempts to acquire the lock immediately. Thus, an implementation
of Champ was showing similar performance figures as LB-Heap. We modified
the implementation by adding exponential back-off between releasing a lock,
and attempts to re-acquire the same lock. This is the major reason for the

3.5. EVALUATION 73

performance differences between Champ and LB-Heap.
As we increase the number of threads, contention for the lock increases

and performance deteriorates. We observe that the lock-free algorithm with
elimination (CoMPiQ), scales up as we increase the thread count. Elimination
increases the concurrency exploited by the operations as an INSERT completes
without contending for the global descriptor or creating contention within the
heap with HEAPIFYUP operations. All implementations degrade in performance
as we deploy more than 16 threads due to communication overheads across
sockets. We still observe that CoMPiQ offers better throughput on multi-socket
executions.

As we increase the initial size of the heap (height of the heap), “bit-reversal”
allows for more concurrency, and thus reducing the impact of synchronization
overhead on the performance. In this regard, we see that for heap size 220 the
performance of the single-lock implementation drops significantly relative to
other implementations with increasing thread count. The CoMPiQ performs
best with increased opportunities for concurrency and reduced contention on the
heap.

Increasing parallel work (pw ∈ {1,10,100,1000}) affects the lock-based im-
plementations more than the lock-free implementations because the concurrency
overheads no longer dominate performance, but concurrency. Thus, CoMPiQ
still outperforms other implementations.

Discussion: Key observations are that – the heap is an inherently sequential
data structure and even the most efficient implementation is still outperformed
significantly by a single thread executing on a sequential heap for low levels of
parallel-work. However, as the parallel work increases, the benefit of increasing
concurrency becomes more significant. Additionally, bit-reversal offers more
opportunities for disjoint-access allowing better exploitation of concurrency on
larger size heaps to offset synchronization overheads. This is less significant
in smaller heaps as successive Insert operations conflict on the paths to the
root. The root and the size variable create a severe bottleneck in both blocking
and non-blocking implementations, as all operations have to modify the size
variable, while all DeleteMin operations modify the size and also block the root
for exclusive access. CoMPiQ uses elimination to reduce on the contention at
the bottleneck, thus resulting in better performance.

Parallel SSSP: One important application of priority queues that utilizes the
changeKey operation is the Dijkstra’s SSSP algorithm. To evaluate the per-
formance of CoMPiQ, we implemented CoMPiQ as part of the benchmark
suite received from [11] which included a parallel implementation Dijkstra’s

74 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

Random graph(p=1%) Random graph(p=5%)

Random graph(p=10%) Random graph(p=20%)

Random graph(p=50%) Random graph(p=80%)

0.00

0.03

0.06

0.09

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

0

1

2

3

4

0

1

2

3

4

5

1 2 4 8 12 16 24 32 1 2 4 8 12 16 24 32

1 2 4 8 12 16 24 32 1 2 4 8 12 16 24 32

1 2 4 8 12 16 24 32 1 2 4 8 12 16 24 32

#Threads

T
im

e
(s

e
c
)

Champ CoMPiQ

Figure 3.8: Runtimes for parallel Dijkstra’s SSSP for different random graphs

algorithm and Champ which is the only other implementation that supports
changeKey operation. The parallel Dijkstra’s SSSP algorithm availed in the
benchmark relies heavily on locks to ensure correctness, with this in mind, we
plugged in our implementation without modifying the parallel SSP algorithm for
fair comparison. A more optimistic parallel implementation of Dijkstra’s SSSP
algorithm is left as future work. In the benchmark, running time is measured
over several input graphs and number of execution threads. Each input graph is
generated with 10,000 vertices, with edges occurring independently randomly
with some probability p and a random weight in the range [1-100]. The parallel
Dijkstra’s SSSP algorithm and the evaluated priority queues are implemented in
Java.

Figure 3.8 shows that the CoMPiQ performs comparably with Champ.
This implies that overheads incurred to ensure lock-freedom do not degrade
performance of CoMPiQ when used in parallel applications. Note that node
locks are used in this parallelization, thus, as pointed out earlier, we anticipate
significant performance improvements with a more optimistic parallelization,
that uses atomics to update node weights. We only considered implementations
that support the changeKey operation. Please refer to [11] for an evaluation
involving skiplist-based priority queues that do not support changeKey.

3.6. CONCLUSION 75

3.6 Conclusion
In this paper, we presented a novel algorithm for an array-based unbounded
concurrent lock-free heap. The heap implements a priority queue interface with
the additional facility of changing the priority of an item in the runtime. Our
work contributes to many important applications, which use the priority queue
ADT and need to modify the priority of the items dynamically, in a definitive
way. Our micro-benchmark based experiments demonstrated that our algorithm
performs well in comparison to similar existing algorithms that use locks.

With array-based implementations, it is trivial to represent a d-ary heap,
however, implementation of a concurrent multi-way heap creates new challenges.
The multi-way heaps lower the traversal cost by reducing the height of the tree,
but increase the synchronization overhead as an operation attempts to determine
the priorities of all the d-children. The techniques introduced in this article
may be useful in implementing non-blocking versions of the heap-ordered d-ary
heaps.

Bibliography
[1] Richard M Fujimoto, “Parallel discrete event simulation,” Communications of the

ACM, vol. 33, no. 10, pp. 30–53, 1990.

[2] Robert Clay Prim, “Shortest connection networks and some generalizations,” Bell
Labs Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[3] Gary J Henry, “The unix system: The fair share scheduler,” AT&T Bell Laboratories
Technical Journal, vol. 63, no. 8, pp. 1845–1857, 1984.

[4] Leonardo De Moura and Nikolaj Bjørner, “Z3: An efficient smt solver,” Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340, 2008.

[5] Edsger W Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[6] Jeffrey Scott Vitter, “Design and analysis of dynamic huffman codes,” Journal of
the ACM, vol. 34, no. 4, pp. 825–845, 1987.

[7] Maurice Herlihy and Jeannette M. Wing, “Linearizability: A correctness condi-
tion for concurrent objects,” ACM Transactions on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, 1990.

[8] Nir Shavit and Dan Touitou, “Software transactional memory,” Distributed Com-
puting, vol. 10, no. 2, pp. 99–116, 1997.

[9] Kristijan Dragicevic and Daniel Bauer, “Optimization techniques for concurrent stm-
based implementations: A concurrent binary heap as a case study,” in Proceedings
of the International Parallel and Distributed Processing Symposium, 2009, pp. 1–8.

76 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

[10] Galen C. Hunt, Maged M. Michael, Srinivasan Parthasarathy, and Michael L. Scott,
“An efficient algorithm for concurrent priority queue heaps,” Information Processing
Letters, vol. 60, no. 3, pp. 151–157, 1996.

[11] Orr Tamir, Adam Morrison, and Noam Rinetzky, “A Heap-Based Concurrent Prior-
ity Queue with Mutable Priorities for Faster Parallel Algorithms,” in Proceedings
of the International Conference on Principles of Distributed Systems. 2016, vol. 46,
pp. 1–16, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[12] Maurice Herlihy, “A methodology for implementing highly concurrent data objects,”
ACM Transactions on Programming Languages and Systems, vol. 15, no. 5, pp.
745–770, 1993.

[13] Greg Barnes, Wait-free Algoritzms for Heaps, Department of Computer Science
and Engineering, University of Washington, 1994.

[14] Amos Israeli and Lihu Rappoport, “Efficient wait-free implementation of a concur-
rent priority queue,” in Proceedings of the International Workshop on Distributed
Algorithms. 1993, pp. 1–17, Springer.

[15] Nir Shavit and Itay Lotan, “Skiplist-based concurrent priority queues,” in Proceed-
ings of the International Parallel and Distributed Processing Symposium. 2000, pp.
263–268, IEEE.

[16] Håkan Sundell and Philippas Tsigas, “Fast and lock-free concurrent priority queues
for multi-thread systems,” Journal of Parallel and Distributed Computing, vol. 65,
no. 5, pp. 609–627, 2005.

[17] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit, “The spraylist: A scalable
relaxed priority queue,” in Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 2015, pp. 11–20, ACM.

[18] Maurice Herlihy, “Wait-free synchronization,” ACM Transactions on Programming
Languages and Systems, vol. 13, no. 1, pp. 124–149, 1991.

[19] Maged M. Michael, “Hazard pointers: Safe memory reclamation for lock-free
objects,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 6, pp.
491–504, 2004.

[20] Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, and Philippas Tsigas,
“Efficient and reliable lock-free memory reclamation based on reference counting,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 8, pp. 1173–
1187, 2009.

[21] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup, “Lock-free dynamically
resizable arrays,” in Proceedings of the International Conference on Principles of
Distributed Systems. 2006, pp. 142–156, Springer.

[22] Greg Barnes, “A method for implementing lock-free shared-data structures,” in
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures.
1993, pp. 261–270, ACM.

BIBLIOGRAPHY 77

[23] Ivan Walulya, Bapi Chatterjee, Ajoy K. Datta, Rashmi Niyoliya, and Philippas
Tsigas, “Concurrent lock-free unbounded priority queue with mutable priorities,”
Tech. Rep. 2018:06, ISNN 1652-926X, Department of Computer Science and
Engineering, Chalmers University of Technology, 2018.

[24] Danny Hendler, Nir Shavit, and Lena Yerushalmi, “A Scalable Lock-free Stack
Algorithm,” in Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures. 2004, pp. 206–215, ACM.

[25] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis, “Asynchronized concur-
rency: The secret to scaling concurrent search data structures,” in Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems. 2015, pp. 631–644, ACM.

[26] Keir Fraser, “Practical lock-freedom,” PhD thesis, University of Cambridge, 2004.

78 CHAPTER 3. CONCURRENT LOCK-FREE UNBOUNDED PRIORITY QUEUE

PAPER III

Bapi Chatterjee, Ivan Walulya and Philippas Tsigas

Help-optimal and Language-portable Lock-free
Concurrent Data Structures

In the Proceedings of the
45th International Conference on Parallel Processing

pp. 360-369, IEEE 2016.

4
Help-optimal and Language-portable

Lock-free Concurrent Data Structures

Abstract
Helping is a widely used technique to guarantee lock-freedom in many concurrent
data structures. An optimized helping strategy improves the overall performance
of a lock-free algorithm. In this paper, we propose help-optimality, which implies
that no operation step is accounted for exclusive helping in the synchronization
of concurrent operations. To describe the concept, we revisit the designs of a
lock-free linked-list and binary search tree and present improved algorithms. Our
algorithms employ atomic single-word compare-and-swap (CAS) primitives.

We design the algorithms without using any language/platform specific
mechanism. Specifically, we use neither bit-stealing from a pointer nor runtime
type introspection of objects. Thus, our algorithms are language-portable.
Further, to optimize the amortized number of steps per operation, if a CAS
execution to modify a shared pointer fails, we obtain a fresh set of thread-local
variables without restarting an operation from scratch.

We use several micro-benchmarks in both C/C++ and Java to validate the
efficiency of our algorithms against existing state-of-the-art. The experiments
show that the algorithms are scalable. Our implementations perform on a par with
highly optimized ones and in many cases yield 10%-50% higher throughput.

81

82 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

4.1 Introduction

4.1.1 Overview

With the wide availability of multi-core processors, efficient concurrent data
structures have become ever more important. Lock-free concurrent data struc-
tures, which guarantee that some non-faulty threads do finish their operations in
a finite number of steps, provide robustness and better performance compared to
their blocking counterparts which are vulnerable to pitfalls such as deadlocks,
priority inversion and convoying in an asynchronous shared memory system.

The literature on lock-free data structures has grown sufficiently over the
last decade [1–9]. Typically, practical lock-free designs use single-word atomic
compare-and-swap synchronization primitives (henceforth referred to as CAS)
to modify shared variables. Thus, to implement a lock-free version of a dynamic
pointer-based data structure, in which (multiple) mutable links (pointers) are
shared among threads in a concurrent set-up, either by design or due to necessity,
one or more CAS executions are performed to complete a modify (add or remove)
operation.

For example, in the lock-free linked-list of [1], two successful CAS execu-
tions are required to complete a remove operation, whereas in [3] three such
executions are required for the same operation. Considering the lock-free exter-
nal binary search trees (BSTs), three successful CAS executions are necessary
to remove a node in [6], whereas in [4] and [7], four such executions are re-
quired for the same purpose. Furthermore, in [4] and [7], two successful CAS
executions are required to add a node. Naturally, concurrent operations which
modify overlapping sets of links, face each other at a stage where they would
have partially completed and would still need to perform one or more CAS to
complete. Herein, we call this situation concurrent obstruction.

For operations on a concurrent data structure, linearizability [10] is the most
commonly used consistency framework. Intuitively, a concurrent data structure
is linearizable if every execution provides time-points, called linearization points,
between the invocation and the response of each operation, where it seems to
take effect instantaneously. Thus, using a sequence of seemingly instantaneous
operations, described by the real-time order of the linearization points, we
perceive the concurrent operations displaying their sequential behaviour.

In a lock-free algorithm, often a CAS execution step is taken as the lin-
earization point of an operation performing multiple CAS. Such a step may not
necessarily be the last one. Most commonly in a remove operation, on the suc-
cess of the CAS representing the linearization point, the target node is considered
logically removed, [1–5]. This results in each traversal passing through a logi-

4.1. INTRODUCTION 83

cally removed node and hence extra read steps get counted in step complexity of
operations.

A well-known mechanism to deal with such situations is helping. Helping
essentially implies that if multiple operations face concurrent obstruction or need
to perform extra read while traversing over a transient deformation in form of a
logically removed node, based on a fixed protocol, the pending steps of one of
the operations are completed by the concurrent operations, before furthering their
own course of steps. This strategy ensures lock-freedom because a non-faulty
thread definitely completes its operation in finite number of steps.

In the prevalent research on lock-free data structure design, the helping
mechanism now holds a center stage. In the lock-free linked-lists of [1, 3], every
concurrent operation offers helping to a remove operation which successfully
performs the CAS to logically remove the target node and is yet to execute
one more CAS. Barnes [11] proposed a helping mechanism called cooperative
technique. The cooperative technique applied to a data structure requires a
modify operation to atomically write the description of planned steps in the node
whose links it targets to modify and thereby a concurrent obstructed operation
ensures completion of those steps in case the original operation gets delayed.
This method is applied in the BST of [4, 7], where even add operations require
helping.

In the lock-free BST of Natarajan et al. [6], the links are used much in the
same way as in the linked-lists of [1,3] to modulate helping, and unlike [4,7], the
add operations there do not require help. Broadly, their design provides better
progress conditions for concurrent operations, which they showed experimentally.
However, we notice that they put the linearization point of a remove operation at
the very last CAS execution, which necessitates a concurrent remove operation
to help a pending remove operation of the same query key, even though it does
not change its return that is false. Clearly, the number of helping steps are not
necessarily minimized.

A common suggestion found in the papers on lock-free data structures is
that one should avoid helping during traversal by an otherwise unobstructed
operation, which if the obstructing operation is not delayed, predominantly goes
to wastage. The works analysing experimental performance of concurrent data
structures [12–14] further emphasize on the same. Gibson et al. [15] showed
that the amortized number of steps per operation are asymptotically equivalent
irrespective of avoiding help by read operations. However, a design optimization
to minimize the number of steps incurred by modify operations in helping at a
concurrent obstruction is largely un-attempted.

Another noticeable characteristic of existing lock-free algorithms is that
their descriptions are very close to the programming language of the sample

84 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

implementations used by the authors to validate their claim of efficiency. For
example, in the linked-lists of [1, 3] and the BST of [6], the design is described
in terms of using unused bits from a pointer which points to a memory-word
aligned at a fixed boundary. This technique is popularly known as bit-stealing
in programming parlance. The correctness proof thereof is inherently con-
nected to bit-stealing. In Java toolkit [16], AtomicMarkableReference
and AtomicStampedReference classes are used to simulate bit-stealing,
but are not too popular from the performance point of view. The lock-free
external BST designs of [4, 7] use polymorphism, class inheritance and type
introspection of objects at runtime (also known as real-time-type-information or
RTTI), to describe their algorithm. The correctness proofs in these papers are
presented accordingly.

In the lock-free skip-list implementation in Java [17], Doug Lea uses extra
splice nodes to simulate the pointers masked with stolen bits. Such a node is
identified with a specific assignment of one of its fields, for example, the value
field of a marker node points to itself in [17]. A marker node stores the original
pointer in its next field enabling unmasking of the pointer off any stolen bit. Lea
remarks that in spite of some temporary extra nodes, this technique could still
be faster for a traversal with quick garbage collection of removed nodes and is
worth avoiding the overhead of extra type testing.

Usually, the lock-free implementations in C/C++, for example in [12] or [14],
use their own memory allocation and garbage collection strategies to improve
performance. Obviously, these implementation environments of C/C++ very
much resemble one in Java and yet they entail each traversal step to unmask
a pointer off a possible stolen bit. This underlines a motivation to present the
lock-free algorithms that utilize temporary splice nodes and thereby achieving
language portability. However, the efficiency of such an implementation in
C/C++ remains still unexplored for the research community.

In literature, the efficiency of a lock-free algorithm is also presented in terms
of the amortized step complexity per operation [3, 7, 8]. Often in a lock-free
data structure, when a CAS execution in a modify operation returns false, the
local variables in the thread become unusable for a reattempt. Hence, the thread
needs to restart the operation from a clean location to get a fresh set of local
variables. Usually, the first sentinel node where an operation starts from (head
of a linked-list, root of a BST), is always clean. However, there can be as many
as c restarts per operation if c concurrent threads access the data structure. To
get a pointer to backtrack to a local clean location and thus restart the operation
from there, improves the amortized number of steps per operation (counting both
read and write). It can be interesting to use a splice node to store a pointer to a
node in a local clean location and thus locally restart a modify operation.

4.1. INTRODUCTION 85

The contributions of this work are the following:

1. We introduce the concept of help-optimality which essentially revisits the
lock-free algorithms to optimize the number of CAS steps in helping at
concurrent obstructions.

2. We describe help-optimal lock-free designs of a linked-list and a BST to
implement Set abstract data types (ADT) which export linearizable ADD,
REMOVE, and CONTAINS operations. CONTAINS are wait-free in the
linked-list for a finite key space.

3. The presented algorithms do not use language specific constructs like
bit-stealing or type introspection of objects at runtime and hence are
language-portable for a programmer.

4. We also show that on a CAS failure at a conflict, the modify operations in
our algorithms restart locally to optimize the amortized step complexity
per operation.

5. We implement the algorithms in both C++ and Java. Our implementations
perform on a par with highly optimized implementations and outperform
them in many cases.

The rest of this paper is organized as follows; first, we present a simple lock-
free BST algorithm as a motivation for a help-optimal design (Section 4.2).
Thereafter, we present efficient lock-free algorithms of a linked-list (Section 4.3)
and a BST (Section 4.4), to describe the concept of help-optimality as used in
practice. Having described it algorithmically, we specify help-optimality more
formally (Section 4.5). Finally, we discuss the experimental performance of the
presented algorithms (Section 4.6).

4.1.2 Related Work
The first CAS-based lock-free linked-list was presented by Valois [18]. He sug-
gested to augment every node with an auxiliary node to manage synchronization.
Heller et al. [19] were perhaps the first to suggest that the CONTAINS operations
in a concurrent linked-list must progress in a wait-free manner for a finite key
space. They presented lock-based linked-list, called lazy list, to show that it
favours performance. They also recommended that the CONTAINS operations
in Michael’s lock-free linked-list [2] should not be involved in helping. Subse-
quently, to the best of our knowledge, no concurrent data structure was designed
in which CONTAINS operations are obstructed; interestingly, some researchers

86 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

called it conservative helping, for example in [4]. In the lock-free internal BSTs
presented by Howley et al. [5], Chatterjee et al. [8] and Ramachandran et al. [9]
CONTAINS operations complete without helping any concurrent operation.

4.2 Help-optimality: Motivation

Let us consider a very simple lock-free design of an external BST to implement
a Set ADT that exports ADD, REMOVE, and CONTAINS operations as given in
Algorithm 4.1.

In this data structure, a node has two pointer fields lt and rt in addition to a
key field k, see Line 1. Without ambiguity, we shall use k to denote a node with
key k. The pointer fields lt and rt connect a node to its left and right children
respectively, which are null in a leaf (also called external) node. In this BST, the
external nodes are data-nodes and the internal nodes are routing-nodes. There
is a symmetric order of node-arrangement - the nodes in the left subtree of a
routing-node k have keys less than k, whereas in its right subtree the nodes have
keys at least k. We denote the parent of a node k by p(k) and there is a unique
node called root s.t. p(root) = null. Each parent is connected to its children via
links (we indicate the link emanating from k and incoming to l by k↝l; we use
the terms pointer and link interchangeably). The other child of p(k), i.e., sibling
of k, is denoted by s(k).

Pseudo-code convention: N.ref represents the reference to a variable N. Thus,
f(N.ref) indicates passing N by reference to a method f. If x is a member of a
class C then pc.x returns field x of an instance of C pointed by pc. dir L and dir
R represent the left and right directions. CAS(A.ref , exp, new) compares A with
exp and updates to new in one atomic step if A = exp and returns true; else it
returns false without any update at A.

We initialize the BST with a subtree consisting of an internal node root with
key ∞1 and two children with key ∞0 and ∞1, where ∞1>∞0>∣k∣ ∀ key k,
as its left- and right- child respectively, see Figure 4.1 and line 2. The method
Search, Line 12 to 13, is used for traversal by a data structure operation.
Search takes variables par, cur and k as input which are two node-pointers
and a query key, respectively. At the invocation of Search, cur points to the
child of the node pointed by par in the direction of the subtree which can contain
k. At the termination of Search, cur points to a leaf-node which is identified
by the lt field being null.

To perform REMOVE(k), line 20 to 26, we use Search to arrive at a leaf-
node pointed by `. If k matches the key at `, we use a CAS to replace ` with a
special node with the same key, but with its rt field pointing to itself, see line 24.

4.2. HELP-OPTIMALITY: MOTIVATION 87

1 class Node {K k; Node∗ lt, rt;};

2 root := Node(∞1, Node(∞0).ref , Node(∞1).ref);

3 Dir(Node∗ par, K k) {return k < par.k ? L : R};

ChCAS(Node∗ par, Node∗ exp, Node∗ new, dir cD)
4 if (cD == L) and par.lt == exp then
5 return CAS(par.lt.ref , exp, new);
6 else if (cD == R) and par.rt == exp then
7 return CAS(par.rt.ref , exp, new);
8 else return false;

9 GetDead(K k) {n := Node(k); n.rt := n; return n;}

10 IsDead(Node∗ leaf) {return leaf .rt == leaf ;}

Child(Node∗ par, dir cD)
11 return cD == L ? par.lt : par.rt;

Search(Node∗ par, Node∗ cur, K k)
12 while cur.lt ≠ null do
13 par := cur; cur := Child(par, Dir(par, k));

NewNod(Node∗ a, Node∗ b, K pKey)
14 left := (a.k < b.k ? a : b);
15 right := (a.k < b.k ? a : b);
16 return Node(pKey, left, right, null);

CONTAINS(K k)
17 p := root.ref ; ` := root.lt;
18 Search(p.ref , `.ref , k); cD := Dir(p, k);
19 return `.k == k and !IsDead(`);

Algorithm 4.1. A Simple Help-optimal Language-portable Lock-free
Binary Search Tree

∞1

∞1∞0

Figure 4.1: Sentinel Nodes: Simple Lock-free BST

88 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

REMOVE(K k)
20 p := root.ref ; ` := root.lt;
21 while true do
22 Search(p.ref , `.ref , k); cD := Dir(p, k);
23 if `.k ≠ k or IsDead(`) then return false;
24 if ChCAS(p, `, GetDead(k), cD) then
25 return true;
26 ` := Child(p, Dir(p, k));

ADD(K k)
27 nd := Node(k).ref ;
28 p := root.ref ; ` := root.lt;
29 while true do
30 Search(p.ref , `.ref , k); cD := Dir(p, k);
31 if !IsDead(`) then
32 if `.k == k then return false;
33 n := NewNod(nd, `, max{k, `.k}).ref ;
34 if ChCAS(p, `, n, cD) then return true;
35 else if ChCAS(p, `, nd, cD) then return true;
36 ` := Child(p, Dir(p, k));

Algorithm 4.1. A Simple Help-optimal Language-portable Lock-free
Binary Search Tree

We call such special nodes Dead. See method IsDead at line 10 which is used
to identify a Dead node. If the CAS succeeds, REMOVE returns true; if k was
not found or ` was already Dead, REMOVE returns false. For ADD(k), line 27
to 36, arriving at ` using Search, we use a CAS to replace ` with (i) a new
leaf-node with key k, if ` was Dead and (ii) a new internal node created using
NewNod, line 14 to 16, if ` was not Dead and k does not match at `. If the
CAS succeeds at line 34 or at line 35, ADD returns true; if ` was not Dead and
contained k, it returns false. A CONTAINS(k), line 17 to 19, returns true if k is
found at a leaf-node which is not Dead, else it returns false.

The main idea of this algorithm is to discard the requirement of helping
by not cleaning out a node in a REMOVE operation, which otherwise uses
multiple CAS executions. Thus, a single successful CAS is required by both
ADD and REMOVE operations, much like a lock-free stack. We skip the proofs
of correctness and lock-freedom of this algorithm, which are straightforward.
An interested reader may take them as a simple exercise. Please note that we
have not used any language specific construct to describe this algorithm.

We implemented Algorithm 4.1 in Java and compared it against the (author
provided) implementation of lock-free BST of [4] and the lock-free skip-list of
Java library [17]. The set-up and methodology of the experiments are described in
Section 4.6. The throughput and memory usage by the algorithms to implement

4.3. HELP-OPTIMAL LOCK-FREE LINKED-LIST 89

#threads
16 32 48 64 16 32 48 64

∆
H

ea
p

0

20

40

60

80

30

40

50

60

70

si
ze

 (
M

B
)

Write Dominated Read Dominated

2.5

5.0

7.5

10.0

12.5

5

10

15

20

16 32 48 64 16 32 48 64

T
hr

ou
gh

pu
t(

M
op

s/
s)

CWT Simple BST EFRB BST LF SKIPLIST

Figure 4.2: Performance graph: Lock-Free Basic BST

a Set formed by at most 220 distinct keys are plotted in the Figure 4.2.
We see that this simple lock-free BST significantly outperforms state-of-the-

art implementations of a skip-list and a BST. However, on account of memory
footprint, it performs poorly. We get enough motivation to design lock-free data
structures which optimally reduces the number of CAS executions by each ADT
operation aided with optimal memory footprints.

4.3 Help-optimal Lock-free Linked-list

4.3.1 Design
We implement an ordered linked-list based Set ADT which exports ADD, RE-
MOVE and CONTAINS operations. The pseudo-code is given in the Algorithm 4.2.
A node has two pointer fields nxt and bck in addition to the key field k, see
line 1. As before, we use k to denote a node with key k. The field nxt points to
the successor of k, denoted by s(k). We describe the use of bck later; it is null in
a regular node. The predecessor of k is denoted by p(k). Initially, the linked-list
consists of four sentinel nodes tailNxt, tail, headNxt and head with keys ∞1,
∞0, −∞0 and −∞1, respectively, where ∞1>∞0>∣k∣ ∀ key k. See line 2 to 5
and Figure 4.3.

We aim to reduce the number of CAS steps incurred in helping not only

90 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

−∞1 −∞0 ∞0 ∞1

Figure 4.3: Sentinel Nodes: Lock-free linked-list

1 class Node {K k; Node∗ nxt, bck;};

2 tailNxt := Node(∞1, null, null);
3 tail := Node(∞0, tailNxt.ref , null);
4 headNxt := Node(−∞0, tail.ref , null);
5 head := Node(−∞1, headNext.ref , null);

Search(Node∗ pre, Node∗ nex, Node∗ cur, Node∗ suc, K k)
6 while cur.k < k do
7 if IsSp(suc) then cur := suc.nxt;
8 else pre := cur; nex := suc; cur := suc;
9 suc := cur.nxt;

CONTAINS(K k)
10 c := headNext.nxt;
11 while c.k < k do c := cur.nxt;
12 return c.k == k and !IsSp(c.nxt);

ADD(K k)
13 p := head.ref ; n := headNxt.ref ;
14 c := headNxt.ref ; s := headNxt.nxt;
15 while true do
16 Search(p.ref , n.ref , c.ref , s.ref , k);
17 if IsSp(s) then
18 while IsSp(s) do {c := s.nxt; s := c.nxt};
19 else if c.k == k then return false;
20 if CAS(p.nxt.ref , n, Node(k, c, null)) then
21 return true;
22 BckTrck(p.ref , n.ref); c := p; s := n;

23 BckTrck(Node∗ pre, Node∗ nex)
24 nex := pre.nxt;
25 while IsSp(nex) do
26 pre := nex.bck; nex := pre.nxt;

27 IsSp(Node∗ c) {return c.k == −∞2;}

Algorithm 4.2. Help-optimal lock-free linked-list

4.3. HELP-OPTIMAL LOCK-FREE LINKED-LIST 91

during traversal, which is simple, but also in the concurrent obstruction. In
Algorithm 4.1 we observed that obstruction can be fully avoided in an external
BST if REMOVE operations do not try to clean out the removed nodes. However,
that strategy led to undesirably large memory footprint. So, the question we ask -
can we overcome the drawbacks? Observing carefully, in a linked-list we can
leverage the linear structure to connect the predecessor of the leftmost node to
the successor of the rightmost node of a contiguous chunk of removed nodes by
a single CAS and thus solve the issue. We describe it below.

At the basic level, ADD(k) in a lock-free linked list comprises - finding p(k)
and s(k) s.t. p(k).k<k<s(k).k, allocating the node k s.t. k.nxt=s(k) and using
a single CAS execution to swing the p(k).nxt from s(k) to k. We have seen it
in [1, 3]. Similarly, REMOVE(k) comprises - finding nodes p(k) and k, logically
removing k using a single CAS and then swing the p(k).nxt from k to s(k) using
a CAS.

However, our target implementation as described before will require ad-
ditional tricks over this basic idea. First off, in order to make the algorithm
language-portable, we find a way of using splice nodes as Lea [17], instead of
bit-stealing like [1,3]. For that, when logically removing k, we add a splice node
between k and s(k). We fix the key of a splice node as −∞2, where ∞2>∞1, by
which it can be identified, see line 35 and the method IsSp at line 27.

REMOVE(K k)
28 p := head.ref ; n := headNxt.ref ;
29 c := headNxt.ref ; s := headNxt.nxt;
30 r := null; spNd := null; mode := INIT;
31 while true do
32 Search(p.ref , n.ref , c.ref , s.ref , k);
33 if mode == INIT then
34 if c.k ≠ k or IsSp(s) then return false;
35 spNd := Node(−∞2, s, p).ref ;
36 while true do
37 if CAS(c.nxt.ref , s, spNd) then
38 if CAS(p.nxt.ref , n, s) then return true;
39 r := s; mode := CLEAN; break;
40 s := c.nxt; if IsSp(s) then return false;
41 spNd.nxt := s;
42 else if s ≠ spNd or CAS(p.nxt.ref , n, r) then
43 return true;
44 BckTrck(p.ref , n.ref); c := p; s := n;

Algorithm 4.2. Help-optimal lock-free linked-list
Secondly, to avoid eager helping during traversal by a modify operation

and yet be able to clean out the logically removed nodes (along with the splice
nodes succeeding them), we use two trailing node-pointers during traversal. This

92 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

trick is similar to [6] used in BST. We use the trailing node-pointers to store the
address of the last node, which was not logically removed, and its successor.
Thus, at the termination of a traversal, we have reference to the predecessor, say
p(k), of the leftmost node of a possible contiguous chunk of logically removed
nodes. Hence, when we swing the pointer p(k).nxt, using a CAS, to connect
either to a new node k for ADD or to s(k) for REMOVE, zero or more logically
removed nodes are cleaned out.

p(a) a s(a)
−∞2

g(a)

p(a) g(a) a s(a)
(i)

(ii)

p(a) a s(a)
−∞2

g(a)
(iii)

Figure 4.4: Steps of REMOVE in the linked-list.

And thirdly, to backtrack to a clean zone on CAS failures, we use the idea of
back-pointers as applied in [3]. However, our approach differs from them. When
allocating a splice node, we save the address of p(k) in its bck field, which is
always null for a regular node. Essentially, our approach is novel in the following
ways - (a) we do not use an extra CAS to fix (flagging) the pointer p(k).nxt.
Given the use of trailing pointers, we do not often travel a long chain of back
pointers. And (b) we do not set back-pointer of a regular node and thus, save an
extra atomic write of a shared pointer. Indeed, a splice node in our algorithm
splices two node paths.

The basic steps of REMOVE(k), are shown in the Figure 4.4. The node n(k)
denotes the first node of a possible contiguous chunk of logically removed nodes
before and adjacent to k. In case there is no such chunk before k, n(k) coincides
with it.

We perform traversal for a modify operation using the method Search,
line 6 to 9. We advance the variables pre and nex only if suc is not a splice node,
that is when cur is not a logically removed node. Otherwise, we advance cur to
the node saved at the nxt of the splice node suc. In REMOVE and ADD, at the
first call of Search, the variable pre points to head, nex, cur point to headNxt
and suc points to the successor of headNext, see lines 13 and 14. Thus, at the
termination of a traversal, when cur points to a node with key not greater than k,
pre points to the predecessor of the first node of a possible contiguous chunk of
logically removed nodes and nex points to the first node of such a chunk.

To perform REMOVE(k), line 30 to 44, at the termination of a traversal, we
check the key at the node pointed by c, and if k does not match at it or the node

4.3. HELP-OPTIMAL LOCK-FREE LINKED-LIST 93

pointed by s is found splice (indicating node pointed by c is already logically
removed), we return false, line 34. Otherwise, we perform a CAS to add a splice
node between c and s to logically remove c, line 37. The steps taken up to this
point are identified by a variable mode with value INIT. After this step, mode
changes to CLEAN and we attempt to swing the p.nxt from n to s using a CAS
at line 38. If the CAS fails, we save s as r, and perform a BckTrck at line 44 to
find a fresh pair of p and n.

In the method BckTrck, line 24 to 26, we keep on traversing back, following
the bck of splice nodes, until we find the first node which is not logically removed.
If the call of BckTrck was due to a CAS failure caused by an ADD of a new
node, added between pre and nex, it is guaranteed that the chunk of contiguous
logically removed nodes must have been cleaned out. We explain it in the next
paragraph.

The operation ADD(k), line 13 to 22, performs a similar traversal. At the
termination of the traversal, we check if the node pointed by c is logically
removed by checking whether s points to a splice node, line 17. If the node at c
is not logically removed and contains the query key k, we return false; else, we
find the first node succeeding it which is still not logically removed, line 18, and
attempt a CAS to add the new node between p and c to return true. On a CAS
failure, we perform BckTrck as explained before and reattempt the previous
steps. Thus, on a successful ADD it cleans out a complete chunk of contiguous
logically removed nodes.

Note that, a modify operation in Algorithm 4.2 differs from one in [1, 3], in
the sense that on a CAS failure at p(k).nxt, we do not perform any help before
reattempting. Instead of that, we selfishly attempt the CAS from a clean location.
Thus, the operations are essentially selfish in our algorithm.

A CONTAINS operation, line 10 to 12, traverses in a wait-free manner and
returns true only if the node at which it terminates, the one pointed by c, is not
logically removed and contains the query key, else it returns false.

4.3.2 Correctness and Lock-freedom

It is easy to observe that the field k of a node is never modified after initialization.
Scanning through the pseudo-code, we can observe that once a splice node is
added at the nxt of a node, no CAS is performed at it. Further, unless the nxt of
a node k is splice, it is not removed from the list. Thus, we can show that a node
p(k) is present in the list, when we connect a new node k or successor s(k) of a
removed node k to it. Additionally, we can observe that a traversal terminates
with c pointing to a node which has a key greater than or equal to k in all the
operations, which in turn shows that we maintain the order of node arrangement

94 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

in an ADD or a REMOVE operation. At the initialization, the sentinel nodes
form a valid ordered list. Hence, using induction we can prove that the ADT
operations maintain a valid ordered list.

The linearization point for an unsuccessful ADD operation is at line 9 during
a call of Search. Similarly for a successful CONTAINS operation it is at line 11,
when we read c.nxt for the first time. For a successful ADD or a REMOVE
operation, the linearization point lies at the first successful CAS execution to
add a new or a splice node. For an unsuccessful CONTAINS, the linearization
point is (a) just after that of the concurrent REMOVE operation which (logically)
removed k, if k existed in the list at the invocation point of CONTAINS and
(b) at the invocation point itself, if k was not present in the list at that point.
The linearization point of an unsuccessful REMOVE is determined similar to an
unsuccessful CONTAINS operation.

We can observe that the CAS to add a splice node is reattempted only if a
new node is added at the nxt of k. Before every reattempt of a CAS to swing the
nxt pointer of p(k), in both ADD and REMOVE, we perform a BckTrck and a
Search which guarantees that we have a fresh set of variables for references of
p(k) and n(k). Hence, it is guaranteed that a modify operation can not take an
infinite number of steps without a modification in the data structure. It proves
the lock-freedom of the ADD and REMOVE operation. It is easy to observe that
a non-faulty CONTAINS always finishes in a finite number of steps if the key
space is finite and thus is wait-free.

4.3.3 Amortized Step Complexity

We can observe that the splice nodes are never adjacent. Similar to [13], we do
not perform help in a CONTAINS operation. Additionally, in ADD and REMOVE
as well, no step is taken for helping during traversal. On a CAS failure to add
a splice node, we do not perform any traversal. On a CAS failure to add a new
node or to clean out a chunk of logically removed nodes, we perform backtrack
and do not start from the head. Following the same method as [3], we can show
that the amortized number of steps per operation is O(n+cI), where cI is the
total number of concurrent operations between invocation and response of o,
called interval contention [20] and n is the size of the list at the invocation of
o. In the light of theorem 1 of [15], it is asymptotically equivalent to O(n+cP),
where cP is the maximum number of concurrent operations at any point in the
lifetime of o, called point contention [21].

4.4. HELP-OPTIMAL LOCK-FREE BST 95

4.4 Help-optimal Lock-free BST
Having described a simple lock-free BST and an improved lock-free linked-list,
where we do not spend any CAS execution for helping, we are ready to describe
an efficient lock-free BST, in which we introduce the notion of help-awareness.

4.4.1 Design

The pseudo-code of the design is given in Algorithm 4.3. The symmetric
order of the BST is same as that in Section 4.2. We borrow the notations
from Algorithm 4.1 along with the methods Dir, Child, ChCAS, GetDead,
IsDead and NewNod as they are described there. We denote the parent of p(k)
by g(k).

The main drawback of the lock-free BST of Algorithm 4.1 was removing a
node k by replacing it with a Dead node and not cleaning the Dead node out
that caused memory-wastage. Therefore, in Algorithm 4.3 we make a REMOVE
operation clean out the added Dead node. Consequently, the ADD operations
will have to synchronize with the REMOVE operations which now make structural
changes in the BST.

In a sequential set-up, removing a node k from an external BST is a one step
process of modifying the link g(k)↝p(k) to connect s(k) to g(k). This process
also cleans out the removed node. It essentially removes the node p(k) from
the (unordered) linked-list described by the nodes on the path from the root to
s(k). Thus, to perform REMOVE(k) with cleaning out k in a lock-free BST can
be visualized as a two stage process - (a) single CAS to logically remove k by
replacing it with a Dead node as in Algorithm 4.1 and (b) two CAS steps to
remove p(k) - adding a splice node between p(k) and s(k) to logically remove
p(k) and then swinging the pointer g(k)↝p(k) to connect s(k) to g(k), as in
Algorithm 4.2. Let us call these stages LREMOVE and PREMOVE, respectively.
This understanding gives us the fundamental idea of Algorithm 4.3.

LREMOVE is quite straightforward. Now, to perform PREMOVE efficiently,
along the lines of Algorithm 4.2, we carry two trailing node-pointers during the
traversal for a modify operation. Thus, the method Search in Algorithm 4.3,
line 4 to 7, becomes a blend of the same method in the previous two algorithms.
At the termination of Search, the variable gPar points to the parent of the root
of the sub-tree in which all the nodes are logically removed. To avoid special
cases arising in placing the trailing node-pointers in an empty BST, we use a set
of sentinel nodes as shown in line 1 to 3 and Figure 4.5.

We assign key −∞3 for a splice node, such that ∞3>∞2>∞1>∞0>∣k∣
∀ key k. It ensures that at a splice node a traversal always goes right. Hence,

96 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

∞1

∞1∞0

∞2

∞2

Figure 4.5: Sentinel Nodes: Lock-free BST

1 class Node {K k; Node∗ lt, rt, bck;};

root := Node(∞1); grRoot := Node(∞0);
2 root.lt := Node(∞2).ref ; root.rt := Node(∞1).ref ;
3 grRoot.lt := root.ref ; grRoot.rt := Node(∞0).ref ;

Search(Node∗ gPar, Node∗ nex, Node∗ par, Node∗ leaf , K k)
4 while leaf .lt ≠ null do
5 if IsSp(leaf) then par := leaf .rt;
6 else gPar := par; nex := leaf ; par := leaf ;
7 leaf := Child(par, Dir(par, k));

GetNxt(Node∗ leaf)
8 return IsSp(leaf) ? leaf .rt : leaf ;

9 GetKey(Node∗ leaf) {return GetNxt(leaf).k;}

GetDeadBl(Node∗ gPar, K k)
10 n := GetDead(k); n.bck := gPar; return n;

11 IsBl(Node∗ leaf) {return leaf .bck ≠ null;}

GetSp(Node∗ gPar, Node∗ leaf)
12 if IsDead(leaf) then
13 return GetDeadBl(gPar, leaf);
14 else return Node(−∞3, leaf .lt, leaf , gPar);

AddSp(Node∗ par, Node∗ gPar, dir sD)
15 while true do
16 sib := Child(par, sD);
17 if IsBl(sib) then return sib;
18 else if ChCAS(par, sib, GetSp(gPar, sib), sD) then return sib;

19 IsSp(Node∗ leaf) {return leaf .k == −∞3;}
20 BckTrck(Node∗ gPar, Node∗ nex, K k)
21 nex := Child(gPar, k);
22 while IsSp(nex) do
23 gPar := nex.bck; nex := Child(gPar, k);

Algorithm 4.3. Help-optimal lock-free binary search tree

4.4. HELP-OPTIMAL LOCK-FREE BST 97

ADD(K k)
24 g := grRoot.ref ; n := root.ref ; p := root.ref ;
25 ` := root.lt; nd := Node(k).ref ;
26 while true do
27 Search(g.ref , n.ref , p.ref , `.ref , k);
28 cD := Dir(p, k); pD := Dir(g, k);
29 if !IsDead(`) then
30 if GetKey(`) == k then return false;
31 nI := NewNod(nd, GetNxt(`), k+GetKey(`)

2
).ref ;

32 if IsSp(`) then
33 if ChCAS(g, n, nI, pD) then return true;
34 else if ChCAS(p, `, nI, cD) then return true;
35 else
36 if IsBl(`) then
37 sib := AddSp(p, g, !cD);
38 if !IsDead(sib) then
39 nI := NewNod(nd, GetNxt(sib), k+p.k

2
).ref ;

40 if ChCAS(g, n, nI, pD) then return true;
41 else if ChCAS(g, n, nd, pD) then return true;
42 else if ChCAS(p, `, nd, cD) then return true;
43 BckTrck(g.ref , n.ref , k); p := g; ` := n;

Algorithm 4.3. Help-optimal lock-free binary search tree: ADD

we connect s(k) to rt of a splice node. We copy the lt field of s(k) to the splice
node that it connects to, which if null, indicates that s(k) is a leaf node. Thus,
a traversal may terminate at a splice node. Considering that, we always use
the method GetNxt to access the actual leaf node, see line 8; and following
that the method GetKey gives the key at that leaf node, see line 9. Further, to
achieve local restart as in Algorithm 4.2, we include a bck pointer in the node
structure to implement splice nodes that can provide reference to a node in a
local clean zone. However, the local restart here is more complex, as discussed
below. Consider these cases:

(A) An ADD operation o just before performing its CAS step gets pre-empted
by the operating system scheduler. Let g be the trailing node-pointer pointing
to the last internal node of the traversal path which is not logically removed.
Suppose that, by the time o wakes up, the BST changes in a way that both the
children of the node pointed by g are replaced by Dead nodes and the node
itself cleaned out of the BST. Consequently, o will have no link to reach a clean
zone except restarting from the root of the BST, which we want to avoid. To
tackle this issue, we use the bck pointer of a Dead node, which replaces a node
k in a REMOVE operation, to store g. We call a Dead node with a non-null bck
field a DeadBl node.

(B) Two concurrent REMOVE operations o1 and o2, at the end of their

98 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

44 REMOVE(K k)
45 g := grRoot.ref ; n := root.ref ; p := root.ref ; ` := root.lt;
46 dNdBl := null; sib := null; mode := INIT;
47 while true do
48 Search(g.ref , n.ref , p.ref , `.ref , k);
49 cD := Dir(p, k); pD := Dir(g, k);
50 if mode == INIT then
51 if GetKey(`) ≠ k or IsDead(`) then return false ;
52 dNd := GetDead(k);
53 if !IsSp(`) and p ≠ g then
54 dNdBl := GetDeadBl(g, k);
55 if ChCAS(p, `, dNdBl, cD) then
56 sib := AddSp(p, g, !cD); mode := CLEAN;
57 if IsSp(sib) then return true;
58 else if IsDead(sib) then {ChCAS(g, n, dNd, pD); return true;};
59 else if ChCAS(g, n, sib, pD) then return true;
60 else if ChCAS(g, n, dNd, pD) then return true;
61 else
62 if ` == dNdBl and p ≠ g then
63 if ChCAS(g, n, sib, pD) then return true;
64 else return true;
65 BckTrck(g.ref , n.ref , k); p := g; ` := n;

Algorithm 4.3. Help-optimal lock-free binary search tree: REMOVE

traversal, target to remove two leaf nodes k1 and k2, which are children of the
same internal node, say p. Also suppose that o1 and o2 have same pair of trailing
node-pointers - g and n - in their thread-local memory and thus for both o1
and o2 there is access to no link to backtrack above g in the BST. Suppose that
LREMOVE stage of both o1 and o2 finished without contention, and thus after
that both the children of p are DeadBl. Therefore, after its PREMOVE, if o1
successfully connects the DeadBl node k2 to g, o2 will not get a node-pointer
to reach a local clean zone to get a fresh g. It becomes untenable to restart
o2 in such a situation without accessing root, which we want to avoid (it may
well be with o1 symmetrically). To tackle this issue, we let o2 fall back to the
approach of Algorithm 4.1 and instead of cleaning the DeadBl node out it adds
a Dead node containing key k2 at g and gets out of the system to ensure progress.
Therefore, similar to Algorithm 4.1, we make an ADD operation replace a Dead
node with a new leaf node, knowing that no REMOVE operation takes step to
clean out such a node.

With basics in place, we are ready to describe the pseudo-code of REMOVE
and ADD operations of Algorithm 4.3; a CONTAINS operation works absolutely
same as that in Algorithm 4.1.

The steps of a REMOVE(k) operation, line 45 to 65, are shown in Figure 4.6.
Let n(k) be the last logically removed internal node in the traversal path obtained

4.4. HELP-OPTIMAL LOCK-FREE BST 99

a

g(k)

g(a)

p(a)

s(a)

g(k)

g(a)

p(a)

s(a)

a

g(k)

g(a)

p(a)

s(a)

a
−∞3

g(k)

g(a)

p(a)

s(a)

a
−∞3

(i) (ii) (iii) (iv)

Figure 4.6: Steps of REMOVE in the BST.

by a call of Search at line 49, and g(k) be its parent as shown in Figure 4.6 (i).
n(k) coincides with p(k) in case there is no chunk of logically removed nodes
above p(k) in the traversal path. Replacing the target node k with a DeadBl
node containing same key, Figure 4.6 (ii), logically removes k, line 55. After
that, we add a splice node between p(k) and s(k) to logically remove p(k) as
shown in Figure 4.6 (iii). Finally, update the link g(k)↝n(k) to connect s(k) to
g(k) as shown in Figure 4.6 (iv). If all these CAS executions are successful, we
complete the REMOVE operation with cleaning out the DeadBl node.

In the stage LREMOVE itself, if the leaf-node at which traversal terminates,
say `, does not contain k or is found Dead (note that a DeadBl node is also
Dead), REMOVE(k) returns false, line 51. If ` is a splice node, it shows that
the actual node to remove is pointed by GetNxt(`) which is `.rt. To make a
REMOVE operation selfish, we do not perform any CAS to help the pending
REMOVE. However, we do not have a possibility for a local restart to get a fresh
g(k) after the completion of LREMOVE, similar to the case (B) above. Therefore,
we replace the link g(k)↝n(k) by a Dead node containing k, and return true if
the CAS succeeds, line 60.

In the stage PREMOVE, the first step is to add a splice node between p(k) and
s(k), line 56. We use the method AddSp, line 15 to 18, to do that. In AddSp,
if s(k), denoted by sib, is found splice or DeadBl, indicated by non-null bck
link, we return it as it is, line 17, because both indicate that the child-link of
par, referred by sib, is never updated ever after. If sib is Dead, we perform a
CAS, line 18, to replace it with a DeadBl node connecting its bck field to gPar,
created at line 13, so that a concurrent ADD does not replace it directly.

100 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

If the method AddSp returns a splice node at line 56, it indicates that a
concurrent ADD operation is working selfishly to progress (we describe it later)
and we can safely allow the remaining steps of REMOVE(k) to be assimilated in
the steps of ADD. Considering that, REMOVE(k) returns true, line 57. We call
this behaviour of REMOVE(k) its help-awareness which is a main component of
a help-optimal implementation.

On the other hand, if AddSp returns a Dead or DeadBl node, it indicates
a scenario of case (B) and we handle it accordingly, see line 58. Finally, if a
regular leaf node is returned as sib, we attempt a CAS to connect it to g(k) to
return true at line 59. If this CAS fails, it indicates that g(k)↝n(k) has changed
and therefore we perform a BckTrck at line 65 similar to Algorithm 4.2 and
reattempt the CAS if required, see line 63. Along the lines of Algorithm 4.2,
the steps taken to add splice node between p(k) and s(k) are identified by the
value of a variable mode set as INIT and after that mode is changed to CLEAN,
line 56.

To add a new node in an external BST, we add a new sub-tree. We use the
following midpoint rule to determine the key at the root of the new sub-tree.

Theorem 4.1 (Midpoint rule). Let k be a query key and A be the (partially
ordered) set of keys stored in a sub-tree. Let al≤a ∀ a∈A and au≥a ∀ a∈A. To
add a new node at the root of the sub-tree, assign a key kp at the root of the new
sub-tree such that kp= k+au

2
if k>au and kp= k+al

2
if k<al.

The mid-point rule maintains the symmetric order of the BST. Intuitively, rule
4.1 optimizes the average hight of the BST. We do not delve into an analytical
discussion of this rule in the present work. In experiments, we observed that this
approach improves the average throughput.

An ADD(k), line 25 to 43, performs a traversal using Search to reach a
leaf node `. If ` is neither Dead nor DeadBl, we find the regular leaf node
using GetNxt(`). It calls the NewNod method to create a new internal node
pointed by nI. We apply rule 4.1 at line 31. If ` is a regular node, it perform as in
Algorithm 4.1. However, if ` is a splice node, it does not take steps to help the
pending REMOVE operation and behaves in a selfish manner to directly update
g(k)↝n(k) to nI using a CAS. If CAS succeeds, it not only ensures success
of ADD(k), but also guarantees the completion of some pending REMOVE
operations. If CAS to connect nI at line 33 or 34 succeeds, we return true.

On the other hand, if ` is found Dead, ADD(k) behaves along the lines of
Algorithm 4.1, see line 42. And finally, if ` is DeadBl, to ensure progress,
we first fix the sibling of ` using the method AddSp, line 37, and then add
either a new node, line 41, or a new internal node, line 40, at g(k) in a selfish
fashion. The call of AddSp at line 37 may assimilate the steps of a concurrent

4.5. HELP-OPTIMALITY: SPECIFICATION 101

pending REMOVE operation, which being help-aware, terminates immediately,
as discussed before. Note that, to apply rule 4.1 here, we use p.k instead of
GetKey(sib) because the latter may not provide the required bound of the set
of keys stored in the sub-tree rooted at sib. On a CAS failure, we perform a
BckTrck at line 43 to get a fresh set of thread-local variables and reattempt.

4.4.2 Correctness and Lock-freedom
Proving that the modify operations maintain a valid external BST requires
similar approach as that in Algorithm 4.2. Therefore, without repeating them, we
mention that we derive an induction based proof building on the arguments that
the sentinel nodes form a valid BST at the initialization and no modify operation
invalidates the symmetric order of the BST.

In this algorithm, the linearization points of a successful ADD, REMOVE and
CONTAINS operations and an unsuccessful ADD operation are similar to their
counterparts in Algorithm 4.2. A CONTAINS or a REMOVE operation returns
false also in case the node containing query key is found Dead, in addition to
the cases already discussed in Algorithm 4.2. The linearization point of such a
CONTAINS or REMOVE operation is taken at own invocation point.

Finally, we can prove the lock-freedom of Algorithm 4.3 using arguments
which are parallel to those used in Algorithm 4.2. Very evidently, a CONTAINS
is wait-free for a finite key universe.

4.5 Help-optimality: Specification
We consider an asynchronous shared memory system U comprising of a finite
set of threads P and a finite set of shared variables V . At time t, the states of P
and V are denoted by Pt and Vt, respectively. Let Υ be a lock-free data structure
formed by variables v∈V . Let Op be the set of operations performed by a p∈P
on Υ. A step s of an operation o∈Op comprises local computations in p and at
most a single execution of an atomic-primitive a∈{read, write, CAS} on a
shared variable v∈V . A state Υt of Υ is formed by variables v∈Vt. On execution
of a step s, Υ can change from a state Υt to another state Υt′ . We denote such a
state change by ∆Υt,t′ . Let So denote the set of steps to complete an operation
o∈Op.

We call s∈So an altruistic step of o, if (a) it is executed to apply a state
change ∆Υt,t′ (b) ∆Υt,t′ is necessary for completion of a concurrent operation
o′∈Op′ and (c) ∆Υt,t′ is not necessary for completion of o. We call an operation
o selfish if no step s∈So is altruistic.

102 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

We call s∈So a wasted step of o, if (a) it is executed to apply a state change
∆Υt,t′ , (b) ∆Υt,t′ is necessary for completion of o (c) ∆Υt,t′⊆∆Υt,t′′ and
(d) ∆Υt,t′′ has already been applied by a set of steps {s′1, . . . , s

′

n}, where s′i∈So′i
is a step of a concurrent operation o′i∈Op′i . We call o∈Op help-aware if it
performs no more than one wasted step.

A lock-free data structure Υ is called help-optimal if every operation o∈Op
for each p∈P is both selfish and help-aware. In algorithms 4.1 to 4.3, we can
observe that every operation satisfies the requirements of both selfishness and
help-awareness. We skip a rigorous definitional discussion on selfishness, help-
awareness, and help-optimality to a future work.

Censor-Hillel et al. [22] defined help-freedom, which intuitively implies
that an operation does not altruistically help a concurrent (slow) operation
to guarantee wait-freedom. In contrast to that, in lock-free algorithms, help-
optimality not only implies an absence of altruistic helping but also indicates
that an operation is aware of intended modification getting applied as a part of
a modification by a concurrent operation. Thereby, on account of helping, the
aggregate number of steps is minimized. In this work, we do not delve into a
formal comparison between help-optimality and help-freedom.

As a rationale behind the term help-optimality, we would like to underline
our aim to optimize a lock-free design with respect to the number of (CAS
execution) steps incurred in helping under the constraints such as an optimal
memory footprint and an optimal amortized step complexity.

4.6 Experimental Evaluation

4.6.1 Overview
In this section, we present a detailed performance analysis of our implemen-
tations in both C/C++ and Java. The following concurrent linked-lists and
lock-free BSTs are compared:

1. HO-LL: An optimized variant of lock-free linked-list of [1], where a
CONTAINS does not perform help.

2. Lazy-LL: Lock-based linked-list of [19], in which logically removed
nodes are ignored during traversal.

3. CWT-LL: Lock-free linked-list described in Section 4.3.

4. EFRB-BST: Lock-free external BST of [4], in which both ADD and
REMOVE require help to complete at a conflict.

4.6. EXPERIMENTAL EVALUATION 103

5. LF-SKIPLIST: Concurrent skip-list implementation that is part of the
java.util. concurrent package [17].

6. NM-BST: Lock-free external BST of [6], in which multiple nodes under
REMOVE by different threads are cleaned out together similar to Algo-
rithm 4.3.

7. CWT-BST: Lock-free BST described in Section 4.4.

8. CWT-Simple-BST: Lock-free BST of Section 4.2.

4.6.2 Experimental Set-up
We performed our evaluations on a dual-socket server with a 3.4 GHz Intel (R)
Xeon (R) E5-2687W-v2 having 16 physical cores (32 hardware threads by hyper-
threading), 16 GB of RAM, running Ubuntu 13.04 Linux (3.8.0-35-generic
x86 64) with Java HotSpot (TM) 64-Bit Server VM (build 25.60-b23, mixed
mode). We compiled all Java implementations with javac version 1.8.0 60
and used the runtime flags -d64 -server. C/C++ implementations were
compiled with g++ version 4.9.2, O3 optimization and TCMalloc [23] to
reduce dynamic memory allocation overheads.

We compared the performance in terms of the throughput as Million opera-
tions per second (Mops/s). We measured the memory consumption as the change
in heap-size of the JVM on loading the set with initial elements and on execution
of the workload. Each experiment was run for 5 seconds, then the average over
6 trials was taken under the following parameters:

1. Workload Distribution: Similar to [6], we considered three workload
distributions: (a) write-dominated: 0% CONTAINS, 50% ADD and 50%
REMOVE. (b) mixed: 70% CONTAINS, 20% ADD and 10% REMOVE, and
(c) read-dominated: 90% CONTAINS, 9% ADD and 1% REMOVE.

2. Set Size:. The maximum set size depends on the range of the keys. We
consider the following key ranges for the linked-lists: 27, 29, 210 and
212. For the BSTs we consider the ranges: 210, 214, 217 and 220. In each
experiment, the set is pre-loaded with roughly half the keys in the key
range.

C/C++ and Java Implementations: As we pointed out in the Section 4.1, many
concurrent data structures are designed with language specific dependencies and
as such offer varying performance in different languages. Additionally, original
implementations of the algorithms are available either in Java or C/C++. With

104 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

this in mind, we implemented our new language-portable lock-free algorithms
in both C/C++ and Java. The code is available at https://github.com/
bapi/ConcurrentSet.

To ensure a fair comparison, we implemented our C/C++ versions of the
algorithms as part of the ASCYLIB library [14], with SSMEM - a memory
allocator with epoch-based garbage collection. We used the same benchmarks
which are part thereof. HO-LL in Java employs RTTI. For locking, Lazy-LL
uses ReentrantLock in Java and a ticket lock in C/C++.

4.6.3 Performance Results and Discussion
Write −Dominated Mixed Read −Dominated

k
=
2
7

k
=
2
9

k
=
2
1
0

k
=
2
1
2

0

10

20

10

20

30

40

20

30

40

50

60

5

10

5

10

15

4

8

12

16

2.5

5.0

7.5

2.5

5.0

7.5

2

4

6

8

1

2

3

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

16 32 48 64 16 32 48 64 16 32 48 64

#threads

T
h
ro
u
g
h
p
u
t(
M
o
p
s
/s
)

CWT LL HO LL Lazy LL

Figure 4.7: Concurrent linked-list algorithms: Java Implementation

Figures 4.7 and 4.8 depict the comparative performance of linked-list-based
Set algorithms in Java and in C/C++, respectively. At low contention i.e.,
with read-dominated workloads and large key space sizes, the lists scale with

https://github.com/bapi/ConcurrentSet
https://github.com/bapi/ConcurrentSet

4.6. EXPERIMENTAL EVALUATION 105

increasing thread count. CWT-LL performs on a par with HO-LL in both Java
and C/C++. In the high contention cases, mainly write-dominated and small
key space sizes, Lazy-LL degrades significantly with increasing thread count.
This is mainly due to the increased contention on the locks and cache misses
resulting from the lock migrations. Contention increases as the list gets shorter
in size with a smaller key space size. At high contention CWT-LL outperforms
HO-LL by 5% for Write-Dominated and 3%-6% for Mixed workloads. This can
be attributed to the local restart and the ability to clean out multiple nodes in a
single step.

Write Dominated Mixed Read Dominated

k
=
2
7

k
=
2
9

k
=
2
1
0

k
=
2
1
2

0

10

20

30

40

20

40

60

20

40

60

0

5

10

15

20

5

10

15

20

5

10

15

2.5

5.0

7.5

10.0

12.5

2.5

5.0

7.5

10.0

2

4

6

1

2

3

1

2

3

0.5

1.0

1.5

16 32 48 64 16 32 48 64 16 32 48 64

#Threads

T
h
ro
u
g
h
p
u
t(
M
o
p
s
/s
)

CWT LL HO LL Lazy LL

Figure 4.8: Concurrent linked-list algorithms: C/C++ Implementation

In C/C++ we observe similar relative performance, however, the list perfor-
mance degrades significantly when the cores are saturated with threads (most
especially in the write-dominated workload). The effect of oversubscribing the
cores with more threads is bigger in Lazy-LL than that in other algorithms as a

106 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

result of increased lock-contention.
Figures 4.9 and 4.10 shows the comparative performance of considered

lock-free BST and skip-list algorithms in Java and C/C++, respectively. We
have not included CWT-Simple-BST here considering its incomparable memory
footprint. It is clear that among the Java implementations, CWT-BST offers the
best throughput for all key space sizes and workloads. CWT-BST outperforms
EFRB-BST by 10%- 50% and LF-SKIPLIST 20%-100% over Write-Dominated
and Mixed workloads.

Write −Dominated Mixed Read −Dominated

k
=
2
1
0

k
=
2
1
4

k
=
2
1
7

k
=
2
2
0

10

20

30

20

40

60

50

100

150

10

20

30

20

40

60

25

50

75

100

10

20

30

10

20

30

40

50

20

40

60

80

4

8

12

5

10

15

5

10

15

20

16 32 48 64 16 32 48 64 16 32 48 64

#threads

T
h
ro
u
g
h
p
u
t(
M
o
p
s
/s
)

CWT BST EFRB BST LF SKIPLIST

Figure 4.9: Lock-Free BST algorithms: Java Implementation

In C/C++, NM-BST outperforms others at high contention. This can be
attributed to the advantage of bit-stealing over explicit object allocations. Bit
masking, unmasking and other bitwise operations in C/C++ are simple and faster
than object creation, however not portable to other high-level languages. As we
increase the key space size, CWT-BST offers performance similar to NM-BST,

4.6. EXPERIMENTAL EVALUATION 107

k
=
2
1
0

k
=
2
1
4

k
=
2
1
7

k
=
2
2
0

Write Dominated Mixed Read Dominated

10

20

30

40

50

60

40

80

120

100

200

20

40

60

25

50

75

100

40

80

120

160

10

20

30

40

50

25

50

75

100

30

60

90

5

10

15

20

25

10

20

30

10

20

30

16 32 48 64 16 32 48 64 16 32 48 64

#Threads

T
h
ro
u
g
h
p
u
t(
M
o
p
s
/s
)

CWT BST EFRB BST NM BST

Figure 4.10: Lock-Free BST algorithms: C/C++ Implementation

108 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

especially in Mixed and Read-Dominated workloads, even dominating in the
low contention case with key space (220) by 3%-15%. This can be attributed
to a comparative cost of object allocation but lowered cost of reading a pointer
without bit unmasking. It can be noted that although EFRB-BST implementation
is based on bit-stealing, CWT-BST outperforms it in every case scenario by
10%-50%.

Read�Dominated

30

40

50

60

70

16 32 48 64
#threads

H
e
a

p
s
iz

e
 (

M
B

)

CWT�BST

CWT�Simple�BST

EFRB�BST

LF�SKIPLIST

Figure 4.11: Heap size change

Memory Reclamation: As a REMOVE operation allocates a splice node, the
load on garbage collector certainly increases. However, as illustrated by fig. 4.11,
in a garbage collected environment, CWT-BST experiences no unexpected
growth in heap-memory usage. In fact, on this account, it outperforms EFRB-
BST. Though the figure presents a case for one workload setting, we observed
similar relative memory usage with every workload settings. Nevertheless, we
do advise that these techniques should not be used without memory reclamation.

4.7 Conclusion
In this chapter, we introduced the notion of help-optimality in a lock-free algo-
rithm. Intuitively, in a lock-free data structure, which satisfies help-optimality,
at a conflict over modification of a shared variable, we avoid both offer and ac-
ceptance of help in form of a step comprising a CAS execution. Help-optimality
consists of the notions of selfishness and help-awareness. Selfishness implies
optimization of the count of steps of CAS executions by an obstructed operation,
whereas help-awareness implies the same for an obstructing operation.

The present work is mostly experimental in nature to demonstrate the utility
of the concept of help-optimality in a lock-free linked-list and a BST. In future,

BIBLIOGRAPHY 109

we plan to develop formal specifications of the introduced notions.
Following a state-of-the-art implementation of the lock-free skip-list in Java

library, in this chapter, we designed the lock-free data structures to provide
a language-portable implementation. We experimentally showed that such an
implementation performs on a par with highly optimized implementations in C++
which use the technique of bit-stealing. The Go programming language, which
reasonably focuses on concurrency, provides pointers without pointer-arithmetic
and does not provide type-inheritance. We believe that with growing popularity
of such languages, designing language-portable lock-free data structures will be
increasingly significant.

Bibliography
[1] Timothy L. Harris, “A pragmatic implementation of non-blocking linked-lists,” in

Proceedings of the International Conference on Distributed Computing. 2001, pp.
300–314, Springer.

[2] Maged M. Michael, “High performance dynamic lock-free hash tables and list-
based sets,” in Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures. 2002, pp. 73–82, ACM.

[3] Mikhail Fomitchev and Eric Ruppert, “Lock-free linked lists and skip lists,” in
Proceedings of the ACM Symposium on Principles of Distributed Computing. 2004,
pp. 50–59, ACM.

[4] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel, “Non-
blocking binary search trees,” in Proceedings of the ACM Symposium on Principles
of Distributed Computing. 2010, pp. 131–140, ACM.

[5] Shane V. Howley and Jeremy Jones, “A non-blocking internal binary search tree,” in
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures.
2012, pp. 161–171, ACM.

[6] Aravind Natarajan and Neeraj Mittal, “Fast concurrent lock-free binary search trees,”
in Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 2014, pp. 317–328, ACM.

[7] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert, “The amortized
complexity of non-blocking binary search trees,” in Proceedings of the ACM
Symposium on Principles of Distributed Computing. 2014, pp. 332–340, ACM.

[8] Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas, “Efficient lock-free binary
search trees,” in Proceedings of the ACM Symposium on Principles of Distributed
Computing. 2014, pp. 322–331, ACM.

[9] Arunmoezhi Ramachandran and Neeraj Mittal, “A fast lock-free internal binary
search tree,” in Proceedings of the International Conference on Distributed Com-
puting and Networking. 2015, pp. 37:1–37:10, ACM.

110 CHAPTER 4. LANGUAGE-PORTABLE LOCK-FREE CONCURRENT DATA STRUCTURES

[10] Maurice Herlihy and Jeannette M. Wing, “Linearizability: A correctness condi-
tion for concurrent objects,” ACM Transactions on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, 1990.

[11] Greg Barnes, “A method for implementing lock-free shared-data structures,” in
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures.
1993, pp. 261–270, ACM.

[12] Daniel Cederman, Bapi Chatterjee, Nhan Nguyen, Yiannis Nikolakopoulos, Marina
Papatriantafilou, and Philippas Tsigas, “A study of the behavior of synchronization
methods in commonly used languages and systems,” in Proceedings of the Inter-
national Parallel and Distributed Processing Symposium. 2013, pp. 1309–1320,
IEEE.

[13] Vincent Gramoli, “More than you ever wanted to know about synchronization: Syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms,”
in Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 2015, pp. 1–10, ACM.

[14] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis, “Asynchronized concur-
rency: The secret to scaling concurrent search data structures,” in Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems. 2015, pp. 631–644, ACM.

[15] Joel Gibson and Vincent Gramoli, “Why non-blocking operations should be selfish,”
in Proceedings of the International Symposium on Distributed Computing. 2015,
pp. 200–214, Springer.

[16] “java.util.concurrent,” https://docs.oracle.com/javase/8/docs/
api/.

[17] Doug Lea, “ConcurrentSkipListMap,” in java.util.concurrent.
[18] John D. Valois, “Lock-free linked lists using compare-and-swap,” in Proceedings

of the ACM Symposium on Principles of Distributed Computing. 1995, pp. 214–222,
ACM.

[19] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer,
and Nir Shavit, “A lazy concurrent list-based set algorithm,” in Proceedings of
the International Conference on Principles of Distributed Systems. 2006, pp. 3–16,
Springer.

[20] Yehuda Afek, Gideon Stupp, and Dan Touitou, “Long lived adaptive splitter and
applications,” Distributed Computing, vol. 15, no. 2, pp. 67–86, 2002.

[21] Hagit Attiya and Arie Fouren, “Algorithms adapting to point contention,” Journal
of the ACM, vol. 50, no. 4, pp. 444–468, 2003.

[22] Keren Censor-Hillel, Erez Petrank, and Shahar Timnat, “Help!,” in Proceedings of
the ACM Symposium on Principles of Distributed Computing. 2015, pp. 241–250,
ACM.

[23] Sanjay Ghemawat and Paul Menage, “Tcmalloc : Thread-caching malloc,” http:
//goog-perftools.sourceforge.net/doc/tcmalloc.html, 2009.

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

PAPER IV

Bapi Chatterjee, Ivan Walulya and Philippas Tsigas

Concurrent Linearizable Nearest Neighbour Search in
LockFree-kD-tree

In the Proceedings of the
19th International Conference on Distributed Computing and Networking

pp. 11:1–11:10, ACM 2018.

5
Concurrent Linearizable Nearest

Neighbour Search in
LockFree-kD-tree

Abstract
The Nearest neighbour search (NNS) is a fundamental problem in many applica-
tion domains dealing with multidimensional data. In a concurrent setting, where
dynamic modifications are allowed, a linearizable implementation of NNS is
highly desirable.

This paper introduces the LockFree-kD-tree (LFkD-tree): a lock-free con-
current kD-tree, which implements an abstract data type (ADT) that provides
the operations ADD, REMOVE, CONTAINS, and NNSEARCH. Our implemen-
tation is linearizable. The operations in the LFkD-tree use single-word read
and compare-and-swap (CAS) atomic primitives, which are readily supported on
available multi-core processors.

We experimentally evaluate the LFkD-tree using several benchmarks com-
prising real-world and synthetic datasets. The experiments show that the pre-
sented design is scalable and achieves significant speed-up compared to the
implementations of an existing sequential kD-tree and a recently proposed multi-
dimensional indexing structure, PATRICIA-hypercube-tree or PH-tree.

113

114 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

5.1 Introduction

5.1.1 Background

Given a dataset of multidimensional points, finding the point in the dataset at
the smallest distance from a given target point is typically known as the nearest
neighbour search (NNS) problem. This fundamental problem arises in numerous
application domains such as data mining, information retrieval, machine learning,
robotics, etc.

A variety of data structures available in the literature, which store multidimen-
sional points, solve the NNS in a sequential setting. Samet’s book [1] provides an
excellent collection of data structures for storing multidimensional data. Several
of these have been adapted to perform parallel NNS over a static data structure.
However, both sequential and parallel designs primarily consider NNS queries
without accommodating dynamic addition or removal (modifications) operations
on the data structure. Allowing concurrent dynamic modifications exacerbates
the challenge substantially.

The wide availability of multi-core machines, large system memory, and a
surge in the popularity of in-memory databases, have led to a significant interest
in the index structures that can support NNS with dynamic concurrent addition
and removal of data. However, to our knowledge no complete work exists in the
literature on concurrent data structures that support NNS.

Typically, a hierarchical tree-based multidimensional data structure stores
the points following a space partitioning scheme. Such data structures provide
an excellent tool to prune the subsets of a dataset that do not contain the target
nearest neighbour. Thus, an NNS query iteratively scans the dataset using such
a data structure. The iterative scan procedure starts with an initial guess, at every
iteration visits a subset of the data structure (e.g., a subtree of a tree) that can
potentially contain a better guess, and is unvisited until the last iteration, updates
the current guess if required, and thereby finally returns the nearest neighbour.

In a concurrent setting, performing an iterative scan along with concurrent
modifications, faces an inescapable challenge. Consider the case of an operation
op performing an NNS query in a hierarchical multidimensional data structure
that stores points from Rd and where Euclidean distance is used. Let a={ai}di=1 ∈
Rd be the target point of the NNS. Let us assume that k∗={k∗i }

d
i=1 ∈ {k ∶

k is key of a node} is the nearest neighbour of a at the invocation of nns(a). In
a sequential setting, where no addition or removal of data-points occurs during
the lifetime of nns(a), k∗ remains the nearest neighbour of a at the return of
nns(a). However, if a concurrent addition is allowed, a new node with key k∗∗

may be added to the data structure in a sub-structure that may already have been

5.1. INTRODUCTION 115

visited or pruned by the completion of the latest iteration step. Clearly, nns(a)
would not revisit that sub-structure. Suppose that k∗∗ was closer to a compared
to k∗, if nns(a) returns k∗, it is not consistent to an operation which observes
that the addition of k∗∗ completes before nns(a).

Considering concurrent operations on data structure, linearizability [2] is
the most popular framework for consistency. A concurrent data structure is
linearizable if every execution has a linearization points, between the invocation
and response of each operation, where it seems to take effect instantaneously. In
a concurrent setting, we desire linearizability of an NNS query.

Non-blocking progress guarantees are preferred for concurrent operations. In
an asynchronous shared-memory system, where an infinite delay or crash failure
of a thread is possible, a lock-based concurrent data structure is vulnerable
to pitfalls such as deadlock, priority inversion and convoying. On the other
hand, in a non-blocking data structure, threads do not hold locks, and at least
one non-faulty thread is guaranteed to finish its operation in a finite number
of steps(lock-freedom). Wait-freedom is a stronger progress condition that all
threads will complete an operation in a finite number of steps.

In recent years, a number of practical lock-free search data structures have
been designed: skip-lists [3], binary search trees (BSTs) [4–7], etc. Despite
the growing literature on lock-free data structures, the research community
has largely focused on one-dimensional search problems. To our knowledge,
no complete design of any lock-free multidimensional data structure exists
in the literature.The challenge appears in two ways: designing a concurrent
lock-free multidimensional data structure that supports NNS and ensuring the
linearizability of NNS.

One of the most commonly used multidimensional data structures for NNS is
the kD-tree, introduced by Bentley [8]. In principle, a kD-tree is a generalization
of the BST to store multidimensional data. Friedmann et al. [9] proved that a
kD-tree can process an NNS in expected logarithmic time assuming uniformly
distributed data points. Various efforts, including approximate solutions, have
contributed to improving the performance of NNS in kD-trees [10, 11]. Further-
more, several parallel kD-tree implementations have been presented, specifically
in the computer graphics community, where the focus is on accelerating the
applications, such as the ray tracing, in single-instruction-multiple-data (SIMD)
programming model [12].

Unfortunately, these designs do not fit concurrent setting where we desire
linearizable NNS with concurrent modifications. For robotic motion planning,
Ichnowski et al. [13] used a kD-tree of 3-dimensional data in which they add
nodes concurrently. However, this design does not support REMOVE and the
canonical implementation of NNSEARCH, using recursive tree-traversal, is not

116 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

linearizable.
The contributions of this work are the following:

1. We describe a linearizable implementation of an abstract data type (ADT)
that provides ADD, REMOVE, CONTAINS and NNSEARCH operations for a
multidimensional dataset.

2. To illustrate the implementation, we present LockFree-kD-tree (LFkD-tree) -
an efficient concurrent lock-free kD-tree. LFkD-tree requires atomic single-
word read and compare-and-swap primitives.

3. For experimental validation of the LFkD-tree, we use a 2-dimensional real-
world dataset and several synthetic datasets representing extreme cases. We
evaluate our implementation against an existing sequential kD-tree implemen-
tation and a recently proposed multidimensional index structure - PATRICIA-
hypercube-tree implementation [14].

The rest of this paper is organized as follows; first, we present the basic de-
sign of the LockFree-kD-tree (LFkD-tree) (Section 5.2). Thereafter, we detail
the lock-free implementation (Section 5.3). On describing the algorithm, we
present the proof of its correctness (Section 5.4). We describe an interesting
real-life application of this work (Section 5.5). Finally, we describe experimen-
tal evaluation of our algorithm against an existing sequential kD-tree and the
PATRICIA-hypercube-tree [14]* (Section 5.6). For experimental evaluation of
the implementations, we use a 2-dimensional real-world dataset and several
synthetic datasets representing extreme cases.

5.1.2 A high-level summary of the work

The main challenge in implementing a linearizable NNSEARCH is to ensure
that it is not oblivious to the concurrent modifications in the data structure.
NNSEARCH requires an iterative scan, which collects, along with pruning, an
atomic snapshot.

In general, concurrent data structures do not trivially support atomic snap-
shots. Some exceptions are - the lock-based BST by Bronson et al. [15], the
lock-free Trie by Prokopec et al. [16] and lock-free k-ary search tree by Brown
et al. [17]. Petrank et al. presented a method to support atomic snapshots in one
dimensional lock-free ordered data structures that implement sets [18]. They
illustrated their method in lock-free linked-lists and skip-lists.

The main idea in [18, 19] is augmenting the data structure with a pointer to
a special object, which provides a platform for an ADD/ REMOVE/ CONTAINS

*In this work, we are not interested in an existing parallel or sequential implementation that does
not provide a REMOVE operation, in which case lock-free design poses little challenge. We could
find only these two existing implementations that provide REMOVE along with NNSEARCH.

5.1. INTRODUCTION 117

operation to report modifications to a concurrent operation performing a full or
partial snapshot. Nevertheless, collecting an atomic snapshot of a multidimen-
sional data structure to perform an NNSEARCH would be naive. We need to
adapt the procedure of iterative scan, which benefits from an efficient hierarchical
space partitioning structure, to a concurrent setting.

Our work proposes a solution based on augmenting a concurrent data struc-
ture with a pointer to a special object called neighbour-collector. A neighbour-
collector provides a platform for reporting concurrent modifications that can
otherwise invalidate the output of a linearizable NNSEARCH.

Essentially, an operation NNSEARCH(α) first searches for an exact match of
α in the data structure, and if it succeeds, returns α itself as its nearest neighbour.
If an exact match is not found, before starting the iterative scan, NNSEARCH(α)
announces itself. The announcement uses a new active neighbour-collector that
contains the target point α and the current best guess for the nearest neighbour
of α. On completing the iterative scan, it deactivates the neighbour-collector. A
concurrent operation, after completing its steps, checks for any active neighbour-
collector, and if found, reports its output if it is a better guess than the current
best guess available. Finally, NNSEARCH(α) outputs the best guess among the
collected and the reported neighbours as the nearest neighbour of α.

Naturally, there can be multiple concurrent NNSEARCH operations with
different target points, and we must allow each of them to continue its iterative
scan, after announcing it as soon as it begins. To handle multiple concurrent
announcements, we use a lock-free linked-list of neighbour-collector objects.
The data structure stores a pointer to one end of this list, say the head. A new
neighbour-collector is allowed to be added only at the other end, say the tail.

Consequently, before announcing a new iterative scan, an NNSEARCH
operation goes through the list and checks whether there is an active neighbour-
collector with the same target point. If an active neighbour-collector is found, it is
used for a concurrent coordinated iterative scan(explained in the next paragraph).
A neighbour-collector is removed from the lock-free linked-list as soon as the
associated iterative scan is completed. Hence, at any point in time, the length of
the list is at most the number of active NNSEARCH operations.

During an iterative scan, a subset of the dataset is pruned depending on
whether the distance of the target point from a bounding box covering the subset
is greater than that from the current best guess. Now, if the current best guess
at a neighbour-collector is the outcome of already pruned many subsets, an
NNSEARCH that starts its iterative scan at a later time-point, or is slow (or even
delayed), will be able to complete much faster. Thus, the coordination among
the concurrent NNS, via their iterative scans at the same neighbour-collector,
speeds them up in aggregation.

118 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

The basic design of the LFkD-tree is based on the lock-free BST of Natarajan
et al. [6]. To perform an iterative scan, we implement an efficient fully non-
recursive traversal using parent links, which is not available in [6]. Thus, to
manage an extra link in each node, our design requires extra effort for the lock-
free synchronization. The modify operations use single-word-sized atomic CAS
primitives. The helping mechanism is based on the operation descriptors at
the child-links. Consequently, extra object allocations for synchronization is
avoided. The linearizable implementation of NNSEARCH is not confined to the
LFkD-tree, and it can be used in a similar concurrent implementation of any
other multidimensional data structure available in [1].

5.2 LockFree-kD-tree: Basic Design

5.2.1 Design of the LFkD-tree
The LFkD-tree is a point kD-tree in which each node, that stores data, is assigned
at most one data-point. Typically, to partition Rd, we use axis-orthogonal
hyperplanes that are given by xi=c, 1≤i≤d. The structure and consequently
the NNS performance of a kD-tree heavily depends on the splitting rule - the
procedure to select the partitioning hyperplanes. Traditionally, in a sequential
setting, to construct a kD-tree from static data, the partitioning hyperplanes
are chosen to coincide with points that belong to the given dataset. In this
approach, similar to an internal BST representation [7], each node is used for
storing data. However, removing a node from an internal BST is costly, more
so in a concurrent setting [5, 7]. With this in mind, we opt for an external BST
representation [4, 6] to design the LFkD-tree. In this design, only leaf-nodes
contain the data-points and internal-nodes route a traversal, see fig. 5.1 (b). More
importantly, it gives us the flexibility to compute c and i ∶ 1≤i≤d for a hyperplane
xi=c, which may not coincide with a data-point.

To compute the values of c and i, in the scenarios where the entire dataset is
available beforehand, a number of splitting rules exist in the literature [9, 10].
These rules focus on the hierarchical partition of a closed hyperrectangle that
covers the entire dataset and not only tries to balance a kD-tree but also optimize
its depth. In a concurrent setting, where we do not have knowledge of the entire
dataset in advance, the partitioning hyperplane needs to be computed dynamically
and in a very localized fashion. For the LFkD-tree, we formulate a simple and
practical splitting rule, the local-midpoint rule, as given in Section 5.2.2. In this
work, we do not delve in to an analytical discussion of the splitting rule.

A leaf-node of a LFkD-tree Υ, contains a unique data-point as its key,
whereas, an internal-node corresponds to a partitioning hyperplane. Without

5.2. LOCKFREE-KD-TREE: BASIC DESIGN 119

(b)(a) x1=4

x2=3

x1=1

x1=6

x2=5

(1,1)

x1=8

x2=7

(0,5)

(2,7)

(7,8)

(6,6)

(5,4)

(7,3)

(9,1) x1,8

x1,4

x2,3

x1,6 x2,7

(0,5)

(1,1)

(7,8)(6,6)

(9,1)(7,3)

(5,4)(2,7)

x1,1

x2,5

Figure 5.1: LFkD-tree Structure

ambiguity, we denote a leaf-node containing key k={ki}di=1∈Rd by Nd(k) (or
Nd({ki}di=1)), and an internal node associated with a hyperplane xi=c, by Nd(i, c).
An internal-node has three links connected to its left-child, right-child and parent.
We indicate the link emanating from a node N and incoming to a node M by
N↝M. Access to Υ is given by the address of (pointer to) a unique node root.
A node N is said to be present in Υ, denoted by N∈Υt, if it can be reached
following the links starting from the root. For each internal-node Nd(i, c), Υ
maintains the following invariants: (i) a node Nd({ki}di=1) belongs to the left
subtree, if ki<c, (ii) a node Nd({ki}di=1) belongs to the right subtree, if ki≥c
and (iii) both subtrees are themselves LFkD-tree. (i) and (ii) together are called
the symmetric order of the LFkD-tree. Figure 5.1 illustrates the structure of a
subtree of a LFkD-tree corresponding to a sample 2-dimensional dataset.

5.2.2 Sequential Behaviour of the ADT Operations

LFkD-tree implements an abstract data type that provides operations ADD,
REMOVE, CONTAINS and NNSEARCH. For each of the operations, we start
with a query: start from the root, traverse down Υ, at each internal node decide
left / right child direction using the symmetric order until arrive at a leaf-node.

To perform ADD(a), a∈Rd, if the query terminates at a leaf-node Nd(b),
b∈Rd, and b = a (an element-wise comparison of keys), ADD(a) returns false.
However, if b ≠ a, we allocate a new internal-node Nd(i, c) with its child links

120 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

connected to two leaf-nodes Nd(a) and Nd(b). If p(Nd(b)) was the parent of
Nd(b) at the termination of query, we connect the parent link of Nd(i, c) to
p(Nd(b)). We update the link p(Nd(b))↝Nd(b) to point to Nd(i, c) and return
true. To compute i and c, we employ the local-midpoint rule as given below.

Local-midpoint rule: 1≤i≤d is the index of the coordinate axis along which
a and b have the maximum coordinate difference; if there are more than one
such axis then select the one with the lowest index. Take the hyperplane as
xi =

a[i]+b[i]
2

.
To perform REMOVE(a), if the leaf-node where the query terminates, has

the key a, i.e., Nd(a)∈Υ, we modify the link from the grandparent of Nd(a),
denoted by g(Nd(a)), to its parent, to connect the sibling of Nd(a), s(Nd(a)), to
g(Nd(a)); and return true. If Nd(a)∉Υ, REMOVE(a) returns false. To perform
CONTAINS(a), using a similar query we check whether Nd(a)∈Υ and return
true or false accordingly.

The operation NNSEARCH(a) is non-trivial. On termination of the initial
query, if we reach at Nd(b) and b = a, clearly the nearest neighbour of a, available
in the dataset stored in Υ, is a itself. However, if b ≠ a, we take b as our current
best guess and check whether the other subtree of p(Nd(b)) (the current subtree
consists the single node Nd(b)) stores a better guess.

Suppose that p(Nd(b))=Nd(i, c). Now, any point on the other side of the
hyperplane xi=c will be at least at a distance ∣ai−c∣ from the target point {ai}di=1.
Therefore, if ∣ai−c∣>∣∣a, b∣∣2 (the Euclidean distance between a and b), we must
prune the other subtree i.e., one rooted at s(Nd(b)), otherwise we visit it in the
next iteration.

A subtree once visited is not visited again and thus we traverse back to the
root of Υ. At the termination of the iterative scan of Υ, the current best guess is
returned as the nearest neighbour of a.

5.3 LockFree-kD-tree: Implementation

5.3.1 Lock-free Synchronization: Basics

In a sequential setting, when REMOVE(a) modifies g(Nd(a))↝p(Nd(a)), no
operation is executed concurrently with a possibility to modify either of the
links - p(Nd(a))↝Nd(a) or p(Nd(a))↝s(Nd(a)). However, in a concurrent
setting, where these pointers are shared by multiple operations, an ADD op-
eration can concurrently modify any of these pointers. It may result into the
newly added node not being a part of the LFkD-tree. Similarly, if s(Nd(a))
is an internal-node, a concurrent REMOVE operation trying to remove a child

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 121

of s(Nd(a)) may end up connecting p(Nd(a)) to the sibling of the removed
child which results into a wrong outcome. Essentially, for a correct concurrent
implementation of modify operations in a LFkD-tree, we need to keep the point-
ers p(Nd(a))↝Nd(a) and p(Nd(a))↝s(Nd(a)) fixed when g(Nd(a))↝p(Nd(a))
is updated to g(Nd(a))↝s(Nd(a)). Additionally, because we maintain parent
pointers, we also need to keep the pointer g(Nd(a))↝p(Nd(a)) fixed when
s(Nd(a))↝p(Nd(a)) is updated to s(Nd(a))↝g(Nd(a)), in case s(Nd(a)) is an
internal node.

For a lock-free synchronization we can not use locks to keep these shared
pointers fixed. Instead of locks, we design the helping protocol for operations.
Basically, the idea is: whenever an operation encounters a shared pointer fixed
(although not by a lock) by a concurrent modify operation, i.e., obstructed, it
takes necessary steps to complete the pending operation and thereby avoids the
obstruction in its own progress. This ensures that no non-faulty thread is blocked
due to a delayed or crashed thread and thereby provides progress guarantee.

Ellen et al. [4] suggested to put operation descriptors, using CAS, at the
nodes g(Nd(a)) and p(Nd(a)) by a REMOVE operation and at p(Nd(a)) by an
ADD operation, before updating the necessary pointers. An operation descriptor
stores information about the changes that a modify operation needs to make.
If CAS fails, appropriate helping is performed, using the information from the
descriptor, before a reattempt.

Natarajan et al. [6] suggested that instead of putting the descriptors at the
nodes g(Nd(a)) and p(Nd(a)), putting them at the links p(Nd(a))↝Nd(a) and
p(Nd(a))↝s(Nd(a)) improves performance. Both these designs use single-
word-sized CAS to put descriptors and update the pointers.

As mentioned before, the basic structure of our LFkD-tree is based on an
external BST. Therefore, for the lock-free synchronization in the LFkD-tree,
we build upon the lock-free BST algorithm of [6]. The fundamental idea of
the design is a lazy remove procedure that is essentially based on a protocol of
atomically injecting operation descriptors on the links connected to the node
to be removed, and then modifying those links to disconnect the node from the
LFkD-tree. If multiple concurrent operations try to modify a link simultaneously,
they synchronize by helping one of the pending operations that would have
successfully injected its descriptor.

More specifically, to REMOVE the node Nd(a), as shown in the Figure 5.2(b),
we use a CAS to inject operation descriptors at the links p(Nd(a))↝Nd(a),
g(Nd(a))↝p(Nd(a)) and p(Nd(a))↝s(Nd(a)), in this order. We call these
descriptors mark, tag and flag respectively. An operation descriptor works
as an information source about the steps already performed in REMOVE(a)
and thus a concurrent operation, if obstructed at a link with descriptor, helps

122 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

(a)

(i) (ii)

(x1=∞1)

{∞2}
d

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
d−tuple

{∞0}
d

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
d−tuple

(x1,∞1)

∞1∞2

g(a)

a

p(a)

s(a)

(b)

mark tag flag

(c)

(i) (ii)

(iii) (iv)

g(a)

p(a)

s(a)
a

g(a)

p(a)

s(a)
a

g(a)

p(a)

s(a)
a

g(a)

p(a)

s(a)

a

Figure 5.2: ADD and REMOVE operations in LFkD-tree

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 123

by performing the remaining steps. In particular, a mark at a link indicates
that the next step would be to inject a tag at the link g(Nd(a))↝p(Nd(a)),
whereas, a tag indicates that the next step is to inject the descriptor flag at
the link p(Nd(a))↝s(Nd(a)). Finally, a flag indicates the completion of steps
of injecting operation descriptors and thereafter the required link updates are
done. The helping mechanism ensures that the concurrent ADD and REMOVE
operations do not violate any invariant maintained by the LFkD-tree. The steps
of a REMOVE operation are shown in the fig. 5.2(c). An ADD operation uses a
single CAS to update the target link only if it is free from any operation descriptor,
otherwise it helps the concurrent pending REMOVE operation. A CONTAINS or
NNSEARCH operation does not perform help.

We call the CAS step, which injects a mark at p(Nd(a))↝Nd(a), the logical
remove of a. After this step, a CONTAINS(a) that reads p(Nd(a))↝Nd(a) returns
false. Accordingly, ADD(a) helps to complete the pending REMOVE(a), if it
reads p(Nd(a))↝Nd(a) with a mark descriptor, and then reattempts its own
steps. The helping mechanism guarantees that a logically removed node will be
eventually detached from the LFkD-tree.

To realize the atomic step to inject an operation descriptor, we replace a
link using a CAS with a single-word-sized packet of a link and a descriptor.
Given a pointer delegates a link, a well-known method in C/C++ to pack extra
information with a pointer in a single memory-word is bit-stealing. In a x86/64
machine, where memory allocation is aligned on a 64-bit boundary, three least
significant bits in a pointer are unused. The three operation descriptors used in
our algorithm fit over these bits.

For ease of exposition, we assume that a memory allocator always allocates a
variable at a new address and thus an ABA problem does not occur. For lock-free
memory reclamation in a C/C++ implementation of the algorithm, a method
such as one based on reference counting [20] can be used. Whereas, traditionally
a Java implementation uses the JVM garbage collector. Furthermore, to avoid
null pointers at the beginning of an application, we use a subtree containing an
internal-node and two leaf-nodes which work as sentinel nodes. See fig. 5.2(a).
The keys in the sentinel nodes maintain ∞0>∞1>∞2>ki, 1≤i≤d, for any data
point {ki}

d
i=1 stored in the LFkD-tree. The sentinel internal-node Nd(1,∞1)

works as the root of the LFkD-tree and the entire dataset is stored in its left
subtree.

124 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

1 class INode { ⊳ A subclass of Node.
long i; double c;
Node∗ lt, rt, pr;

2 }
3 class LNode { ⊳ A subclass of Node.

K k;
4 }
5 root := INode∗(1, ∞1, LNode∗({∞2}d), LNode∗({∞0}d), null);

Algorithm 5.1. The node structure in the LFkD-tree

5.3.2 Linearizable ADD, REMOVE and CONTAINS operations
(A) Overview

First, we present the node-structures in the LFkD-tree, which will help in the
subsequent discussion. The classes INode and LNode, which represent an
internal- and a leaf- node respectively, are shown in lines 1 and 3 in Algorithm 5.1.
Every INode, in addition to the fields i and c that represent the associated
hyperplane, has three pointers lt, rt and pr that delegate the left-child, right-child
and parent links, respectively. An LNode contains only an array k to represent
a data-point k={ki}di=1∈Rd. The node-pointer root, line 5, delegates address of
the sentinel node Nd(1,∞1). As a convention, if x is a field of a class C, we use
pc⋅x to indicate the field x of an instance of C pointed by pc; and, the type of
a pointer to an instance of C is indicated by C∗. Note that, INode and LNode
inherit Node.

(B) The algorithm

Dir(Node∗ Nd(i,c).ref , K k) ⊳Return a child-direction.
1 return k[i] ¡ c ? L : R; ⊳Directions - L: left, R: right.

Child(Node∗ pa, dir cD) ⊳Return a child-pointer.
2 return cD = L ? pa.lt : pa.rt;

Search(Node∗ pa, Node∗ a, K k, ,)
3 while Ptr(a)⋅class ≠ LNode do
4 pa := Ptr(a); a := Child(pa, Dir(pa, k));
5 return ⟨pa, a⟩;

Algorithm 5.2. LFkD-tree: Search method

We have already described in Section 5.3.1 the operation descriptors and their
denotation about the different steps of a REMOVE operation. In the following
algorithms, we use the methods IsMark, IsFlag and IsTag to check whether
a pointer has descriptor mark, flag and tag (actually ltag and rtag, see

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 125

below), respectively. Further, to pack these descriptors, we use the methods
Mark, Flag and Tag, respectively. To get the value of a pointer free from all
descriptors, which gives a node-address, we use the method Ptr(). The ADD,
REMOVE and CONTAINS operations, along with the methods called by them,
are described in a modular fashion in the Algorithm 5.2.

The basic methods Dir and Child are used in traversal. The method
Search, line 3 to 5, which performs a query, returns the pointers to the leaf-
node and its parent, where the query terminates.

CONTAINS(K k)
6 pa := root; a := pa.lt;
7 ⟨pa, a⟩ := Search(pa, a, k, ,);
8 if !IsMark(a) then
9 Sync(Ptr(pa), Ptr(a));

10 return k = Ptr(a).k ? true : false;
11 else return false;

Algorithm 5.2. LFkD-tree: The CONTAINS operation

A CONTAINS, line 6 to 11, starts with calling Search, returns true only if
the pointer a does not have mark and the query key matches at the leaf-node
pointed by a at line 10; else it returns false, line 11. A CONTAINS calls Sync,
line 9, before return to synchronize with concurrent NNSEARCH operations. We
describe Sync in the Section 5.3.3.

The method AddNode(), line 12 to 25, attempts to add a new node in the
LFkD-tree. It starts with calling Search, line 14. If the returned leaf-node-
pointer a is found containing mark, it indicates that the node containing the
query key is logically removed, and therefore, the method Help() is called to
help the concurrent pending REMOVE operation, line 24. Otherwise, the node
pointed by a is checked whether it contains the query key, line 16, and if found,
false is returned, line 17. AddNode() also outputs the descriptor-free pointers
to the leaf-node and its parent where the query terminated. However, if the leaf-
node did not contain the query-key, it is checked whether a has the descriptor
flag, which indicates a pending REMOVE of the sibling of the node pointed by
a; and if flag is found, Help() is called, line 18. We describe Help() in the
next subsection. Only in the case a is descriptor-free, the method NewNode()
(see lines 26 to 31) is called to allocate a new node, and a CAS executed in the
method ChCAS() (see lines 32 to 36), called at line 22, modifies a to add the
new node. On that, return includes true.

The operation ADD, line 37 to 38, calls AddNode() to get the pointer to the
node and its parent, either added by itself or already present there, containing
its query key, and the result of addition accordingly. Thereafter, ADD calls the
method Sync, line 38, and outputs the result.

126 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

AddNode(K k)
12 pa := root; a := pa.lt;
13 while true do
14 ⟨pa, a⟩ := Search(pa, a, k, ,);
15 if !IsMark(a) then
16 if k = Ptr(a).k then
17 return ⟨Ptr(pa), Ptr(a), false⟩;
18 if IsFlag(a) then pa := Help(pa, a);
19 else
20 n := LNode(k); cD := Dir(pa, k);
21 newNd := NewNod(a, n.ref , pa);
22 if ChCAS(pa, a, newNd.ref , cD) then
23 return ⟨newNd.ref , n.ref , true⟩;
24 else pa := Help(pa, a);
25 a := Child(pa, Dir(pa, k));

NewNod(Node∗ a, Node∗ b, Node∗ p) ⊳Crates a new internal-node.
26 ka := a.k; kb := b.k;
27 i := {i ∶ 1≤i≤d and ∣ka[i]−kb[i]∣≥{∣ka[j]−kb[j]∣}dj=1};

28 c := ka[i]+kb[i]
2

; ⊳Local-midpoint rule is applied.

29 left := (ka[m] < kb[m] ? a : b);
30 right := (ka[m] > kb[m] ? a : b);
31 return INode(m, c, left, right, p);

ChCAS(Node∗ pa, Node∗ exp, Node∗ new, dir cD)
32 if (cD = L) and pa.lt = exp then
33 return CAS(pa.lt.ref , exp, new);
34 else if (cD = R) and pa.rt = exp then
35 return CAS(pa.rt.ref , exp, new);
36 else return false;

ADD(K k)
37 ⟨pa, a, result⟩ := AddNode(k);
38 Sync(pa, a); return result;

Algorithm 5.2. LFkD-tree: The ADD operation

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 127

The REMOVE operation, line 39 to 49, performs query in a similar way
calling Search, line 41. At the return of Search, if a is found to have mark,
it indicates that even if the query key k was present in the LFkD-tree, has already
been logically removed and therefore REMOVE returns false, line 48. If a is
free of mark, we check if the node pointed by a contains the query key, and
if not, REMOVE returns false, line 43. However, if the pointer a is found to
have the descriptor flag, it indicates a pending REMOVE of the sibling of
the node pointed by a, and therefore we call the method Help() to perform
helping steps. After return of Help(), the steps are reattempted. Finally, if a was
descriptor-free, mark is injected on it via the method ChCAS(), line 46, and if it
succeeds, the Help() is called to take further steps and true is returned, line 47.

REMOVE(K k)
39 pa := root; a := pa.lt;
40 while true do
41 ⟨pa, a⟩ := Search(pa, a, k, ,);
42 if !IsMark(a) then
43 if k ≠ Ptr(a).k then return false;
44 if IsFlag(a) then pa := Help(pa, a);
45 marker := Mark(a); cD := Dir(pa, k);
46 else if ChCAS(pa, a, marker, cD) then
47 Help(pa, a); return true;
48 else return false;
49 a := Child(pa, Dir(pa, k));

Algorithm 5.2. LFkD-tree: The REMOVE operation

(C) The Helping steps

The method Help() is described In the Algorithm 5.3, line 1 to 6. We call
Help() at a pointer to a leaf-node which has been injected with either the
descriptor mark or flag. Therefore, it first decides the type of descriptor, and
then accordingly calls either HelpMrk, line 5, or HelpFlg, line 6.

The method HelpMrk, line 7 to 10, first calls ApndTag to fix the g(Nd(a)),
pointed by ga. And then calls HelpTag to complete the remaining steps of
REMOVE. To distinguish between the tag put by the REMOVE of left and
right child of p(Nd(a)), we use two types of tag: ltag and rtag. In the
method ApndTag, line 13 to 26, if the link was found already tagged, the type
of tag (ltag or rtag) is read using the method TagDir. And, if the link
was found to be tagged by a REMOVE of the other child of p(Nd(a)), first that
REMOVE is helped and then we reattempt, line 19, otherwise we return ga,
line 18. However, if the link g(Nd(a))↝p(Nd(a)) is found flagged, line 22,
it indicates a pending REMOVE of s(p(a)) and therefore we help it before

128 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

Help(Node∗ pa, Node∗ a)
1 cD := (a.k[pa⋅i] ¡ pa⋅c) ? L : R;
2 if IsFlag(a) then
3 ga := Pr(pa); sa := Child(pa, !cD);
4 pD := (a.k[ga⋅i] ¡ ga⋅c) ? L : R;
5 return HelpFlg(ga, pa, sa, pD);
6 else return HelpMrk(pa, a, cD);

HelpMrk(Node∗ pa, Node∗ a, dir cD)
7 ga := ApndTag(pa, a, cD);
8 pD := Dir(ga, a.k); pl := Child(ga, pD);
9 if Ptr(pl) = pa then HelpTag(ga, pl, pD);

10 return ga;

HelpTag(Node∗ ga, Node∗ pl, bool pD)
11 pa := Ptr(pl); sD := (TagDir(pl) = L ? R : L);
12 HelpFlg(ga, pa, AddSp(pa, sD, ,) sD);

ApndTag(Node∗ pa, Node∗ a, dir cD)
13 while true do
14 ga := Pr(pa); pD := Dir(ga, a.k);
15 pl := Child(ga, pD);
16 if Ptr(pl) = pa then
17 if IsTag(pl) then
18 if TagDir(pl) = cD then return ga;
19 else HelpTag(ga, pl, pD);
20 else if IsFlag(pl) then
21 grGa := Pr(ga);
22 HelpFlg(grGa, ga, pa, Dir(grGa, a.k));
23 else if ChCAS(ga, pl, Tag(pl, cD), pD) then
24 return ga;
25 else if pl = a then pa := ga;
26 else return ga;

AddSp(Node∗ pa, dir sD,)
27 while true do
28 sa := Child(pa, sD);
29 if IsMark(sa) then return sa;
30 else if IsFlag(sa) then return Ptr(sa);
31 else if IsTag(sa) then HelpTag(pa, sa, sD);
32 else if ChCAS(pa, sa, Flag(sa), sD) then
33 return sa;

Algorithm 5.3. LFkD-tree: Help() method

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 129

HelpFlg(Node∗ ga, Node∗ pa, Node∗ sa, dir pD)
34 if Ptr(pl := Child(ga, pD)) = pa then
35 if Pr(Ptr(sa)) = pa then
36 CAS(Pr(Ptr(sa)).ref , pa, ga);
37 ChCAS(ga, pl, sa, pD);
38 return ga;

Algorithm 5.3. LFkD-tree: Help() method

reattempt. On successfully tagging the link g(Nd(a))↝p(Nd(a)), we return
the pointer ga, line 24. Also, if g(Nd(a)) is found not connected with p(Nd(a)),
we return ga, line 26, and REMOVE operation terminates because it indicates the
completion.

The method HelpTag, line 11 to 12, reads the direction of the child whose
REMOVE had tagged the link g(Nd(a))↝p(Nd(a)) (represented by pl), line 11,
flags the (sibling) link calling AddSp and finally calls HelpFlg to perform
the remaining steps, see line 12.

In AddSp, line 27 to 33, if the link p(Nd(a))↝s(Nd(a)) (represented by
sa) was found marked, line 29, we return this link as it is, because it is
guaranteed that the REMOVE operation that marked this link, will perform
helping before reattempting its CAS to put a tag in the method ApndTag.
In that case, the marked link is further carried to the method HelpFlg and
connected to p(Nd(a)). If p(Nd(a))↝s(Nd(a)) is found flagged, we return
s(Nd(a)), represented by the value of sa without any descriptor i.e. Ptr(sa),
line 30. On a successful CAS to flag the link, we return address of s(Nd(a))
represented by sa, line 33.

Finally, the method HelpFlg, line 34 to 37, if required, connects the pr
pointer of s(Nd(a)) to g(Nd(a)), see line 36. And lastly, node a is detached
from the LFkD-tree by connecting s(Nd(a)), represented by sa, to g(Nd(a))
using a CAS at line 37.

5.3.3 Linearizable Nearest Neighbour Search

In this section, we begin with the algorithm that addresses the case where
concurrent NNSEARCH operations have coinciding target points. We build on
it to present the algorithm for general cases without any restriction. However,
before describing the NNSEARCH algorithms, we discuss the linearizability of
the operations as its motivation.

130 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

x1,6

(5,4)

(9,1)

x1,8

x1,6

(5,4) x1,8

(9,1)

(6,4)

x1,6.5

(7,3)

x1,6

x1,8

(9,1)

(6,4)

x1,6.5

(7,3)

(5,4)

x1,5.5

(7,3) (5.5,4)

T2
op3ÔÔÔÔÔ⇒

Add(5.5,4)
T2

op2ÔÔÔÔ⇒
Add(6,4)

Figure 5.3: Illustration of modification operations concurrent with an
NNSEARCH(6,4) operation. Light shaded nodes denote nodes currently on
the traversal path of NNSEARCH and the dark shaded nodes denote roots of
sub-trees that have been pruned.

(A) Linearization argument

As an illustration, consider Figure 5.3. In this example, an NNSEARCH(6.4)
operation op1 by thread T1 is concurrent with modification operations by thread
T2 in the LFkD-tree. T2 completes operation op2, ADD(6,4), to a sub-tree
that has already been traversed by T1, then proceeds to complete operation op3,
Add(5.5,4) to a sub-tree that is yet to be traversed by T1. Thus, T1 observes the
operation op3 but not op2, even though, to T1, op2 → op3. In case op1 returns
(5.5,4) as the nearest neighbour, then the operations op1, op2 and op3 can not
be linearized as explained in the Section 5.1.1. Thus, op2 essentially needs to
report its modification to op1, after completing its own steps.

Suppose that op2 got delayed after adding a new node Nd(6,4) to the LFkD-
tree and could not report it to op1. If in the a concurrent CONTAINS operation, say
op4 by thread T3, reads node Nd(6,4) and later make modifications to the tree
that are observable to op1 and thus linearizable before op1. Similarly, operations
op4 and op1 can not be ordered sequentially without violating linearizability.

Therefore, op4 also needs to report its output to op1. Now, given that op2,
op3 amd op4 are made to report their modifications to op1, we need to change
the linearization point of op1. To maintain the order, we put the linearization
point of op1 just after reading reports made by concurrent operations before
returning the result of the iterative scan..

Note that, we need to be careful about unnecessary reporting, which may
possibly be degrade performance. Suppose that op2 and op3 both got delayed

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 131

after their linearization. Now, if invocation of op happened after that, op is
guaranteed to read Nd, if Nd contained the nearest neighbour of the target point.
But, if in between the linearization of op3 and invocation of op, a concurrent
REMOVE removed Nd, op will certainly not read it, and a reporting may render
the linearization point of op to be shifted to even before its invocation, which
is undesired. To avoid this situation, before every reporting, we first ascertain
whether the node to be reported is logically removed by calling the method
IsMark().

1 class Nebr {Node∗ a; double d;} ⊳ Neighbour

2 class NNCNode { ⊳ Neighbour-collector
K tgt; bool isAct
Nebr∗ col, rep;
NbrClctr∗ next;

3 }

4 ncp := NbrClctr∗(null, false, null, null, null);

5 tail := NbrClctr∗(null, null, null, null, false);

6 head := NbrClctr∗(null, null, null, tail.ref , false);

Algorithm 5.4. LFkD-tree: Structure of Neighbour-collector
Before describing the algorithm for NNSEARCH, we describe the classes

to implement the neighboour-collector. See the algorithm 5.4. The class Nebr,
line 1, represents a packet of a data-point, as contained in a leaf-node pointed
by the node-pointer a, and its distance, given as d, from the target point of an
NNSEARCH. The class NNCNode, line 2, represents a neighbour-collector:
the platform for collecting and reporting the nearest neighbour. NNCNode
contains pointers to two Nebr instances: col points to one that contains collected
data-point during iterative scan by an NNSEARCH operation and rep points to
one that contains a data-point reported by a concurrent operation, in addition
to the target point tgt. It also contains a boolean isAct, which if set true,
implies an active neighbour-collector; and a neighbour-collector-pointer nxt
to implement an augmented lock-free linked-list of neighbour-collectors. The
LFkD-tree is augmented with a pointer ncp, line 4, initialized to point to an
inactive neighbour-collector.

(B) Concurrent NNSEARCH with coinciding target points

When concurrent NNSEARCH operations have coinciding target points, they
can output same result by adopting a single atomic step, which is performed
during the lifetime of one of them, as the linearization point for each of them;
the real-time order amongst them can be taken as the order of any fixed step for

132 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

example their invocation step. Thus, essentially they require a single iterative
scan. Principally, it is similar to the linearizable snapshot algorithm of [18]. The
pseudo-code of the algorithm is given in the Algorithm 5.5.

The methods Seek and NextGuess, see lines 2 and 17, are used to perform
a non-recursive traversal of the LFkD-tree. We describe these methods in the
subsection (D). Here, we describe how the non-recursive traversal is used to
perform co-ordinated iterative scan by concurrent NNSEARCH operations.

NNSEARCH(K k)
1 pa := root; a := pa.lt; hi := {∞0}d; lo := {−∞0}d;
2 ⟨pa, a⟩ := Seek(pa, a, k, hi, lo);
3 dst := IsMark(a) ? ∞ : ∣∣k, a.k∣∣2;
4 if dst ≠ 0 then return NNSync(pa, a, dst, k, hi, lo);
5 else {Sync(pa, a); return k;}

NNSync(Node∗ pa, Node∗ a, double dst, K k, K hi, K lo)
6 while true do
7 on := ncp;
8 if on⋅isAct = false then
9 cN := Nebr∗(a, dst); nn := NbrClctr∗(k, true, cN, cN, null);

10 if CAS(ncp.ref , on, nn) then break;
11 else
12 if ChkValid(pa, a) then dst := AdNebr(a, on, col);
13 nn := on; break;
14 nn := Collect(pa, a, dst, k, hi, lo, nn,);
15 Deactivate(nn); return Process(nn);

Collect(Node∗ pa, Node∗ a, K k, K hi, K lo, double dst, NbrClctr∗ nn,)
16 while pa ≠ Ptr(root) and dst ≠ 0 do
17 ⟨pa, a⟩ := NextGuess(pa, a, dst, k, hi, lo,);
18 if ChkValid(pa, a) then dst := AdNebr(a, nn, col);
19 return nn;

AdNebr(Node∗ a, NbrClctr∗ nn, bool nt) ⊳ nt (Neighbor-type):col or rep.
20 while true do
21 nbr := (nt == col) ? nn⋅col : report(nn);
22 if nn⋅isAct and !IsFinish(nbr) then
23 ⟨dst, nb⟩ := NearNbr(a, nn);
24 if nb = null then return dst;
25 if nt = col then res := CAS(nn⋅col.ref , nbr, nb);
26 else res := CAS(report(nn).ref , nbr, nb);
27 if res then return dst;
28 else return 0;

Algorithm 5.5. LFkD-tree: NNSEARCH with coinciding target points

The operation NNSEARCH, line 1 to 5, starts with calling the method Seek,
line 2, to perform the initial query to arrive at a leaf-node. If the pointer to

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 133

leaf-node a is free of descriptor mark, which indicates that the node pointed
by a is not logically removed, and if the query key k matches at the leaf-node,
which is checked by the distance between k and the key at the leaf-node, k itself
is the nearest neighbour available in the dataset and NNSEARCH returns, line 5.
Otherwise, NNSEARCH calls the method NNSync, which performs further steps
and returns the nearest neighbour, line 4. The arrays hi and lo are used to support
non-recursive traversal, described in the subsection (D). NNSync and methods
called subsequently are described here.

The method NNSync, line 6 to 15, starts with checking whether ncp points
to an active neighbour-collector, and if it does not, it allocates a new active
neighbour-collector and attempts a CAS to modify ncp to point to the new one,
line 10. In case ncp was pointing to an active neighbour-collector, we attempt to
update the current best guess of nearest-neighbour as the key in the leaf-node.
On an active neighbour-collector, the method Collect is called to perform a
coordinated iterative scan, line 14.

Collect, line 16 to 18, calls the method NextGuess, line 17, to perform
next iteration that can better the current best guess of the nearest neighbour. Be-
fore attempting to add the new guess, contained in a leaf-node, to the neighbour-
collector using the method AdNebr, it is always checked whether the leaf-node
is logically removed by calling the method ChkValid. Please note that, given
a (possibly stale) pointer to a leaf-node, we can not directly check whether it was
logically removed. Therefore, we also supply the pointer to the parent and thus
the method ChkValid, line 41 to line 45, gets the latest pointer to the leaf-node
considering the fact that a new internal-node may get added between the parent
of the leaf-node and the leaf-node to be reported.

AdNebr, line 20 to 28, is called to add a collected or reported neighbour
to an active neighbour-collector. It calls the method NearerNbr, shown in
line 29 to 31, which returns a new neighbour only if the distance of the new
guess is less than the distance of the already collected or reported neighbours to
the neighbour-collector.

After completion of the iterative scan, the method Deactivate is called
by NNSync at line 15. Deactivate, line 46, other than setting the IsAct
to false, also injects a descriptor finish at both the neighbour-pointers of
the neighbour-collector using the method BlockNebr. BlockNebr, line 34
to line 40, performs a CAS to replace a neighbour-pointer with one that has
the descriptor finish over it, see lines 37 and 39. It ensures that each of the
concurrent NNSEARCH operations using same neighbour-collector have same
view of it after linearization. The method IsFinish returns true when called
on a neighbour-pointer with descriptor finish. Thus, AdNebr can not add a
new neighbour in a neighbour-collector if the corresponding pointer is injected

134 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

NearNbr(Node∗ a, NbrClctr∗ nn)
29 distTgt := ∣∣a.k, nn⋅tgt∣∣2; col := nn⋅col; rep := report(nn);
30 if distTgt < col⋅d and distTgt < rep⋅d then
31 return ⟨distTgt, Nebr∗(a, distTgt)⟩
32 else
33 return ⟨distTgt, null ⟩

BlockNebr(NbrClctr∗ nn, bool nt) ⊳ nt (Neighbour-type):col or rep.
34 nbr := (nt == col) ? nn⋅col : report(nn);
35 while !IsFinish(nbr) do
36 if nt = col then
37 CAS(nn⋅col.ref , nbr, Finish(nbr))
38 else
39 CAS(report(nn).ref , nbr, Finish(nbr))
40 nbr := nt == col ? nn⋅col : report(nn);

ChkValid(Node∗ pa, Node∗ a)
41 k := a.k; ch := Child(pa, Dir(pa, k));
42 while Ptr(ch)⋅class ≠ LNode do
43 ch := Ptr(Child(ch, Dir(ch, k)));
44 if IsMark(ch) then return false;
45 return ch == a ? true: false;

Deactivate(NbrClctr∗ nn)
46 BlockNebr(nn, col); nn⋅isAct := false; BlockNebr(nn, rep);

Process(NbrClctr∗ nn)
47 if report(nn)⋅d < nn⋅col⋅d then return A(report(nn));
48 else return A(nn⋅col);

Sync(Node∗ pa, Node∗ a)
49 if ncp⋅isAct then
50 ⟨d, nb⟩ := NearNbr(a, ncp);
51 if nb ≠ null and ChkValid(pa, a) then Report(a, ncp);

52 Report(Node∗ a, NbrClctr∗ nn) {AdNebr(a, nn, rep);}

Algorithm 5.5. LFkD-tree: NNSEARCH with coinciding target points

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 135

with finish, see line 22.
Finally, the method Process, line 47 to 48, is called by NNSync to select

the better candidate between the reported and the collected neighbours of the
target point, which is returned to the caller NNSEARCH to output. Note that, once
a neighbour-collector is deactivated by an NNSEARCH, the method AdNebr
returns 0, line 28. This in turn, immediately terminates the While loop in
Collect at the line 16. Thus, as mentioned in Section 5.1.2, we can observe
that the coordination among the concurrent iterative scans at the same neighbour-
collector helps a delayed NNSEARCH operation to complete faster.

The method Sync, line 49 to 51, is used by an ADD or a CONTAINS after
their completion, see Algorithm 5.2 at lines 9 and 38. Sync is also used by
NNSEARCH in the case a matching key is found, see line 5. It first checks the
active status of the neighbour-collector and then calls the method NearerNbr
to create a neighbour. If the point to be reported is not better than the current best
guess available, NearerNbr returns null and in that case Sync returns without
any change. Otherwise, it checks whether the leaf node with the point to be
reported is logically removed by calling the method ChkValid, and then calls
the method Report, which in turn calls AdNebr to add the reported neighbour,
line 52.

(C) A general case of Concurrent NNSEARCH with multiple distinct tar-
get points

To allow multiple concurrent NNSEARCH with non-coinciding target points to
progress together, we need to have as many active neighbour-collectors as the
number of different target points. Essentially, we need to have a dynamic list
of neighbour-collectors. In this list, before adding a new neighbour-collector,
an NNSEARCH must scan through it so that if there was already an active
neighbour-collector with a matching target point, coordination among the con-
current iterative scans with coinciding target points can be achieved. For each
of the operations in the LFkD-tree to be lock-free, we ensure the lock-freedom
of this list as well. Hence, we augment the LFkD-tree with a single-word CAS
based lock-free list of neighbour-collectors.

The linearization points remain as before: the concurrent NNSEARCH with
coinciding target points share an atomic step during the lifetime of one of them
as their linearization point with some order among themselves.

The pseudo-code of the algorithm is given in the Algorithm 5.6, in which
every method is absolutely same as those in the Algorithm 5.5, except NNSync
and Sync. The list is initialized with two sentinel nodes pointed by tail and
head, with head.nxt set as tail, as given in lines 1 and 2. A new neighbour-

136 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

1 tail := NbrClctr∗(null, false, null, null, null);

2 head := NbrClctr∗(null, false, null, null, tail);

NNSync(Node∗ pa, Node∗ a, double dst, K k, K hi, K lo)
3 nn := null; mode := INIT;
4 retry:
5 while true do
6 p := null; c := head; n := c.nxt;
7 while Ptr(n) ≠ tail do
8 if n = nn and mode = CLEAN then
9 val := Clean(c, nn);

10 if val ≠ null then return val;
11 else goto retry;
12 else if k = n⋅tgt and n⋅isAct then
13 nn := n; mode := COLLECT; break;
14 else {p := c; c := n; n := n.nxt;}
15 if mode = INIT and IsMark(n) then
16 CAS(p.nxt.ref , c, Ptr(n)); goto retry;
17 if mode ≠ CLEAN then
18 ⟨val, mode⟩ := Finalize(pa, a, dst, k, hi, lo, p, c, mode);
19 if val ≠ null then return val;
20 else return Process(nn);

Sync(Node∗ pa, Node∗ a)
21 n := head.nxt;
22 while n ≠ tail do
23 if n⋅isAct then
24 nb := NearNbr(a, n);
25 if nb ≠ null and ChkValid(pa, a) then Report(a, n) ;
26 else break;
27 else n := Ptr(n.nxt);

Algorithm 5.6. LFkD-tree: NNSEARCH with multiple target points

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 137

collector is added to this list at one of the ends only, which is just before the node
pointed by tail. The method of maintaining this list is similar to the lock-free
linked-list of Harris et al. [21], except the fact that no addition happens anywhere
in the middle of the list. Removal of a neighbour-collector, say one pointed
by c, takes two successful CAS steps: first we inject a mark descriptor at the
c.nxt using a CAS and then modify the pointer p.nxt to n with a CAS, if p and n
happened to be the pointers to the predecessor and successor, respectively, of the
neighbour-collector pointed by c.

We use the method Mark to get a word-sized packet of a neighbour-collector-
pointer and the descriptor mark, whereas, the method Ptr masks the descriptor
off such a packet and does not change a neighbour-collector-pointer. Please note
that, earlier we used the same notation mark for an operation descriptor over a
pointer to a LFkD-tree node. However, without any ambiguity, they indicate the
descriptor for the type of pointer in the context. Similarly, the methods Mark
and IsMark are used depending on the context. Adding a neighbour-collector
takes a single successful CAS similar to [21].

The method NNSync, line 3 to 20, as called by NNSEARCH after the initial
query in Algorithm 5.5, starts with traversing the list. We maintain an enum
variable mode that indicates the stages of NNSync. Initially, the mode is INIT.
During the traversal, if an active neighbour-collector with matching target point
is found, the mode is changed to COLLECT and traversal terminates, line 13.
Otherwise, the traversal terminates in the mode INIT itself. On the termination
of the traversal in the mode INIT, it is checked whether the neighbour-collector,
where traversal terminated (in this case c), is already logically removed, line 15,
and if it is, a CAS is attempted to detach it from the list and the traversal is
restarted, line 16.

After that, if the mode is INIT or COLLECT, the method Finalize
is called. Finalize, line 28 to 36, if called in the mode INIT, allocates
a new neighbour-collector by calling the method Allocate, line 37 to 40,
otherwise uses the input neighbour-collector. If Allocate could not add a new
neighbour-collector, it returns null and the entire process restarts from scratch
with a fresh traversal. After successfully adding a new neighbour-collector to
the list or asserting that it needs to use an existing one, Finalize calls the
methods Collect and Deactivate similar to those in Algorithm 5.5. On
deactivating the neighbour-collector, the method Clean is called to remove it
from the list and return the value of the nearest neighbour.

Clean, line 41 to 45, performs the two CAS steps to remove the neighbour-
collector and calls the method Process, line 44, to compute the nearest neigh-
bour. However, if after injecting mark, it could not modify the nxt pointer
of the predecessor, it returns null, which again causes a fresh traversal in the

138 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

mode CLEAN in Finalize. A traversal in mode CLEAN, if finds the de-
activated neighbour-collector, calls the method Clean, line 10, to redo the
remaining steps and return the nearest neighbour. If the traversal terminates
in the mode CLEAN, that implies that a concurrent NNSEARCH would have
detached the deactivated neighbour-collector and therefore Process is called
to finish, line 20.

Finalize(Node∗ pa, Node∗ a, double dst, K k, K hi, K lo, NbrClctr∗ p, NbrClctr∗
c, enum md)

28 if md = COLLECT then nn := c; pre := p;
29 else if md = INIT then
30 nn := Allocate(a, dst, k, c); pre := c;
31 if nn ≠ null then mode := COLLECT;
32 if md = COLLECT then
33 nn := Collect(pa, a, dst, k, hi, lo, nn,);
34 Deactivate(nn); md := CLEAN;
35 if (val := Clean(pre, nn)) ≠ null then
36 return ⟨val, md⟩;

Allocate(Node∗ a, double dst, K k, NbrClctr∗ c)
37 cNb := Nebr∗(a, dst);
38 nn := NbrClctr∗(k, true, cNb, cNb, tail);
39 if CAS(c.ref , on, nn) then return nn;
40 else return null;

Clean(NbrClctr∗ pre, NbrClctr∗ nn)
41 nxt := nn.nxt;
42 while !IsMark(nxt) do
43 CAS(nn.nxt.ref , nxt, Mark(nxt)); nxt := nn.nxt;
44 if CAS(pre.nxt.ref , nn, Ptr(nxt)) then return Process(nn);
45 else return null;

Algorithm 5.6. LFkD-tree: NNSEARCH with multiple distinct target
points

(D) The Non-recursive Traversal

The main tool of the non-recursive traversal for the iterative scan is to keep
track of an (orthogonal) axis aligned bounding box (AABB) of the points in
the subtrees, both visited and pruned. An AABB is described by its two corner
points. We use the variables hi and lo throughout the algorithms to represent
the two corner points. Initially, in order to begin the query in the operation
NNSEARCH, the corner points are taken as {∞0}

d and {−∞0}
d, see line 1 in

the Algorithm 5.5, which cover the entire dataset.
The method Seek, line 1 to 7, which is called by NNSEARCH for the initial

5.3. LOCKFREE-KD-TREE: IMPLEMENTATION 139

Seek(Node∗ pa, Node∗ a, K k, K hi, K lo)
1 cD := (a.k[pa⋅i] ¡ pa⋅c) ? L : R;
2 while Ptr(a).lt ≠ null do
3 pa := Ptr(a); cD := Dir(pa, k);
4 a := Child(pa, cD);
5 if cD = L then hi[pa⋅i] := pa⋅c;
6 else lo[pa⋅i] := pa⋅c;
7 return ⟨pa, a⟩;

NextGuess(Node∗ pa, Node∗ a, double dst, K k, K hi, K lo,)
8 cD := (a.k[pa⋅i] ¡ pa⋅c) ? L : R;
9 leafKey := a.k;

10 while pa ≠ root do
11 if cD = L then ntVsted := (pa⋅c≥hi[pa⋅i]);
12 else ntVsted := (pa⋅c≤lo[pa⋅i]);
13 if ∣pa⋅c − k[pa⋅i]∣ < dst and ntVsted then
14 cD := (cD = L ? R : L); a := Child(pa, cD);
15 Seek(pa.ref , a.ref , cD.ref , k, hi)lo;
16 leafKey := a.k;
17 if (leafdst := ∣∣k, leafKey∣∣2) ¡ dst then
18 if !IsMark(a) then
19 dst := leafdst; break;
20 else
21 a := pa; pa := Pr(pa); cD := Dir(pa, leafKey);
22 if cD = L then
23 if pa⋅c > hi[pa⋅i] then hi[pa⋅i] := pa⋅c;
24 else
25 if pa⋅c < lo[pa⋅i] then lo[pa⋅i] := pa⋅c;
26 return ⟨pa, a⟩;

Algorithm 5.7. Non-recursive traversal

query at line 2 in the Algorithm 5.5, starts with the initial AABB as described by
the two arrays hi and lo with their initial values, and performs a query absolutely
similar to the method Search to arrive at a leaf-node. At the termination of
Seek, the arrays AABB represent the bounding box that covers every data-point
that can be in the sub-tree of the parent of the leaf-node, where it terminates,
which has the same direction as the leaf-node with respect to its parent. We
follow the convention that an array is always passed by reference and therefore
any modification at any element in a method call persists even after the return of
the method call. Thus, at the return of Seek, if the query point did not match at
the key of the leaf-node, we go to perform further iterations using the method
NextGuess with the current bounding box which represents the rectangular
region of the Euclidean space that we have covered.

The method NextGuess, line 8 to 26, performs an iteration for a better
guess of the nearest neighbour given the distance of the current guess from the

140 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

target point. We input the pointers to the current leaf-node and its parent along
with the AABB described by its two corners. The first step is to find the direction
of the current sub-tree and then decide whether the other sub-tree of the parent
is visited or not, see lines 8, 11 and 12.

In essence, we check whether the axis-orthogonal hyperplane associated
with the parent node is beyond the AABB. Having done that, we check whether
the unvisited AABB on the other side of the hyperplane should be visited by
checking its distance from the target point and comparing it with the current
distance as input, see line 13. Now, if we need to visit the other sub-tree, the
method Seek is called to perform the query and update AABB, line 15, else we
traverse back to root. When we traverse back to root, the AABB is widened to
cover both sub-tree rooted at an internal node, see lines 23 and 25.

Thus, the method Collect repeatedly calls NextGuess to perform an
iterative scan of the LFkD-tree, see line 17 in algorithm 5.5.

(E) Approximate Nearest Neighbour Search

Practitioners prefer better query latency at the cost of exact solution in various
applications that require a nearest neighbour search, which is commonly known
as approximate-Nearest Neighbour (ANN) [11, 22–24]. Consider a target point
q={qi}

d
i=1 ∈ Rd of the NNS, given ε > 0, we say that a point k∗ is the (1+ε)-ANN

of q if

dist(k∗, q) ≤ (1 + ε)dist(k, q),

where k is the true nearest neighbour to q.
Generally, in a hierarchical multidimensional data structure like kD-tree,

ANN algorithms relax the pruning criterion so that an NNSEARCH operation
visits lesser number of subsets and thereby it speeds up the performance. Imple-
menting ANN in a concurrent hierarchical multidimensional data structure does
not impact the design-complexity as long as we follow the same consistency
framework.

5.4 Correctness and Lock-freedom
In section (A), we discussed the arguments that determine linearization steps
of NNSEARCH operations when target points are coincident. We also stated
in section (C) that the linearization point of an NNSEARCH operation remains
unchanged even if the target points of the concurrent NNSEARCH operations do
not coincide. Here we list out the linearization points of the operations as the
following:

5.4. CORRECTNESS AND LOCK-FREEDOM 141

Definition 5.1 (Linearization points).

1. For a successful ADD operation, it is at line 33 or line 35 in the method
ChCAS, which is called at line 22 in the method AddNode and which in
turn was called by ADD.

2. For a successful REMOVE operation, it is at line 33 or line 35 in the
method ChCAS, which is called at line 46 in REMOVE.

3. For an unsuccessful ADD and a successful CONTAINS operation it is at
line 4 in the method Search called from these operations.

4. For an unsuccessful CONTAINS and REMOVE operation, it can be either
just after the linearization point of a concurrent REMOVE operation or at
the invocation point of these operations.

5. For a NNSEARCH operation, if it returns a data-point which was con-
tained in a collected-neighbour, the linearization point is at line 3 in
algorithm 5.7 in the method Seek called from the NNSEARCH.

6. For a NNSEARCH operation, if it returns a data-point which was con-
tained in a reported-neighbour, the linearization point is just after the
linearization point of either CONTAINS or ADD that reported the neigh-
bour.

It is easy to observe in the pseudo-codes presented in the chapter that these
linearization points are in between ti(op) and tr(op) for an operation op∈O,
where O={ADD,REMOVE,CONTAINS,NNSEARCH}.

Now with that, given any concurrent execution history H of an implemen-
tation IO, where O⊆{ADD,REMOVE,CONTAINS,NNSEARCH}, we form an
equivalent sequential history S by following the steps as described above. And
thus it remains to be shown that such a sequential history will be consistent.

To do that, we essentially show that the invariants of the LFkD-tree, as stated
in the Section 5.2.1 are maintained, and the sequential specifications as described
in the Section 5.2.2, are satisfied by the consistent operations. Because the
implementation of the lock-free list of neighbour-collectors is orthogonal to the
implementation of the LFkD-tree, we also need to show that the invariants of
the list, as stated in the Section 5.3.3(C), are maintained by the NNSEARCH
operations. Therefore, first we state the invariants and present some observations
and lemmas which help us in that process.

Given a LFkD-tree Υ, let Nd(i, c) be an internal-node and Nd({ki}di=1) be a
leaf node. Υ maintains the following invariants:

142 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

Invariant 5.1. A node Nd({ki}di=1) belongs to the left subtree, if ki<c.

Invariant 5.2. A node Nd({ki}di=1) belongs to the right subtree, if ki≥c.

Invariant 5.3. A node Nd({ki}di=1) belongs to the right subtree, if ki≥c.

A LFkD-tree state Υt that satisfies the invariants 5.1 to 5.3 is called a valid
state. Now, for the list of the neighbour-collectors, we denote a neighbour-
collector by NC({ki}di=1) if the target point that it contains is {ki}

d
i=1. A

neighbour-collector list maintains following invariant:

Invariant 5.4. In the list there can not be two neighbour-collectors NC({ki}di=1)
and NC({ji}di=1) such that ki = ji ∀ i ∶ 1≤i≤d.

To prove that the above invariants are maintained throughout the algorithms,
we present following observations and lemmas.

Observation 5.1. The fields k and i are never changed in a Node.

Observation 5.2. Any link in a LFkD-tree is updated only using a CAS.

Observation 5.3. The sentinel nodes are never removed.

Observation 5.4. The pr pointer of the node root is never dereferenced.

Going through the pseudo-code we can observe that once we allocate a
node, we never call any store step on the fields k and i and any pointer update
is done using a CAS. The choice of keys in the sentinel nodes verifies the third
observation. The pr pointer of an internal node is dereferenced only if a REMOVE
operation on any of its children is called. Thus the observation 5.3, implies the
observation 5.4.

Lemma 5.1. In each call of Dir, line 1, variable Nd(i,c).ref represents a
pointer which is clean and points to an internal-node and thus is not null.

Lemma 5.2. In each call of Child, line 2, pa is clean and points to an
internal-node and thus is not null.

Lemma 5.3. In each call of ChCAS, line 32 to 36, pa is clean and points to
an internal-node, whereas new is clean and points to a leaf-node; thus pa and
a are both not null.

Lemma 5.4. In each call of Search, line 3, pa is clean and points to an
internal-node, whereas a is clean and points to a node (internal or leaf); thus
both are not null.

5.4. CORRECTNESS AND LOCK-FREEDOM 143

Lemma 5.5. In each call of Search, line 3, pa and a satisfy a = pa.lt ∣ pa.rt.

Lemma 5.6. In each call of HelpMrk, line 7, pa is clean and points to an
internal-node, whereas a is clean and points to a leaf-node; thus both are not
null.

Lemma 5.7. In each call of HelpFlg, line 34, ga and pa are clean and
point to two different internal-nodes, whereas sa is eitherpoints to a leaf-node
and thus are not null.

Lemma 5.8. In each call of HelpTag, line 11, ga is clean and points to an
internal-nodes, whereas pl is either ltag or rtag and points to an internal-
node and thus are not null.

Lemma 5.9. In each call of ApndTag, line 13, pa and a are clean. pa points
to an internal-nodes, whereas a points to a leaf-node and thus both are not null.

Lemma 5.10. In each call of ApndFlg, line 27, pa is clean and points to an
internal-node and thus is not null.

Lemma 5.11. A pointer once injected with a descriptor mark, flag, ltag or
rtag is not injected with any descriptor ever after.

The lemma 5.1 to 5.10 provide a base to prove that at no point an imple-
mentation of the presented algorithm faces a segmentation fault due to the
dereferencing of a null pointer during the operations ADD, REMOVE and CON-
TAINS. To prove these lemmas we inspect the pseudo-code in the algorithms 5.2
and 5.3. At each call of the utility methods we find that the inputs to the utility
methods follow the requirements of these lemmas. A listing of the lines of the
pseudo-code containing call of these methods verifies this claim. The statements
of this set of lemmas is what we need to prove the next set of lemmas which
provides the verified base for postconditions of the LFkD-tree operations.

Lemma 5.12. At the termination of Search at line 5,

(a) pa points to an internal-node and is clean.

(b) a points to a leaf-node and can be either clean or mark or flag.

(c) pa and a satisfy a = pa.lt ∣ pa.rt.

(d) a.k[pa⋅i] ≥ pa⋅c Ô⇒ a = pa.rt.

(e) a.k[pa⋅i] < pa⋅c Ô⇒ a = pa.lt.

144 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

Following from the lemmas 5.4 and 5.5, the while loop ensures that the
variable a always points to one of the child-pointers of the node pointed by pa;
this ensures the validity of the lemma 5.12 (a), (b) and (c).

Now, Following the lemma 5.11 shows that the CAS steps are performed
orderly in a REMOVE operation. It is easy to verify that if the CAS steps are
orderly in a REMOVE operation, it does not result into the malformation of the
LFkD-tree. Also, for an ADD operation, because the single CAS that it requires
can not happen over a link with descriptor.

Now, the keys in the sentinel nodes vacuously prove the following lemma 5.13,
which provides base condition for an induction to prove the theorem 5.1.

Lemma 5.13. Initially, the LFkD-tree consisting of the sentinel nodes satisfies
the invariants as stated in Section 5.2.1.

Now we are prepared to prove theorem 5.1. We use induction to prove it.
Using lemma 5.13, when no update has happened, the nodes in the LFkD-tree
satisfy the invariants. It is straightforward to observe that no CONTAINS or
NNSEARCH operation involves a write (CAS) step and therefore they do not
change the state of the LFkD-tree. From lemma 5.12, at the end of every call to
Search, which satisfies the symmetric order of the LFkD-tree, a CAS to ADD
does not violate the invariant 5.1 to 5.3. For a REMOVE operation, after the
CAS to logically removing the node i.e., mark CAS, the order of CAS do not
let any update operation let the node reappear in the LFkD-tree following the
lemma 5.11.

Thus if the state of the LFkD-tree was consistent before the application of
an update operation, it remains so after its linearization. Using induction the
theorem 5.1 follows.

Theorem 5.1. At any time t ≥ 0 the LFkD-tree state Υt is a valid state.

Now considering the neighbour-collector-list, its semantics are absolutely
same as those of Harris’s lock-free linked list [21] and which was further im-
proved my Micheal [25]. A very sophisticated proof of the state change and
thus validity of the list algorithm was provided by Micheal [25]. The invariant
maintained our list, invariant 5.4, can be proved along the same lines and we
skip the detail here. Now, we prove the linearizability of the implementation IM
as given below.

Theorem 5.2. (Correctness) The operations ADD, REMOVE, CONTAINS and
NNSEARCH are linearizable.

Proof. We show that a sequential history S obtained by following the steps: (a)
in an arbitrary historyH append appropriate response (in any arbitrary order) of

5.4. CORRECTNESS AND LOCK-FREEDOM 145

all the operations which have performed their linearization steps as defined in
definition 5.1 to obtain ext(H), (b) drop the invocation steps without a matching
response to obtain complete(ext(H)), and (c) construct S by arranging the
invocation-response pair of operations according to their linearization points, is
consistent.

Let Sn be a sub-history of S that contains the first n complete operations.
Let An be the dataset which was added to the LFkD-tree by the successful ADD
operations in Sn. Let Bn be the dataset which was removed from the LFkD-tree
by the successful REMOVE operations in Sn. Let Cn = An/Bn. We use (strong)
induction on n to show that Sn is consistent ∀ n≥1.

Suppose that Sn is consistent ∀ n ∶ 1≤n≤i. Let the (i + 1)th operation in
Sn be op(k), where k∈Rd. Then for Si+1 we prove the following:

1. Let op(k) be an ADD operation.

(a) Let op(k) returns true. We show that if op1(k) is an ADD operation
such that op1(k) ÐÐ→

Si+1

op(k) and op1(k) returns true then ∃ a

REMOVE operation op2(k) such that op1(k) ÐÐ→
Si+1

op2(k) ÐÐ→
Si+1

op(k) and op2(k) returns true.
Suppose there does not exist such a REMOVE operation. Now, fol-
lowing lemma 5.12, at the termination of Search, line 4 in the
Algorithm 5.2, pa↝a is a leaf-node pointer. Now using the con-
struction of Si and definition 5.1-(1), at the linearization of op, it
performed a successful CAS at the link pa↝a which must have been
clean. Using the same argument op1 also performed a successful
CAS at the link pa↝a which must have been clean.
Now because op1 linearized before op, the set of nodes that the
Search called from op, terminates at, by the consistency of Si op
must find k being the key at that leaf-node. Now unless the link
pa↝a was already injected with the descriptor mark, op would not
have continued beyond the termination of Search and reading the
descriptor at it and thereby returning false. Therefore, there must
have been a REMOVE operation which marked the link pa↝a before
op read and thus it had the linearization point before that of op. This
is a contradiction.

(b) Let op(k) returns false. We show that ∃ an ADD operation op1(k),
which returns true, such that op1(k) ÐÐ→

Si+1

op(k) and ∄ a RE-

MOVE operation op2(k), which returns true, such that op1(k)ÐÐ→
Si+1

op2(k)ÐÐ→
Si+1

op(k).

146 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

Suppose the contrary. Then at the termination of Search, line 4
in the algorithm 5.2, by definition 5.1-(3) the link pa↝a is clean
and a.k = k. But, following (a) as above and the consistency of Si,
there must exist an op1(k) in Si which returns true and that does
not precede an op2(k) which returns true- which contradicts our
assumption.

Now, it is easy to see that after the linearization of an ADD operation that
returns true, the node added by it is reachable from root following the
links and thus that node belongs to the LFkD-tree which in turn implies
that k ∈ Ci+1. Thus, combining this fact with (a) and (b) together, the
mapping definition of ADD is satisfied. Thus, ADD is consistent in Si+1.

2. Let op(k) be a REMOVE operation.

(a) Let op(k) returns true. We show that if op1(k) is a REMOVE oper-
ation, which returns true, such that op1(k) ÐÐ→

Si+1

op(k) then ∃ an

ADD operation op2(k), which returns true, such that op1(k)ÐÐ→
Si+1

op2(k)ÐÐ→
Si+1

op(k).

We use similar argument as given in (1) to prove it.
(b) Let op(k) returns false. We show that one of the following is true:

i. If op1(k) is a REMOVE operation, which returns true, such that
op1(k) ÐÐ→

Si+1

op(k) then ∄ an ADD operation op2(k), which

returns true, such that op1(k)ÐÐ→
Si+1

op2(k)ÐÐ→
Si+1

op(k).

Suppose the contrary is true. Then, because op1(k) return true,
by the construction of Si+1 and the definition of the linearization
point definition 5.1-(2), either a leaf-node does not exist with
key k or the link to it is injected with mark. Now if that is
the case and op also returns true, then there must have been
a link to a leaf-node with key k which was clean. But that
was possible only if an ADD existed before op, which added a
leaf-node with key k. This contradicts our claim.

ii. There ∄ an ADD operation op1(k), which returns true, and
op1(k)ÐÐ→

Si+1

op(k).

We can observe that at the linearization of op(k), the link to the leaf-node
with key k gets injected with mark and thus after that k∉Cn. Combining
this fact with (a) and (b) satisfies the sequential specification of REMOVE.
Thus, REMOVE is consistent in Si+1.

5.4. CORRECTNESS AND LOCK-FREEDOM 147

3. Let op(k) be a CONTAINS operation.

(a) Let op(k) returns true. We show that ∃ an ADD operation op1(k)
such that op1(k) ÐÐ→

Si+1

op(k) and ∄ a REMOVE operation op2(k)

such that op1(k)ÐÐ→
Si+1

op2(k)ÐÐ→
Si+1

op(k).

The arguments are similar to (1)(b) above.
(b) Let op(k) returns false. We show that one of the following is true:

i. If op1(k) is a REMOVE operation, which returns true, such that
op1(k) ÐÐ→

Si+1

op(k) then ∄ an ADD operation op2(k), which

returns true, such that op1(k)ÐÐ→
Si+1

op2(k)ÐÐ→
Si+1

op(k).

ii. There ∄ an ADD operation op1(k), which returns true, and
op1(k)ÐÐ→

Si+1

op(k).

The arguments are similar to (2)(b) above. Combining (3)(a) and
(3)(b), CONTAINS is consistent in Si+1.

4. Let op(k) be a NNSEARCH operation that returns k∗. We show that
(a) there ∃ op1(k

∗
) such that op1(k∗) ÐÐ→

Si+1

op(k) and (b) if there ∃

op1(k
∗∗

), which returns true, where op1 is either ADD or CONTAINS and
∣∣k∗∗, k∣∣2 < ∣∣k∗, k∣∣2 such that op1(k∗∗)ÐÐ→

Si+1

op(k) then there ∃ a RE-

MOVE operation op2(k∗∗), which returns true, such that op1(k∗∗)ÐÐ→
Si+1

op2(k
∗∗

)ÐÐ→
Si+1

op(k).

To prove (a), it is easy to see that if such an ADD did not exist preceding
op then at the linearization of op it can not read a leaf-node containing k∗.
Therefore, (a) is true.

Now, for (b), suppose the contrary is true. Thus, if there did not exist a
REMOVE operation op2 then at the linearization of op, which is either at
the termination of the method Seek called by itself or at the termination
of the method Search called by reporting CONTAINS or at the CAS step
performed by a reporting ADD operation, the leaf-node containing k∗∗

must have been connected by a clean link. But then either opwould have
read the clean link to the leaf-node with k∗∗ or the operation reporting to
it would have done the same. Thus the method Process that is called by
NNSEARCH before its return, by virtue of ∣∣k∗∗, k∣∣2 < ∣∣k∗, k∣∣2, would
have returned k∗∗ which in turn would have been returned as the nearest
neighbour of k by op. Which is a contradiction. Thus, NNSEARCH is
consistent in Si+1.

148 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

By (1) to (4), Si+1 is consistent whenever Sn is consistent ∀n ∶ 1≤n≤i. Therefore,
using (strong) induction, Sn is consistent for every positive integer n.

Theorem 5.3. (Lock-freedom) The LFkD-tree operations ADD, REMOVE, CON-
TAINS and NNSEARCH are lock-free and thus the presented algorithm imple-
ments a lock-free LFkD-tree.

Proof. We take the NNSEARCH operation separately because it also involves
the steps related to the lock-free list. By the description of the algorithm, a
non-faulty thread performing a CONTAINS will always return unless its search
path keeps on getting longer forever. If that happens, an infinite number of ADD
operations would have successfully completed adding new nodes making the
implementation lock-free. So, in the context of ADD, REMOVE and CONTAINS,
it will suffice to prove that the modify operations are lock-free.

Suppose that a process p∈P performs a modify operation op on a valid state
of LFkD-tree Υt and takes infinite steps and no other modify operation completes
after that. Now, if no modify operation completes then Υt remains unchanged
forcing p to retract every time it wants to execute its own modification step on
Υt. This is possible only if every time p finds the injection point of op with
descriptor mark, flag, ltag or rtag. This implies that a REMOVE operation
is pending. It is trivial to observe in the method ADD that if it gets obstructed
by a concurrent REMOVE, then before retrying after recovery from failure, it
helps the pending REMOVE by executing all the remaining steps of that. We
can also observe that whenever two REMOVE operations obstruct each other,
one finishes before the other. It implies that whenever two modify operations
obstruct each other one finishes before the other and so Υt changes. It is contrary
to our assumption. Hence, by contradiction we show that no non-faulty process
shall remain taking infinite steps if no other non-faulty process makes progress
where the executed operation is either ADD or REMOVE.

Now we consider a NNSEARCH with concurrent ADD, REMOVE or CON-
TAINS operations. We consider the case where concurrent NNSEARCH opera-
tions do not necessarily have coinciding target points; this case obviously covers
the case when they do have coinciding target points. We can see that a RE-
MOVE operation does not have to report to a concurrent NNSEARCH operation.
Moreover, an ADD or a CONTAINS operation to perform a reporting, needs
to first traverse through the unordered list and then possibly perform a CAS if
required to report. Now, unless the number of NNSEARCH operations keep on
increasing infinitely, the total length of the unordered list will be finite and thus
the traversal path for an ADD or a CONTAINS operation to report will be finite.
Now, at each neighbour-collector, where the reporting is required, if a CAS to
report fails, that implies that a concurrent CONTAINS or ADD operation succeeds.

5.5. A REAL-LIFE APPLICATION 149

Similarly, when a CAS by a NNSEARCH operation fails, it indicates that a CAS
by a concurrent NNSEARCH operation succeeded. Finally, a CAS to add a new
neighbour-collector only indicates that either a new neighbour-collector by a
concurrent NNSEARCH has been successfully added or a NNSEARCH operation
has terminated. In case of a CAS failure to add a new neighbour-collector, a
NNSEARCH operation always helps a concurrent pending NNSEARCH opera-
tion before reattempting, in case it finds the link with descriptor mark. It shows
that in all cases at least one non-faulty thread succeeds with respect to execute a
NNSEARCH operation concurrent to any other LFkD-tree operation. Thus we
arrive at the theorem 5.3.

This concludes the proof of the presented algorithm.

5.5 A real-life application
Let us consider a web application that provides support for a real-time dynamic
speed dating. The requirements of this application are as the following:

(a) Users join and leave dynamically.

(b) Users respond to a set of 5 multiple choice questions and based on the
response their profile is created as a 5-tuple. A user is indexed by his/her
profile.

(c) Users query for the most similar matching profile concurrently with pro-
files getting adding and removed.

(d) The application aims to utilize the multiple cores of a commonly available
shared memory machine to get speed-up.

(e) In the fully asynchronous setting of the application, the concurrent oper-
ations must return consistent result. Additionally, progress guarantee is
desired, that is, if multiple concurrent threads are assigned to the tasks of
add, remove and similarity match queries by users, the application should
tolerate any number of individual threads getting faulty.

We face many similar instances in our day-to-day experience with web based
software. Given a 5-tuple a={ai}5i=1 representing the profile of a user querying
similarity match, the problem here is to find the profile of a user, represented
by b={bi}5i=1, such that d(a, b)≤d(a, k) ∀ k={ki}5i=1, where d() is a real-valued
metric and k represents a 5-tuple corresponding to an active user. The problem
becomes challenging for the dynamic nature of the application. Furthermore,

150 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

desiring speed-up along with consistency and progress guarantee broadens the
challenge.

Although the above problem statement is hypothetical but to our surprise we
found that the sequential kD-tree used for throughput comparison in this work
is perhaps being used in a similar web application as mentioned here http:
//home.wlu.edu/˜levys/software/kd/. This clearly motivates our
work which can most certainly speed up such an application with a provable
progress guarantee.

5.6 Experimental Evaluation

5.6.1 Experimental Setup
We implemented the LFkD-tree algorithm in Java using RTTI. We used the
library objects AtomicReferenceFieldUpdater to perform CAS. The
test environment comprised a dual-socket server with a 2.0GHz Intel (R) Xeon
(R) E5-2650 with 8 physical cores each (32 hardware threads in total with hyper-
threading enabled). The server has 64 GB of RAM, runs Ubuntu 13.04 Linux
(Kernel version: 3.8.0-35-generic x86 64) with Java HotSpot (TM) 64-Bit Server
VM (build 25.60-b23), and we compiled all the implementations with javac
version 1.8.0 60.

For experimental evaluation, in addition to our designs, we considered two
other implementations that support NNSEARCH. The implementations in the
evaluation are:

1. Levy-Kd: An implementation of kD-tree of [26] by Levy [27] that supports
REMOVE operations (we could not find any other Java implementation of
a kD-tree with REMOVE). To allow for concurrent access, we augmented
the implementation with coarse-grained ReadWrite† lock.

2. LFKD: Our implementation of the LFkD-tree with NNSEARCH.

3. A-LFKD: Our implementation of the LFkD-tree with approximate-NNSEARCH
(ε = 2).

4. PH-tree: A multi-dimensional storage and indexing data structure by
Zäschke et al. [14] that supports REMOVE operations. Similar to Levy-Kd,
we add coarse-grained ReadWrite lock to allow for concurrency.

†A ReadWriteLock consists of a pair of locks: read lock may be held by multiple readers as long
as the write lock is free, write lock is exclusive)

http://home.wlu.edu/~levys/software/kd/
http://home.wlu.edu/~levys/software/kd/

5.6. EXPERIMENTAL EVALUATION 151

We run each test for 5 seconds and measured throughput as the total number
of operations per microsecond executed by all threads in this time duration.
We run each experiment in a separate instance of the JVM, starting off with a
2-second “warm-up” period to allow the Java HotSpot compiler to initialize and
optimize the running code. During this warm-up phase, we performed random
Add, Remove and Contains operations, and then flushed the tree.At the start of
each execution, the data structure is pre-filled with keys in the selected key-range.

To simulate the variation in contention and tree structure, we chose following
combination of workload configurations: i) dataset space dimension ∈ {2,3,4,5},
ii) distribution of (ADD-REMOVE-NNSEARCH) ∈ {(05,05,90), (25,25,50),
(40,40,20)}, and iii) number of threads ∈ {1,2,4,8,16,32}.

We did not include CONTAINS operations in experiment because essentially
it would increase the proportion of exact-match NNSEARCH. All executions use
the same set of randomly generated points for the selected workload characteris-
tics. The graphs present average of throughput over 6 runs of each experiment.

5.6.2 Datasets

We performed evaluation using a 2D real-world dataset and a set of synthetic
benchmarks. For the real-world dataset, we used the United States Census
Bureau 2010 TIGER/Line KML [28] dataset that consists of polylines describing
map features of the United States of America. TIGER/Line is a standard dataset
used for benchmarking spatial databases. For this evaluation, we extracted points
representing the mainland, resulting in 18.4 ∗ 106 unique 2-d points, with x-y
coordinates that lie between -124.85 ⩽ x ⩽ -66.89 and 24.40 ⩽ y ⩽ 49.38.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
X

Y

SKEWED (1)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
X

Y

SKEWED (3)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
X

Y

SKEWED (6)

0.00 0.25 0.50 0.75 1.00
X

Y

CLUSTER

(a) (b) (c) (d)

Figure 5.4: Synthetic dataset.

To investigate more variable workloads, two synthetic datasets were utilized.
The SKEWED data simulates datasets in which different dimensions may have
varying distributions. The SKEWED(α) dataset contains uniformly distributed
points which fall within 0.0 and 1.0 in every dimension that have been skewed
in the y-dimension. For each point in the dataset, the y value is replaced with

152 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

the value yα, for example in the 2-dimension case, each point (x, y) is replaced
with (x, yα). In the fig. 5.4(a), we show examples for SKEWED(1) which is
intuitively uniform distribution in all dimensions. SKEWED(3) and SKEWED(6)
are shown in the fig. 5.4(b) and fig. 5.4(c), respectively .

The CLUSTER dataset [14] is an extension of a synthetic dataset previously
described by Arge et al. [29]. In this evaluation we used clusters of 1000
points evenly spaced on a horizontal line. Each of the clusters is filled with
evenly distributed points and stretches 0.00001 in every dimension. Figure 5.4(d)
depicts an example of the CLUSTER dataset with 49 points per cluster. The line
of clusters falls within (0.0, 1.0) along the x-axis and is parallel to every other
dimensional axis with a 0.5 offset.

5.6.3 Observations and Discussion
The Figures 5.5, 5.6 and 5.7 show the performance of the implementations for
TIGER/Line, SKEWED and CLUSTER datasets respectively. In Figure 5.6 and
5.7, each row represents a combination of the range of the number of unique
keys (k=N, N being the maximum) and the associated workload distribution
while each column the dimensionality of key (d=dimension).

5−5−90 25−25−50 40−40−20

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

Number of threads (2
x
)

T
h

ro
u

g
h

p
u

t(
M

o
p

s
/s

)

A−LFKD LFKD Levy−Kd Ph−tree

Figure 5.5: Performance on the 2-D TIGER/Line dataset.

In all of experiments, LFKD and A-LFKD have better throughput perfor-
mance(in million operations per second) compared to both the PH-tree and the
Levy-Kd, even in single thread cases, for all workload distributions. The perfor-
mance significantly scales up with increasing thread count. This shows that our
implementation is both lightweight and scalable. As we increase the key dimen-
sion, the performance degrades for workloads dominated by the NNSEARCH.
This degradation with increasing key dimensions is expected in kD-trees due
to the curse of dimensionality [1]. This performance pattern is identical for
different key ranges. However, the LFKD still achieve speed-up over the single
threaded implementations.

5.6. EXPERIMENTAL EVALUATION 153

2 3 4 5

5
−

5
−

9
0

k
=

2
1
8

2
5
−

2
5
−

5
0

k
=

2
1
8

4
0
−

4
0
−

2
0

k
=

2
1
8

5
−

5
−

9
0

k
=

2
2
0

2
5
−

2
5
−

5
0

k
=

2
2
0

4
0
−

4
0
−

2
0

k
=

2
2
0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0

1

2

Number of threads (2
x
)

T
h
ro

u
g
h
p
u
t(

M
o
p
s
/s

)

A−LFKD LFKD Levy−Kd Ph−tree

Figure 5.6: Performance on the SKEWED(6) dataset.

154 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

2 3 4 5

5
−

5
−

9
0

k
=

2
1
8

2
5
−

2
5
−

5
0

k
=

2
1
8

4
0
−

4
0
−

2
0

k
=

2
1
8

5
−

5
−

9
0

k
=

2
2
0

2
5
−

2
5
−

5
0

k
=

2
2
0

4
0
−

4
0
−

2
0

k
=

2
2
0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0

1

2

Number of threads (2
x
)

T
h
ro

u
g
h
p
u
t(

M
o
p
s
/s

)

A−LFKD LFKD Levy−Kd Ph−tree

Figure 5.7: Performance on the CLUSTER dataset.

5.6. EXPERIMENTAL EVALUATION 155

We further observe that, as expected, A-LFKD outperforms LFKD in NNSEARCH
dominated workload, the performance benefit increases with increasing dimen-
sionality of the data set that brings the increased load of iterative scan. This can
be explained by early termination of the iterative scan in the A-NNSEARCH
in A-LFKD which prunes parts of the tree with are otherwise traversed by the
NNSEARCH in LFKD.

For the TIGER/Line dataset, in a single thread case, both LFKD and LFKD(SC)
perform at least 2.5× better than Levy-Kd, and, it goes up to 19× in the
NNSEARCH dominated workload. Additionally, the PH-tree outperforms the
Levy-Kd only for workloads that do not involve NNSEARCH (00% NNSEARCH,
50% ADD and 50% REMOVE).

We observe that for NNSEARCH dominated workload (90% NNSEARCH,
5% ADD and 5% REMOVE), the A-LFKD achieves speed-ups up to 66× for
SKEWED and up to 150× for CLUSTER datasets over the sequential imple-
mentations. These observations can be partially attributed to the local-midpoint
rule, which carries the essence of the sliding-midpoint-splitting rule of [10] that
targets the extreme cases such as a CLUSTER dataset, to a concurrent setting.

2 3 4 5

5
−

5
−

9
0

2
5

−
2

5
−

5
0

4
0

−
4

0
−

2
0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

Number of threads (2
x
)

T
h
ro

u
g
h
p
u
t(

M
o
p
s
/s

)

Levy−Kd Levy−Kd(RL) Ph−tree Ph−tree(RL)

Figure 5.8: System throughput for different lock implementations.

For a mixed workload (50% NNSEARCH, 25% ADD and 25% REMOVE), the
performance of LFkD-tree degrades by increasing key dimension. The absolute
throughput figures are higher for the NNSEARCH dominated workload in lower
dimensions than in mixed workloads. This is because the modify operations incur

156 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

higher synchronization (conflicts, expensive atomic operations, and helping)
overhead. However in higher dimensions, the throughput of the NNSEARCH is
lower as the number of visited nodes increases tremendously with dimension.

Figure 5.8 depicts the performance of implementations augmented with the
course-grained locks. In the figure, implementations with (RL) are augmented
with Reentrant Locks while the others are implemented with ReentrantReadWrite
locks. As expected, ReentrantReadWrite locks perform significantly better for
read dominated workloads, and comparably for write dominated workloads. This
result further highlights that even for lock-based implementations, choice of lock
has a significant impact on the performance of the implementation.

5.7 Conclusion and Future Work
For a large number of applications, which require a multidimensional data
structure supporting dynamic modifications along with nearest neighbour search,
research community has largely focused on improving the design of sequential
data structures. Parallel implementations of the sequential designs speed up
loading of and NNS on a fully loaded data structure. Thus, they do not address
the issue of dynamic modifications in the datasets. On the other hand, the
concurrent data structure research is primarily confined to one-dimensional
problems.

Our work is the first to extend the concurrent data structures to problems
covering multidimensional datasets. We introduced LFkD-tree, a lock-free de-
sign of kD-tree, which supports linearizable nearest neighbour search operations
with concurrent dynamic addition and removal of data. We provided a sample
implementation which shows that the LFkD-tree algorithm is highly scalable.

Our method to implement linearizable nearest neighbour search is generic
and can be adapted to other multidimensional data structures. We plan to design
lock-free data structures which are suitable for nearest neighbour search in high
dimensions, for example, the ball-tree [30]. We also plan to extend our work to
k-nearest neighbour (kNN) search.

Bibliography
[1] Hanan Samet, Foundations of multidimensional and metric data structures, Morgan

Kaufmann, 2006.

[2] Maurice Herlihy and Jeannette M. Wing, “Linearizability: A correctness condi-
tion for concurrent objects,” ACM Transactions on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, 1990.

BIBLIOGRAPHY 157

[3] Håkan Sundell and Philippas Tsigas, “Fast and lock-free concurrent priority queues
for multi-thread systems,” Journal of Parallel and Distributed Computing, vol. 65,
no. 5, pp. 609–627, 2005.

[4] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel, “Non-
blocking binary search trees,” in Proceedings of the ACM Symposium on Principles
of Distributed Computing. 2010, pp. 131–140, ACM.

[5] Shane V. Howley and Jeremy Jones, “A non-blocking internal binary search tree,” in
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures.
2012, pp. 161–171, ACM.

[6] Aravind Natarajan and Neeraj Mittal, “Fast concurrent lock-free binary search trees,”
in Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 2014, pp. 317–328, ACM.

[7] Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas, “Efficient lock-free binary
search trees,” in Proceedings of the ACM Symposium on Principles of Distributed
Computing. 2014, pp. 322–331, ACM.

[8] Jon Louis Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[9] Jerome H. Friedman, Jon Louis Bentley, and Raphael A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” Transactions on Mathematical
Software, vol. 3, no. 3, pp. 209–226, 1977.

[10] David M Mount and Sunil Arya, “Ann: a library for approximate nearest neighbor
searching,” http://www.cs.umd.edu/˜mount/ANN/, 1998.

[11] Sunil Arya and Ho-Yam Addy Fu, “Expected-case complexity of approximate
nearest neighbor searching,” SIAM Journal on Computing, vol. 32, no. 3, pp.
793–815, 2003.

[12] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo, “Real-time kd-tree construc-
tion on graphics hardware,” ACM Transactions on Graphics, vol. 27, no. 5, pp. 126,
2008.

[13] Jeffrey Ichnowski and Ron Alterovitz, “Scalable multicore motion planning using
lock-free concurrency,” IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1123–
1136, 2014.

[14] Tilmann Zäschke, Christoph Zimmerli, and Moira C. Norrie, “The ph-tree: A
space-efficient storage structure and multi-dimensional index,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data. 2014, pp.
397–408, ACM.

[15] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun, “A practical
concurrent binary search tree,” in Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 2010, pp. 257–268, ACM.

http://www.cs.umd.edu/~mount/ANN/

158 CHAPTER 5. CONCURRENT LINEARIZABLE NEAREST NEIGHBOUR SEARCH

[16] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky,
“Concurrent tries with efficient non-blocking snapshots,” in Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 2012,
pp. 151–160, ACM.

[17] Trevor Brown and Hillel Avni, “Range queries in non-blocking k-ary search trees,”
in Proceedings of the International Conference on Principle of Distributed Systems,
pp. 31–45. Springer, 2012.

[18] Erez Petrank and Shahar Timnat, “Lock-free data-structure iterators,” in Proceed-
ings of the International Symposium on Distributed Computing. 2013, pp. 224–238,
Springer.

[19] Bapi Chatterjee, “Lock-free linearizable 1-dimensional range queries,” in Proceed-
ings of the International Conference on Distributed Computing and Networking.
2017, pp. 9:1–9:10, ACM.

[20] Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, and Philippas Tsigas,
“Efficient and reliable lock-free memory reclamation based on reference counting,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 8, pp. 1173–
1187, 2009.

[21] Timothy L. Harris, “A pragmatic implementation of non-blocking linked-lists,” in
Proceedings of the International Conference on Distributed Computing. 2001, pp.
300–314, Springer.

[22] Marshall Bern, “Approximate closest-point queries in high dimensions,” Informa-
tion Processing Letters, vol. 45, no. 2, pp. 95–99, 1993.

[23] Sunil Arya and David M. Mount, “Approximate nearest neighbor queries in fixed
dimensions,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.
1993, pp. 271–280, Society for Industrial and Applied Mathematics.

[24] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y.
Wu, “An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891–923, 1998.

[25] Maged M. Michael, “High performance dynamic lock-free hash tables and list-
based sets,” in Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures. 2002, pp. 73–82, ACM.

[26] Andrew W. Moore, “Efficient memory-based learning for robot control,” Tech. Rep.
209, University of Cambridge, 1991.

[27] Simon D. Levy, “KDTree,” in edu.wlu.cs.levy.CG.KDTree.
[28] “https://www.census.gov/geo/maps-data/data/tiger.html,” .
[29] Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi, “The priority r-tree: A

practically efficient and worst-case optimal r-tree,” ACM Transactions on Algo-
rithms, vol. 4, no. 1, pp. 9:1–9:30, 2008.

[30] Ting Liu, Andrew W. Moore, and Alexander G. Gray, “New algorithms for efficient
high-dimensional nonparametric classification,” Journal of Machine Learning
Research, vol. 7, no. Jun, pp. 1135–1158, 2006.

https://www.census.gov/geo/maps-data/data/tiger.html

PAPER V

Lazaros Papadopoulos, Dimitrios Soudris, Ivan Walulya and Philippas Tsigas

Customization Methodology for Implementation of
Streaming Aggregation in Embedded Systems

Journal of Systems Architecture - Embedded Systems Design
Vol.: 66–67, pp. 48–60, Elsevier 2016.

6
Customization Methodology for

Implementation of Streaming
Aggregation in Embedded Systems

Abstract
Streaming aggregation is a fundamental operation in the area of stream process-
ing and its implementation provides various challenges. Data flow management
is traditionally performed by high performance computing systems. However,
nowadays there is a trend of implementing streaming operators in low power
embedded devices, due to the fact that they often provide increased performance
per watt in comparison with traditional high performance systems. In this work,
we present a methodology for the customization of streaming aggregation imple-
mented in modern low power embedded devices. The methodology is based on
design space exploration and provides a set of customized implementations that
can be used by developers to perform trade-offs between throughput, latency,
memory and energy consumption. We compare the proposed embedded system
implementations of the streaming aggregation operator with the corresponding
HPC and GPGPU implementations in terms of performance per watt. Our results
show that the implementations based on low power embedded systems provide
up to 54 and 14 times higher performance per watt than the corresponding Intel

161

162 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

Xeon and Radeon HD 6450 implementations, respectively.

6.1 Introduction

Efficient real-time processing of data streams produced by modern intercon-
nected systems is a critical challenge. In the past, low-latency streaming was
mostly associated with network operators and financial institutions. Processing of
millions of events such as phone calls, text messages, data traffic over a network
and extracting useful information is important for guaranteeing high Quality of
Service. Stream processing applications that handle traditional streams of data
were mostly implemented by using Stream Processing Engines (SPEs) running
on high performance computing systems.

However, nowadays digital data come from various sources, such as sensors
from interconnected city infrastructures, mobile cameras and wearable devices.
In the device-driven world of Internet of Things, there is a need in many cases
for processing data on-the-fly, in order to detect events while they are occurring.
This data-in-motion comes in the form of live streams and should be gathered,
processed and analyzed as quickly as possible, as it is produced continuously.
Low-power embedded devices or embedded micro-servers [1] are expected not
only to monitor continuous streams of data, but also to detect patterns through
advanced analytics and enable proactive actions. Applying analytics to these
streams of data before the data is stored for post-event analysis (data-at-rest)
enables new service capabilities and opportunities.

Streaming aggregation is a fundamental operator in the area of stream pro-
cessing. It is used to extract information from data streams through data sum-
marization. Aggregation is the task of summarizing attribute values of subsets
of tuples from one or more streams. A number of tuples are grouped and aggre-
gations are computed on their attributes in real-time fashion. High frequency
trading in stock markets (e.g., continuously calculating the average number of
each stock over a certain time window), real time network monitoring (e.g.,
computing the average network traffic over a time window) are examples of data
stream processing, where streaming aggregation along with other operators is
used to extract information from streams of tuples.

Streaming aggregation performance is affected a lot by the cost of data
transfer. So far, streaming aggregation scenarios have been implemented and
evaluated in various architectures, such as GPUs, Nehalem and Cell processors
[2]. Indeed, there is a trend to utilize low power embedded platforms on running
computational demanding applications in order to achieve high performance per
watt [3] [4] [5] [6].

6.1. INTRODUCTION 163

Modern embedded systems provide different characteristics and features
(such as memory hierarchy, data movement options, OS support, etc.) depending
on the application domain that they target. The impact of each one of these
features on performance and energy consumption of the whole system, when
running a specific application, is often hard to predict at design time. Even if it is
safe to assume in some cases that the utilization of a specific feature will improve
or deteriorate the value of a specific metric in a particular context, it is hard to
quantify the impact without testing. This problem becomes even harder when
developers attempt to improve more than one metric simultaneously. A similar
problem is the porting of an application running on a specific system to another
with different specifications. The application usually need to be customized in the
new platform differently, in order to provide improved performance and energy
efficiency. The typical solution followed by developers is to try to optimize
the implementation of the application on the embedded platform in an ad-hoc
manner, which is a time consuming process that may yield suboptimal results.
Therefore, there is a need for a systematic customization approach: Exploration
can assist the effective tuning of the application and platform design options, in
order to satisfy the design constraints and achieve the optimization goals.

Towards this end, in this work, we propose a semi-automatic step-by-step
exploration methodology for the customization of streaming aggregation imple-
mented in embedded systems. The methodology is based i) on the identification
of the parameters of the streaming aggregation operator that affect the evaluation
metrics and ii) on the identification of the embedded platform specification
features that affect the evaluation metrics when executing streaming aggregation.
These parameters compose a design space. The methodology provides a set of
implementation solutions. For each solution, the application and the platform
parameters have different values. In other words, each customized streaming
aggregation implementation is tuned differently, so it provides different results
for each evaluation metric. Developers can perform trade-offs between metrics,
by selecting different customized implementations. Thus, instead of evaluating
solutions in ad-hoc manner, the proposed approach provides a systematic way to
explore the design space.

The main contributions of this work are summarized as follows:

i. We present a methodology for efficient customization of streaming aggre-
gation implementation in embedded systems.

ii. We show that streaming aggregation implemented on embedded devices
yields significantly higher performance per watt in comparison with corre-
sponding HPC and general purpose GPU (GPGPU) implementations.

Finally, based on the experimental results of the demonstration of the method-

164 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

ology, we draw insightful conclusions on how each one of the application and
platform parameters (i.e., design options) affects each one of the evaluation met-
rics. The methodology is demonstrated in two streaming aggregation scenarios
implemented in four embedded platforms with different specifications: Myriad1,
Myriad2, Freescale I.MX.6 Quad and Exynos 5 octa. The evaluation metrics are
throughput, memory footprint, latency, energy consumption, and scalability.

The rest of the paper is organized as follows. Related work on streaming
aggregation and stream processing on embedded systems is presented in Sec-
tion 2. Section 3 describes the streaming aggregation operator and the design
challenges. The design space and the exploration methodology are presented
in Section 4. Section 5 presents the demonstration of the methodology and in
Section 6 we draw conclusions.

6.2 Related Work

Stream processing on various high-performance architectures has been studied
in the past extensively. Many works focus on the parallelization of stream
processing [7], [8], [9]. They describe how the stream processing operators
should be assigned to partitions to increase parallelism. The authors in [10]
describe another way of improving the performance of streaming aggregation;
they propose lock-free data structures for the implementation of streaming
aggregation on multicore architectures. The evaluation has been conducted on a
6-core Xeon processor, and the results show improved scalability.

With respect to stream processing engines (SPEs), Aurora and Borealis [11]
are among the most well known ones. Several works that focus on the evaluation
of stream processing operators on specific parallel architectures can be found
in the literature. For example, an evaluation on heterogeneous architectures
composed of CPU and a GPU accelerator is presented in [9]. The authors of [2]
evaluate streaming aggregation implementations on Core 2 Quad, Nvidia GTX
GPU and on Cell Broadband Engine architectures. The aggregation model
used in this work is more complex, since it focuses on timestamp-based tuple
processing.

There exists several works that describe the usage of low power embedded
processors to run server workloads. More specifically, many works propose
the integration of low-power ARM processors in servers [3] [4], or present
energy-efficient clusters built with mobile processors [5].

In the area of embedded systems stream processing, several works focus on
compilers that orchestrate parallelism, while they handle resource and timing
constraints efficiently [12]. A programming language for stream processing in

6.3. STREAMING AGGREGATION 165

Figure 6.1: Time-based streaming aggregation scenario phases.

embedded systems has been proposed in [13]. These works are complementary
to ours. The conclusions we drive from this work could assist the implementation
of efficient compilers and development frameworks for stream programming.

Design space exploration in embedded systems is another area related to
the present work. Exploration methodologies have been proposed for tuning at
system architecture level [14], for customization of dynamic data structures [15],
and of dynamic memory management optimization [16]. These customization
approaches are complementary to the one proposed in the present work. Perfor-
mance and energy consumption of streaming aggregation implementation could
improve with effective customization of data structures or the dynamic memory
management of the system.

6.3 Streaming Aggregation
In this Section we provide a description of the streaming aggregation operator
and we analyze the design challenges of implementing a streaming aggregation
scenario on an embedded platform.

6.3.1 Streaming Aggregation description
Streaming aggregation is a very common operator in the area of stream process-
ing. It is used to group a set of inbound tuples and compute aggregations on
their attributes, similarly to the group-by SQL statement. In the context of this
work, we discuss two aggregation scenarios: multiway time-based with sliding
windows and count-based with tumbling windows.

(A) Multiway time-based streaming aggregation

In multiway aggregation, multiple streams of incoming tuples, which are stored
in queues, are combined into one stream, through a merge operator and their
tuples are sorted given their timestamp attribute. It consists of 4 phases, as
presented in Figure 6.1:

1. Add: Incoming tuples are fetched from each input stream.

166 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

2. Merge-Sort: The tuples are merged and sorted, by the merge operator.

3. Update: Each tuple is assigned to the windows that it contributes to.

4. Output: Tuples with the computed aggregated value are forwarded.

During the Add phase tuples from each input stream are fetched and for-
warded to the Merge-Sort phase. Since the incoming tuples are stored in a queue,
they are forwarded in a FIFO manner.

Merge-Sort operation is used to combine streams that were sorted on a given
attribute into a single stream, whose tuples are also ordered on the same attribute.
In the context of this work, the tuples are sorted in timestamp order.

Merge and Sort are tightly coupled operations in streaming aggregation
scenarios since they share the same resource (i.e., the incoming dequeued tuples)
and they can be considered a single primitive operation. Merge-Sort phase
ensures deterministic processing of the incoming tuples. A tuple is ready to be
processed and forwarded to the next phase, if at least one tuple with an equal or
higher timestamp has been received at each input stream.

In the Update phase the windowing operation is taking place and each single
tuple is assigned to the window that it contributes to. In the context of this
work, the aggregated values are computed over sliding windows, which have two
attributes: size and advance. As an example, a window with size 5 time units
and advance 2 time units, covers periods: [0, 5), [2, 7), [4, 9), etc. A tuple with
timestamp 3, would contribute to windows [0, 5) and [2, 7).

In the Output phase, the aggregated value is calculated for all windows
in which no more incoming tuples are expected to contribute (i.e., completed
windows). The deterministic processing of tuples that took place in the earlier
phases (more specifically during the Add and Merge-Sort phases), ensures that
the aggregated value will be calculated only for completed windows. A new
tuple is created for each aggregated value and it is forwarded, as a result of the
aggregation operator.

Multiway time-based streaming aggregation provides pipeline parallelism,
which can be exploited by assigning each phase on a different processing element
(PE). However, performance relies not only on the exploitation of parallelism or
on the computational power that the system provides, but also on the efficient
data transfer between the phases. The sorted tuples of the Merge-Sort phase
are used by the Update phase to be assigned to the windows that each one
contributes to. The Update phase provides to the Output phase information on
the windows in which the last tuples contributed to. Thus, the Output phase
identifies the completed windows and calculates the aggregated value for each
one. The utilization of efficient means of forwarding the information from one

6.3. STREAMING AGGREGATION 167

Partials
Array Mx1

Figure 6.2: Window and partials array data structures used in the count-based
streaming aggregation scenario.

phase to another, affects both performance and energy consumption. The same
applies to the way by which memory accesses on shared data are synchronized.
Other important implementation issues that should be taken into account are the
size of the queues in which the inbound tuples are stored (input queues) and
the memory allocation of both the queues and the data structure in which the
windows are stored.

(B) Count-based streaming aggregation

In count-based aggregation, the window size is determined by the number of
tuples buffered, instead of the time passed. Our case study considers fixed size
windows and aggregation takes place periodically, i.e., when a specific number
of tuples is received. Every time an aggregation is completed, all currently stored
tuples are evicted and the next window is initially empty (tumbling window).

To implement the count-based aggregation scenario, we followed an ap-
proach based on [2]. The time intervals between aggregations are based on the
number of tuples stored in the window and results of a specific window may
depend on results of the previous one. Thus, an extra data structure is needed to
store the partially aggregated results of the last window, which may be used in
the following aggregation.

Figure 6.2, shows the data structures used in the count-based scenario: A
MxN window and the partials array, with 1xM entries. M is the maximum
number of input streams and N is the window width. When it is not possible to
compute the aggregated value of N tuples for a specific input stream before the
current window is forwarded, the partially aggregated result is stored in partials
array. This result is used by the following window to compute the aggregated

168 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

Application Constraints Hardware Constraints

Access to local/global
memory

Cache
configuration

Design Space
Category A:

Data structures and Memory Allocation
Category B:

Data Transfers and Signaling

A1. Windows data structure
allocation

local global

A2. Input queues
allocation

local global

A4. Cache
configuration

shared private

B1. DMA
transfer

yes no

B2. Memory
copy

B4. Low level signaling

busy
waiting

platform-specific
solution

B5. OS-level inter-thread
signaling

semaphores monitors

Programming

OS Bare metal

yes no

Range of
Queue Sizes

Windowing

time-based count-based

Window configuration

size advance yes no

A5. Dynamic memory
allocation

Freelist malloc/free

B3. Device data
accessing method

R/W
buffers

Memory
mapped buffers

yes no

pthread opencl

A3. Evaluated
Queue Sizes

start end

Figure 6.3: Constraints and Design space for streaming aggregation.

value of N tuples for the specific input stream. The output is a single tuple that it
is produced by a query executed in the M aggregated values.

Apparently, count-based streaming aggregation provides data parallelism.
Each window row can be assigned to a different processing element (PE) to
compute the aggregated value of each input stream in parallel. Similarly to the
time-based scenario, data transfer overhead, memory allocation issues and the
window size affect the performance and the energy consumption of the operator.
The embedded systems provide various solutions and each one has different
impact on each evaluation metric. The design options for all the aforemen-
tioned implementation issues compose a design space that it is described in the
following Section.

6.4 Customization Methodology
In this Section, we first present the design space for the streaming aggregation
customization and then we describe the proposed methodology.

6.4.1 Design Space
The design space of the streaming aggregation implementation is presented as a
set of decision trees, grouped into two categories (Figure 6.3):

• Category A consists of decision trees that refer to memory configuration
and allocation. Cache configuration options (private cache for each core or
shared cache for all cores) are depicted in decision tree A4. A5 is related

6.4. CUSTOMIZATION METHODOLOGY 169

Table 6.1: Decision trees or leaves disabled for each application and hardware
constraint.

App./Hw constraint Decision tree/
leaf disabled

Windowing(tuple-based) A2, A3, A5, B4
Window configuration may disable A1(local)
Programming(bare metal) B3 and B5
Programming(pthread) B1, B3, B4
Programming(OpenCL) B1, B2, B4, B5
Cache config.(no) A4
Access to local/global(no) A1, A2

with the dynamic memory allocation that can be based on freelists or in
malloc/free system calls.

• In category B are assigned decision trees related to data movement and
means by which accesses to shared resources are synchronized. The
first three decision trees refer to different ways that data can be copied
from global to local memories, or from one local memory to another
(depending on the embedded system’s memory hierarchy). Decision trees
B4 and B5 are about synchronization between PEs, when accessing shared
buffers. At low level, synchronization can be accomplished by spinning
on shared variables (i.e., busy waiting) or by using other platform specific
solutions. In platforms that run OS and support POSIX threads developers
can utilized semaphores or monitors.

Apparently, not all design options are applicable in any context. Figure 6.3
shows the application and the hardware constraints that affect which decision
trees or leaves are applicable in each specific context. The constraints are used
to prune the decision trees and leaves that yield implementations which do not
adhere to developer’s requirements or they are not supported by the embedded
platform.

Table 6.1 summarizes the design options that are disabled, due to application
and hardware constraints. As an example, if the embedded platform runs an OS,
access to DMA and to low-level signaling mechanisms are most likely handled by
the OS directly, so these design options are not exposed to developers. Window
configuration constraint may force the allocation of the data structures in a
global memory. All constraints are provided manually. Constraints that prune
non-compatible design space options “convert” the platform-independent design
space into platform-dependent. Thus, they make the customization approach
applicable in different contexts and in various embedded platforms.

170 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

Metric2
...
...
...
...
...
...

Application
Constraints

Hardware
Constraints

Remove non-applicable options from
the design space

Exploration for all customized streaming
aggregation implementations

STEP 1:
Design space
exploration

step 1
output:

Throughput, latency, energy, scalability
for each customized implementation

STEP 2:
Identification of
Pareto efficient

implementations

Throughput vs. memory size
Latency vs. energy consumption

Scalability

Customized streaming aggregation implementation

...

Methodology output

Metric1
7.4164
7.4159
7.3562
7.3567
7.3365
7.3336

Q160: A1(loc), A2(loc), …, B4(b.w.)
Q160: A1(loc), A2(loc), …, B4(p.s.)
Q320: A1(loc), A2(loc), …, B4(b.w.)
Q320: A1(loc), A2(loc), …, B4(p.s.)
Q640: A1(loc), A2(loc), …, B4(p.s.)

...
...

Implementations evaluated:

7.25

7.3

7.35

7.4

7.45

40 60 80 100

P1

Metric1 vs. Metric2

P2
P3

P4

M
et

ric
1

Metric2

Input:

METHODOLOGY

EXAMPLE

Figure 6.4: Customization methodology.

After the pruning, valid customized streaming aggregation implementations
are instantiated from the remaining decision tree leaves of the design space. In
other words, the implementations that will finally be explored are the ones that
are produced by combining the remaining leaves to create consistent implementa-
tions. Each one of these combinations is a valid customized solution that should
be evaluated. All combinations of the remaining tree leaves are evaluated by
brute-force exploration.

6.4.2 Methodology description
The exploration methodology consists of two steps and it is presented in Fig-
ure 6.4. The inputs of the methodology are the application and hardware con-
straints. The output is a streaming aggregation implementation with customized
software and hardware parameters.

The first step of the methodology aims at the pruning of the design space and
the implementation of the design space exploration. First, the non-applicable
options are removed from the design space due to the application and hardware
constraints. Then, the streaming aggregation is executed once for each different
combination of the decision tree leaves of the design space. For each customiza-
tion, throughput, latency, memory size, and energy consumption results are
gathered. Scalability is another metric that can be evaluated, in case there is a
relatively large number of PEs available. In the second step, the Pareto efficient
implementations are identified. The trade-offs that can be performed by cus-
tomization of the streaming aggregation on an embedded platform are presented

6.5. DEMONSTRATION OF THE METHODOLOGY 171

Figure 6.5: Myriad1 hardware buffers.

in the form of Pareto curves. Developers can select the implementation that is
most efficient according to the optimization target.

The tool flow that supports the methodology consists of a set of bash shell
scripts that handle the first step of the methodology. For the second phase, the
design space pruning and the exploration are performed automatically, provided
that the hardware constraints are set manually. All performance results are
collected automatically. However, power (which is used to calculate energy
consumption) is measured manually, since it is usually based on platform-specific
hardware instrumentation. Also, the tool flow integrates a script that calculates
the Pareto curve for each requested pair of metrics.

Finally, it is important to state that most design options are normally provided
as functions, macros, or compiler directives from either the platform SDK, or
from the POSIX/OpenCL libraries. Therefore, it should not require significant
programming effort by developers to switch between the design options presented
in Figure 6.3. Although the number of available implementations in some cases
is increased, the systematic methodology we propose guarantees that all Pareto
efficient implementations can be identified.

6.5 Demonstration of the Methodology
In this Section we first provide a short description of the embedded architectures
that we used for demonstration of the methodology. Then, we present the
experimental setup and the evaluation results, which are discussed in the last
subsection.

6.5.1 Platforms description
Myriad embedded processors are designed by Movidius Ltd. [17]. They target
computer vision and data streaming applications. Myriad architectures are
utilized in the context of Project Tango, which aims at the design of mobile
devices capable of creating a 3D model of the environment around them [18].
They belong to the family of low power mobile processors and provide increased
performance per watt [6].

172 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

Myriad1 architecture is designed at 65nm. It integrates 8 VLIW processing
cores named Streaming Hybrid Architecture Vector Engine (SHAVEs) operating
at 180MHz and a LEON3 processor that controls the data flow, handles interrupts,
etc. More technical information about Myriad1 can be found in [19]. A local
DMA engine is available for each SHAVE. Additionally, Myriad1 provides a set
of hardware buffers for direct communication between the SHAVE cores. Each
SHAVE has its own hardware buffer and they are accessed in FIFO manner. The
size of each one is 4x64 bit words. As shown in Figure 6.5, each SHAVE can
push data into the buffer of any other SHAVE and it can read data only from its
own buffer. A SHAVE writes to the tail of another buffer and the owner of the
buffer can read from the head. An interesting feature of the Myriad1 hardware
buffers is the fact that when a SHAVE tries to write to a full FIFO or read from its
own FIFO that happens to be empty, it stalls and enters a low energy mode. We
take advantage of this, in order to propose energy efficient streaming aggregation
implementations on Myriad1 platform.

Myriad2 is designed at 28nm [20]. In contrast to Myriad1, Myriad2 integrates
12 SHAVE cores operating at 504MHz, along with two independent LEON4
processors: LEON-RT targeting job management and LEON-OS suitable for
running RTEMS/Linux, etc. Myriad2 provides a single top-level DMA engine
and the hardware buffers size is 16x64 words.

Regarding the memory specifications, Myriad1 provides 1MB local memory
with unified address space that it is named Connection Matrix (CMX). Each
128KB are directly linked to each SHAVE processor providing local storage
for data and instruction code. Therefore, the CMX memory can be seen as a
group of 8 memory ”slices”, with each slice being connected to each one of
the 8 SHAVEs. Each SHAVE accesses its own CMX slice more efficiently in
comparison with the rest CMX slices. Myriad2 CMX memory is 2MB and each
slice is 128KB. Also, Myriad2 provides 1KB L1 and 256KB L2 cache. Finally,
both platforms provide a global DDR memory of 64MB.

Concerning the memory allocation of the time-based streaming aggregation
data structures, the incoming streams of raw data (produced by sensors, cameras,
etc.) are placed in DDR memory. Each input queue is handled by a different
SHAVE and it is placed in its local slice. Each SHAVE that handles an input
queue fetches chunks of raw data in its own memory slice, by using DMA
transfers. Then, it converts the raw data into tuples and stores them in its own
input queue. The windows are stored in a linked list data structure, which is
allocated in the CMX slice of the SHAVE core that handles the Update phase.
Memory allocation and other implementation details are displayed in Figure 6.6a.
Regarding the count-based aggregation scenario that uses a MxN window, each
one of the M SHAVEs continuously fetches raw data that correspond to N tuples

6.5. DEMONSTRATION OF THE METHODOLOGY 173

t t t

t t t

Number of PEs/Slices

forwarded
tuples

t
t

t t t t

windows to be
removed

windows to be
removed

M
er

ge
-S

or
t

Update

Output

Add
Phase

Legend:
data transfer

Raw data

global DDR

Raw data

PE/Slice 0

PE/Slice N-4

PE/Slice
N-3 PE/Slice N-2

PE/Slice N-1

N:
DMA

DMA

(a) Implementation of time-based aggregation on Myriad

Aggregated
values 1xM

1

M

2 forwarded
tuples

Partials
array

CMX

DDR
or CMX

CMX

(b) Implementation of count-based aggregation on Myriad.

Figure 6.6: Implementation of time-based and count-based streaming aggrega-
tion on Myriad.

from DDR to CMX. However, if N is very large and tuples cannot be stored
and processed in CMX, they are placed and aggregated in DDR. Each SHAVE
computes the aggregated value of N tuples and forwards the result to LEON,
which produces the output tuple that corresponds to the specific window. The
implementation diagram in Figure 6.6b.

Freescale I.MX 6 Quad integrates four ARM Cortex A9 cores that operate
at 1GHz [21]. It belongs to a family of multicore ARM-based platforms that
target single board computers and run Linux-based OS. It provides 1GB RAM
and two cache memory levels. On I.MX.6 the raw data are placed in data files.
Chunks of raw data are fetched in RAM using fread() function. Then, tuples
are created and placed in the input queues to be forwarded to the subsequent
streaming aggregation phases.

Exynos 5 octa is an ARM-based platform that targets mobile computers. It is
designed at 28nm by SAMSUNG and it is based on big.LITTLE architecture [22].
It integrates two ARM clusters: 4 Cortex-A15 and 4 Cortex-A7 cores. Exynos
5 integrates a PowerVR SGX544 GPU that supports OpenCL1.1. It includes 3
processing cores running at 533MHz. The evaluation board integrating Exynos is
the Odroid-XU that provides 2GB DDR3 RAM [23]. In the context of this work,
we used PowerVR GPU to perform aggregation in the count-based streaming

174 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

scenario, implemented in OpenCL.

6.5.2 Experimental Setup
The dataset we used to demonstrate the proposed methodology has been collected
from the online audio distribution platform SoundCloud [24]. It consists of a
subset of approximately 40,000 users that exchanged about 250,000 comments
between 2007 and 2013. The incoming tuples contain the following attributes:
timestamp, user id, song id and comment. The aggregation function forwards
the id of the user with the largest number of comments in each window. In the
time-based aggregation scenario the window is sliding, while in the count-based,
the window is tumbling, so the aggregated value is calculated over the last MxN
tuples.

Table 6.2: Hardware constraints for Myriad1, Myriad2, I.MX.6 Quad and Exynos
for both scenarios.

Time-based aggregation Count-based aggregation

Myriad1 Myriad2 I.MX.6 Myriad1 Myriad2 Exynos

windowing time time time count count count

programming bare metal bare metal pthread bare metal bare metal OpenCL

cache config. no yes no no yes no

memory
local/global yes yes no yes yes yes

The aggregation operator is implemented entirely in C. Throughput is mea-
sured as tuples processed per second, while latency as the timestamp difference
between an output tuple with the aggregated value and the latest input tuple that
produced it. The energy consumption results on I.MX.6 were obtained based on
hardware instrumentation using a Watts Up PRO meter device and following a
setup similar to methods proposed in the literature [25, 26]. In Myriad2 power
was measured though the MV198 power measurement board integrated on Myr-
iad2 evaluation board. In Myriad1 power was estimated, based on moviSim
simulator provided by Movidius MDK. In Exynos it is measured based on power
sensors that are provided by Odroid-XU-e evaluation board [23]. All the values
presented are the average of 10 executions, by elimination of the outliers. Each
single experiment is executed from 30 seconds up to one minute.

The time-based aggregation scenario, which is actually a pipeline, is demon-
strated in Myriad and I.MX.6 Quad platforms. The count-based scenario, that
provides increased data parallelism, is demonstrated in Myriad and in Exynos
embedded GPU. As stated earlier, Myriad1 provides 8 PEs. In time-based ag-

6.5. DEMONSTRATION OF THE METHODOLOGY 175

gregation, each one of the merge-sort, update and output phases is assigned to
a single PE. Each one of the remaining 5 PEs handles a single input queue. In
Myriad2, which integrates 12 PEs, the input queues are 9. In I.MX.6 Quad that
provides 4 PEs, we assigned each phase on single PE and the remaining PE
handles 5 input queues.

The hardware constraints of the evaluation boards are presented in Table 6.2.
The experiments we performed are the following: In the time-based aggregation
scenario, in I.MX.6 we implemented the methodology using a single window
configuration. However, for Myriad1 and Myriad2, we present results for two
different scenarios: in the first one the window configuration (i.e., the window
size and advance values) are set, so that the maximum memory size of the
windows data structure is small enough to fit in the local memory. In the second
experiment, the windows data structure can only fit in the global memory. Thus,
we study how the memory allocation of the windows data structure affects the
evaluation metrics. In the count-based scenario, the aggregation is performed
in parallel by the accelerator of each platform: The SHAVEs in Myriad and the
GPU in Exynos.

The output of the methodology is a set of Pareto points for throughput vs.
memory size and latency vs. energy consumption. In time-based scenario, we
present results for scalability for Myriad1 and Myriad2. The implementations
that are evaluated for scalability are the ones that were found to be Pareto efficient
in latency vs. energy consumption evaluation.

6.5.3 Time-based aggregation results
In the time-based scenario, we evaluate each implementation for a number of
queue sizes. The queue sizes we select are the ones that provide latency below
a fixed threshold. Therefore, we first measure latency for a range queue sizes
and select the size values which provide latency below the threshold. Then, we
proceed to the implementation of the methodology. 48 implementations are
evaluated in Myriad and 4 in I.MX.6 Quad. The number of implementations that
are evaluated can be reduced by selecting a smaller number of queue size values.
(However, in this case fewer Pareto points may be identified).

(A) Demonstration on Myriad1

In the first experiment in Myriad1 the window size and advance values are con-
figured so that the windows data structure can fit in the local memory. Assuming
latency constraint of 144.5usec, the range of queue sizes that we evaluate are
from 32B to 1024B (Figure 6.7a).

176 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

134

136

138

140

142

144

146

148

150

152

16 32 64 128 256 512 1024 2048

(a) Windows list in local mem.

180

185

190

195

200

205

210

215

16 32 64 128 256 512 1024 2048

(b) Windows list in global mem.

Figure 6.7: Latency vs. Queue size on Myriad1.

Table 6.3: Myriad1 Pareto efficient points description. B4(p.s.) (i.e., platform
specific) refers to Myriad hardware buffers.

Pareto Description Pareto Description Pareto Description

P1 A1(l), A2(l), A3(32B), P8 A1(l), A2(l), A3(128B), P15 A1(l), A2(l), A3(128B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(b.w.) A5(fl), B2(yes), B4(b.w.)

P2 A1(l), A2(l), A3(64B), P9 A1(l), A2(l), A3(64B), P16 A1(on), A2(on), A3(256B),
A5(fl), B2(yes), B4(p.s.) A4(fl), B1(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.)

P3 A1(l), A2(l), A3(128B), P10 A1(l), A2(l), A3(64B), P17 A1(l), A2(l), A3(256B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.) A5(fl), B1(yes), B4(p.s.)

P4 A1(l), A2(l), A3(256B), P11 A1(l), A2(l), A3(64B), P18 A1(l), A2(l), A3(128B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B1(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.)

P5 A1(l), A2(l), A3(512B), P12 A1(l), A2(l), A3(32B), P19 A1(l), A2(l), A3(64B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.)

P6 A1(l), A2(l), A3(256B), P13 A1(l), A2(l), A3(32B), P20 A1(l), A2(l), A3(32B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.)

P7 A1(l), A2(l), A3(128B), P14 A1(l), A2(l), A3(64B), P21 A1(l), A2(l), A3(32B),
A5(fl), B1(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(b.w.)

The results for throughput vs. memory evaluation are displayed in Fig-
ure 6.8a. We notice that the Pareto points can be divided in two categories:
The ones with performance lower than 8.0usec/tuple that correspond to imple-
mentations that utilize busy waiting and the rest ones that utilize the Myriad
hardware buffers. (In both axes, the lower the values, the higher the efficiency).
4 Pareto efficient points are identified, which are described in Table 6.3. All
Pareto efficient customized implementations can be used to perform trade-offs
between throughput and memory: throughput can increase up to 1.02% and
maximum memory size can drop up to 11.2% by selecting P4 and P1 solutions
respectively.

Pareto points of latency vs. energy can be grouped into the same categories:
The ones that exploit busy waiting and the rest that utilize hardware buffers.
The later are more efficient both in terms of latency and energy consumption. 8

6.5. DEMONSTRATION OF THE METHODOLOGY 177

6

6.5

7

7.5

8

8.5

9

9.5

10

40 50 60 70 80 90 100

Hardware
buffers

Busy
waiting

32B 128B 512B

64B

256B

1KB

Queue sizes

(a) Throughput vs. memory footprint
(Windows in local memory)

140

140.5

141

141.5

142

142.5

143

143.5

144

144.5

145

4.2 4.3 4.4 4.5 4.6 4.7 4.8

4 5 6

135

140

145

150

155

160

165

Hardware
buffers

Busy
waiting

Smaller Queue size

(b) Latency vs. energy consumption
(Windows in local memory)

122

124

126

128

130

132

134

2 3 4 5

Series1 Series2

Series3 Series4

Series5 Series6

Series7 Series8

3

P5 P6

P8

P10

P12P11

P9

P7

Smaller queue
size

(c) Scalability (Windows in local memory)

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

100 110 120 130 140 150 160

32B 128B 256B
512B 1KB64B

Hardware
buffers

Busy
waiting

(d) Throughput vs. memory footprint
(Windows in global memory)

188

190

192

194

196

198

200

202

204

206

4 4.5 5 5.5 6 6.5

Smaller queue size

Busy
waiting

Hardware
buffers

Queues
in global mem.

(e) Latency vs. energy consumption
(Windows in global memory)

70

75

80

85

90

95

100

105

110

2 3 4 5

Series1 Series2

Series3 Series4

Series5

P17 P18

P20P19

3

Smaller queue
size

P21

(f) Scalability (Windows in global mem-
ory)

Figure 6.8: Evaluation of time-based streaming aggregation implementations on
Myriad1.

Pareto points can be identified that can be used to perform trade-offs between
the aforementioned metrics: up to 2.85% lower latency (P12) and up to 2.6%

178 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

lower energy consumption (P5).
Finally, scalability evaluation of the Pareto points of latency vs. energy is

shown in Figure 6.8c. Throughput remains almost constant for all implemen-
tations or increases with the number of inputs. The only exception is P12, in
which the queues have very small size (32B).

In the second experiment, we assume latency threshold to be 202usec (Fig-
ure 6.7b). We notice in both Figure 6.8d and Figure 6.8e that throughput is
lower and latency higher in comparison with the previous experiment, since
in this one the windows are placed in the global memory. The Pareto efficient
points demonstrated in Figure 6.8d can be used to perform trade-offs between
throughput and memory size (up to 0.5% for throughput by selecting P16 and up
to 5.9% in memory size by selecting P13). In Figure 6.8e, we notice that Pareto
point P21 is the most efficient in terms of latency (4.45% lower in comparison
with P17), while P17 implementation is the most energy efficient (19.3% lower
consumption than P21). In the scalability evaluation of Figure 6.8f, it is shown
that all implementations provide high throughput that it is affected by the number
of inputs only slightly, apart from P21 that utilizes busy-waiting and yields much
lower throughput in comparison with the rest of the implementations.

52

53

54

55

56

57

58

59

16 32 64 128 256 512 1024 2048

(a) Windows list in local mem..

59.5

60

60.5

61

61.5

62

62.5

63

63.5

16 32 64 128 256 512 1024 2048

(b) Windows list in global mem..

Figure 6.9: Latency vs. Queue size on Myriad2.

(B) Demonstration on Myriad2

Figure 6.9a and Figure 6.9b show latency vs. queue sizes on Myriad2 for two
different cache configurations, shared and private (decision tree A4 in Figure 6.3).
We notice that shared cache provides lower latency than private in both cases, up
to 4.2%. Therefore, all implementations that utilize private cache are pruned and
they are not evaluated in step 1 of the methodology.

In the first experiment in Myriad2, the windows data structure is placed in
the local memory. Latency constraint is assumed to be at 55usec and therefore

6.5. DEMONSTRATION OF THE METHODOLOGY 179

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

90 95 100 105 110 115 120 125 130 135

32B Queue sizes

128B

512B

64B

256B

memcpy
dma

(a) Throughput vs. memory footprint
(Windows in local memory)

50

51

52

53

54

55

56

57

58

59

60

9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5

9 10 11

50

51

52

53

54

55

56

57
H

ardw
are

buffers
B

usy w
aiting

Smaller queue size

(b) Latency vs. energy consumption
(Windows in local memory)

400

420

440

460

480

500

520

2 3 4 5 6 7 8 9

Series1 Series2

Series3 Series4

Series5 Series6

3

P6

P8

P10

P7

P9

P11

Smaller queue
size

(c) Scalability (Windows in local memory)

2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

190 195 200 205 210 215 220 225 230 235

32B

64B

128B
256B

512B

memcpy
dma

(d) Throughput vs. memory footprint
(Windows in global memory)

55

56

57

58

59

60

61

62

63

64

9 10 11 12 13 14 15 16 17

`

Smaller queue size

Hardware
buffers

Busy
waiting

(e) Latency vs. energy consumption
(Windows in global memory)

350

370

390

410

430

450

470

2 3 4 5 6 7 8 9

Series1 Series2

Series3 Series4

Series5

3

P16 P17

P19P18

P20

(f) Scalability (Windows in global mem-
ory)

Figure 6.10: Evaluation of time-based streaming aggregation implementations
on Myriad2.

queue sizes from 32B to 512B will be evaluated (Figure 6.9a).
Throughput vs. memory footprint results of the methodology are shown in

180 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

Table 6.4: Myriad2 Pareto efficient points description. B4(p.s.) (i.e., platform
specific) refers to Myriad hardware buffers.

Par. Description Par. Description Par. Description

P1 A1(l), A2(l), A3(32B), P8 A1(l), A2(l), A3(512B), P15 A1(l), A2(l), A3(256B),
A4(s), A5(fl), B2(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(p.s.)

P2 A1(l), A2(l), A3(64B), P9 A1(l), A2(l), A3(128B), P16 A1(l), A2(l), A3(256B),
A4(s), A5(fl), B2(yes), B4(p.s.) A4(s), A5(fl), B1(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(p.s.)

P3 A1(l), A2(l), A3(128B), P10 A1(l), A2(l), A3(64B), P17 A1(l), A2(l), A3(512B),
A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(b.w.) A4(s), A5(fl), B1(y), B4(b.w.)

P4 A1(l), A2(l), A3(256B), P11 A1(l), A2(l), A3(32B), P18 A1(l), A2(l), A3(128B),
A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B1(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(b.w.)

P5 A1(l), A2(l), A3(512B), P12 A1(l), A2(l), A3(32B), P19 A1(l), A2(l), A3(64B),
A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(b.w.)

P6 A1(l), A2(l), A3(512B), P13 A1(l), A2(l), A3(64B), P20 A1(l), A2(l), A3(32B),
A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(b.w.)

P7 A1(l), A2(l), A3(256B), P14 A1(l), A2(l), A3(128B),
A4(s), A5(fl), B1(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(p.s.)

Figure 6.10a. Implementations based on memcpy provide higher performance
than the ones based on dma transfers between the CMX slices. The 5 Pareto
efficient points that are identified provide trade-offs up to 3.7% for throughput
(P5) and up to 22.5% for memory footprint (P1).

Latency vs. energy results are displayed in Figure 6.10b. The Pareto points
can be grouped into 2 categories: the ones that utilize busy waiting synchroniza-
tion scheme and the rest ones that are based on hardware buffers. The 6 Pareto
efficient points can be used to perform trade-offs between latency and energy
(up to 6.37% for latency by selecting implementation P11 and 5.2% for energy
consumption, by selecting P6).

With respect to scalability in Figure 6.10c, we notice that throughput for
all implementations increases up to 6 inputs and then it drops slightly. As in
Myriad1 experiments, implementations with lower queue size tend to provide
lower throughput.

In the second experiment, in which the windows data structure is placed in
global memory due to its increased memory size, latency constraint is set to
62usec (Figure 6.9b) and throughput vs. memory footprint results are presented
in Figure 6.10d. 4 Pareto efficient points have been identified that provide
throughput vs. memory size trade-offs (up to 6.4% for throughput and up to
3.07% for latency). Correspondingly, the 5 Pareto efficient points in latency
vs. energy consumption evaluation displayed in Figure 6.10e can be used for
performing trade-offs, up to 8.59% for latency (P20) and 18% for energy (P16).
Scalability results in Figure 6.10f are slightly different from the ones in the
previous experiment. Implementations scale up to 8 inputs and most of them
tend to provide slightly lower throughput when 9 inputs are used.

6.5. DEMONSTRATION OF THE METHODOLOGY 181

50

60

70

80

90

100

110

120

130

140

150

39 78 156 313 625 1250

(a) Latency vs. Queue size

0

50

100

150

200

250

300

350

400

450

out_cv_fl out_sem_fl out_cv_malloc out_sem_malloc

3

(b) Throughput evaluation

20

25

30

35

40

45

50

55

60

65

300 350 400 450 500 550

(c) Latency vs. energy consumption

Figure 6.11: Evaluation results of time-based streaming aggregation implemen-
tations on I.MX.6 Quad.

(C) Demonstration on I.MX.6 Quad

Few customized implementations exist for I.MX.6, since the operating system
handles many design options. In the I.MX.6 Quad experiment latency thresh-
old has been set to 60usec and a single effective queue size has been found:
156KB (Figure 6.11a). 4 customized implementations have been evaluated and
throughput results are shown in Figure 6.11b, while latency vs. energy results are
displayed in Figure 6.11c. We notice that the most efficient implementation in
terms of both throughput, latency and energy is the one that utilizes semaphores
for synchronization, along with freelist-based memory management.

6.5.4 Count-based aggregation results
In the count-based scenario, we evaluate each implementation for different win-
dow sizes. The selected values are provided to the first step of the methodology.
24 different implementations are evaluated in each platform.

182 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

Local memory – dma

4KB

8KB

16KB

32KB

64KB

128KB

P1, P2, P3: A1(local), B1(yes), B2(no)

Window size

Local memory –
memcpy

global memory

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

(a) Throughput evaluation on Myriad1

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

0
10
20
30
40
50
60
70
80

0.1 0.2 0.3 0.4

P4, P5:
P6:A1(local), B1(yes), B2(no)

A1(local), B1(no), B2(yes)

8KB
Window size

4KB

4KB

global mem - dma

(b) Latency vs. energy consumption on
Myriad1

4KB8KB

16KB

32KB

64KB

128KB

Local memory – DMA

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140

P1-P6: A1(local), A4(shared), B1(yes), B2(no)

global memory

(c) Throughput evaluation on Myriad2

P7-P10: A1(local), A4(shared), B1(yes), B2(no)

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7

0

10

20

30

40

50

0.7 0.75 0.8

4KB
16KB

32KB

64KB

(d) Latency vs. energy consumption on
Myriad2

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

4KB

8KB

16KB
32KB

64KB 128KB

P1

P4
P6

P3

P5

P1, P2, P4, P6:
P3, P5: A1(global), B3(R/W buffers)

P2

A1(local), B3(R/W buffers)

R/W buffers

Memory mapped
buffers

(e) Throughput evaluation on Exynos

0

50

100

150

200

250

300

0 20 40 60 80 100 120

P7

P8 P9 P10
P11 P12

32KB

16KB
8KB

64KB

4KB

128KB

P7, P9:
P8, P10, P11, P12: A1(global), B3(R/W buffers)

A1(local), B3(R/W buffers)

(f) Latency vs. energy consumption on
Exynos

Figure 6.12: Evaluation results of count-based streaming aggregation implemen-
tations.

6.5. DEMONSTRATION OF THE METHODOLOGY 183

0

20

40

60

80

100

120

140

160

180

200

4 8 16 32 64 128 256

Figure 6.13: Latency vs. window size on Myriad2 for count-based streaming
aggregation.

(A) Demonstration on Myriad1

Figure 6.12a shows throughput vs. memory footprint on Myriad1. Implemen-
tations that process tuples in local memory and transfer data from global to
local memory through DMA provide higher throughput. For instance, at 4KB
window size, P1 provides 58% higher throughput than the implementation that
uses memcpy for data transfer.

Latency vs. energy consumption results are presented in Figure 6.12b. We
notice that smaller windows provide lower latency. Also, transferring tuples
in local memories provides lower latency than processing windows in Myriad1
global memory. 3 Pareto points are identified that provide trade-offs between
latency and energy consumption.

(B) Demonstration on Myriad2

In Myriad2, we first evaluate latency vs. window size for two different cache con-
figurations. As shown in Figure 6.13, utilization of shared cache provides slightly
lower latency than private caches (less than 1%). Therefore, implementations
that utilize private caches are pruned and the design space is reduced.

As in Myriad1, implementations that provide higher throughput are the ones
in which tuples are transferred through DMA and processed in local memory.
Figure 6.12c shows that throughput increases up to 59% using the aforemen-
tioned implementation, in comparison with the implementation in which tuples
are processed in global memory, with window size 64KB. Also, we notice that
larger windows provide slightly higher throughput. For instance, increasing
window size from 4KB to 128KB, yields throughput increase about 10% (P1 to

184 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

P6).
Implementations that utilize local memory and DMA transfers provide both

low latency and energy efficiency, as shown in Figure 6.12d. Processing in
global or in local memory affects both latency and energy consumption results.
For instance, tuples in local memory and utilization of DMA with 4KB win-
dow size provides 31.4% lower energy consumption than the corresponding
implementation with tuple processing in global memory.

(C) Demonstration on Exynos 5

Throughput vs. memory footprint results are displayed in Figure 6.12e. Larger
window sizes provide higher throughput. Implementations that utilize R/W
buffers yield higher performance than corresponding implementations with
memory mapped data buffers: up to 21% for 64KB window size.

Regarding latency vs. energy consumption, displayed in Figure 6.12f, 6
Pareto points are identified. Smaller window sizes provide lower latency, but
higher energy consumption, due to the increased rate of data transfers. Utilization
of R/W buffers is more efficient than memory mapped ones, both in terms of
latency and energy consumption. Due to the relatively small buffer size, the
overhead of utilizing R/W buffers is also small.

6.5.5 Performance per watt evaluation
One of the goals of this work is to compare performance per watt of streaming
aggregation mapped on low power embedded platforms with the corresponding
results on an HPC CPU and a GPGPU. In this subsection, we first provide details
on the implementation of the operator on the aforementioned platforms and then
we present the evaluation results.

We implemented the time-based streaming aggregation scenario on an Intel
Xeon E5 CPU with 8 cores operating at 3.4GHz, with 16GB RAM, running
Ubuntu Linux 12.04. Compiler is gcc v.4.9.2 and optimization flag is -O3.
Power consumption was measured through hardware instrumentation and refers
to dynamic CPU Power. Throughput and latency were measured similarly to the
embedded implementations. Data transfer was based on memcpy() operations
and synchronization based on semaphores.

The results are presented on Table 6.5. The values for Myriad1, Myriad2 and
I.MX.6 correspond to the implementation that provides the best results for each
specific metric. To ensure fair comparison, all values for all platforms utilize 5
input queues. Performance per watt is calculated as number of tuples forwarded
per second, per watt.

6.5. DEMONSTRATION OF THE METHODOLOGY 185

Table 6.5: Time-based streaming aggregation: Comparison between latency,
throughput and performance per watt on embedded and Intel Xeon architectures.

Latency (usec) Throughput (t/sec)/watt(t/sec)

Myriad1 140.38 132,622 379,041

Myriad2 39.8 497,154 1,004,766

I.MX.6 58 384,952 446,787

Xeon 15 1,105,221 18,412

In Table 6.5, we notice that in terms of performance, latency on Intel Xeon is
62.3% lower than in Myriad2, while it is 3.8 and 9.3 times lower than in I.MX.6
and Myriad1, respectively. In terms of throughput, Xeon provides more than
two times higher throughput than Myriad2, 2.8 than I.MX.6 and 8.3 times higher
than Myriad1. The high performance of Intel Xeon is related with the higher
computational power it provides and the fact that it operates in much higher
frequency than the embedded architectures. However, in terms of performance
per watt, embedded platforms outperform Intel Xeon. Since they are very low
power, they achieve higher performance watt: 54 times higher in Myriad2, while
in Myriad1 it is 20 times higher. Finally, I.MX.6 provides 24 times higher
performance per watt in comparison with Intel Xeon.

Count-based aggregation scenario was implemented in OpenCL 1.1 and
evaluated in AMD Radeon HD 6450 general purpose GPU [27]. Host run Ubuntu
Linux 12.04 with gcc v.4.9.2. Throughput and latency were measured similarly
to the corresponding embedded implementations, while power consumption is
estimated based on GPU’s specifications. Device data accessing is based on R/W
buffers.

The results are presented in Table 6.6. Embedded platforms provide lower
throughput and higher latency than Radeon GPGPU. However, both Myriad
boards yield higher performance per watt than GPGPU, due to the very low
power that they require. More specifically, Myriad2 provides about 14 higher
performance per watt, while Myriad1 7 times.

6.5.6 Discussion of Experimental Results

In this subsection we summarize the conclusions we draw from the demonstration
of the methodology that is presented in the previous subsections. The trade-offs
we demonstrated in the experimental results can be used to draw conclusions
about the relation between the customization options and the evaluation metrics.

186 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

Table 6.6: Count-based streaming aggregation: Comparison between latency,
throughput and performance per watt on embedded and Radeon HD 6450.

Latency Throughput (Mt/sec)/watt(usec) (Mt/sec)

Myriad1 17.98 151.8 593

Myriad2 3.04 505.4 1286

Exynos 7.5 47.4 7,93

GPGPU 1.94 2576.3 85.87

(A) Time-based streaming aggregation conclusions

Observation 1: Streaming aggregation should be customized differently, not
only between I.MX.6 Quad and Myriad architectures, but also between Myriad1
and Myriad2.

For example, in Myriad1, in the first experiment, in the implementation that
provides the lowest latency, data transfer is based on hardware buffers. On the
contrary, in Myriad2 it is based on busy waiting mechanism. In the implementa-
tion that provides the highest throughput, the queue is 256B in Myriad1, while it
is 512B in Myriad2.

Observation 2: There is a threshold in the queue size, below which latency
is very high. Very large queue sizes may also negatively affect latency.

We notice that in both Myriad and I.MX.6, latency is very high for small
queue sizes, which is due to the high overhead of constantly fetching data for
refiling the queues with new tuples. In these cases, the thread that executes
the merge-sort phase, often finds the queues to be empty. As the queue size
increases latency drops drastically. However, in Myriad1 and Myriad2 exper-
iments, we notice that as the queue size increases, latency tends to increase,
as well (Figure 6.7 and Figure 6.9). The reason is the fact that the larger the
queue, the more cycles it takes to complete a DMA transfer of data from the
DDR to the local memory and start refilling the queue with new tuples. Thus,
the tuples that entered the update phase before a new DMA transfer and exit
the output phase after it, they have higher latency than the rest ones. In contrast
with Myriad, on I.MX.6 we can use much bigger queues, since the available
memory is much larger. However, after a specific queue size, throughput and la-
tency on I.MX.6 do not seem to be significantly affected any more (Figure 6.11a).

Observation 3: Throughput is mainly affected by either the data transfer mech-
anism (in Myriad2) or by the signaling mechanism (in Myriad1).

6.5. DEMONSTRATION OF THE METHODOLOGY 187

In general, in Myriad1 and Myriad2, throughput drops when the queue size
becomes smaller, due to the overhead of the DMA transfers, which is added
more frequently when the queues are small (e.g., Figure 6.8a and Figure 6.10a).
However, latency becomes lower in that case, as stated earlier. In Myriad2,
throughput is mainly determined by whether memcpy or DMA data transfer
mechanism is used. Indeed, data transfer options seem to have major impact on
throughput (Figure 6.10a and Figure 6.10d). On the other hand, in Myriad1 the
utilization of hardware buffer or of busy waiting scheme is the dominant factor
that affects throughput (Figure 6.8a and Figure 6.8d). In Myriad2 signaling
design options have much lower impact in comparison with data transfer options.
On the contrary, in Myriad1, data transfer mechanism has relatively small effect
on throughput in comparison with the signaling mechanism (memcpy however
is slightly more efficient). In I.MX.6, the utilization of freelists to avoid the
frequent system calls improves throughput and latency results. However, the
main factor that improves performance is the utilization of semaphores instead
of monitors (Figure 6.11b).

Observation 4: Latency is affected by the synchronization mechanism. Differ-
ent mechanism should be used in Myriad1 than in Myriad2.

The synchronization mechanism is the main design option that affects latency
and energy in both Myriad architectures. Busy waiting mechanism provides
lower latency in Myriad2 and slightly lower energy consumption. On the con-
trary, the utilization of hardware buffers in Myriad1 is more efficient it terms of
latency. The data transfer mechanism has much lower impact in both architec-
tures in terms of latency and energy.

Observation 5: The frequency by which data movements are performed from
global to local memory affects energy consumption in Myriad. We notice that
larger queue sizes are more energy efficient in both Myriad1 and Myriad2, due
to the lower rate by which data are fetched in the local memory (e.g., Figure 6.8b
and Figure 6.10b). On I.MX.6 Quad, energy consumption is determined mainly
the by synchronization scheme that it is used.

Finally, an interesting observation is the fact that the memory allocation of
the input queues affects neither the performance nor the energy consumption
in Myriad significantly. The reason is the fact that both Myriad architectures
provide cache memory and the rate of cache misses for accessing the queues by
the PE that performs the merge-sort operation is relatively small. On the other
hand, the allocation of the windows data structure in global memory has major
impact in both performance and energy consumption. For instance, in Myriad2,
by allocating the windows data structure in global memory, latency increases

188 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

about 9%, throughput drops by 7% and energy consumption increases by 20%
in comparison with the allocation in local memory.

The above observations can be used to draw more general conclusions on
how the streaming aggregation should be customized on embedded platforms.
When the optimization target is performance, the following considerations should
be taken into account:

• The queue size should be large enough to decrease the rate by which data
transfers are instructed. Frequent small data transfers lower performance.
However, for implementations that are very sensitive to latency, it should
be noted that too large queue sizes may increase latency.

• Window size and advance values affect a lot the maximum size of the
windows data structure and therefore the memory allocation design options
and the performance. Platforms with very small local memory may be not
suitable for implementing streaming aggregation, since they would limit
the window configuration values that can be used, if allocation of the data
structure in global memory is not a option, due to very strict performance
requirements.

• Platform-specific options for efficient communication between cores (such
as the hardware buffers on Myriad) should be evaluated, when the stream-
ing aggregation is implemented at low level. In some cases (such as in
Myriad1) they can provide increased performance.

On the other hand, if the main goal is energy efficiency, the following issues
should be considered:

• The queues should be as large as possible to avoid the energy consumption
overhead of frequent small data transfers.

• For window size and advance values apply the same that are stated earlier:
Window configuration that forces the allocation of the windows data
structure in global memory has negative impact in energy consumption.

• Finally, developers should try to evaluate features that set the PEs in a
low-energy mode when they are forced to wait (such as the hardware
buffers in Myriad1).

(B) Count-based streaming aggregation conclusions

Observation 1: Both throughput and latency in Myriad implementations are
affected by the memory allocation of the processed tuples. In Exynos implemen-
tations, they are mainly affected by the data accessing method by the device.

6.6. CONCLUSION 189

In general, throughput is apparently affected by the window size. Apart from
that, design choices such as the allocation of the window in local memory and
R/W buffers in OpenCL implementations, yield increased throughput.

In contrast with throughput, smaller window sizes provide lower latency.
Implementations in which tuples are processed in local memories in Myriad and
utilize R/W buffers in mobile GPU provide the lowest latency.

Observation 2: Energy consumption is mainly affected by the memory al-
location and the window size.

Energy consumption in Myriad is affected by both the type of memory in
which tuples are processed and the size of the window (Figure 6.12d). In Exynos,
window size has the highest impact in energy (Figure 6.12f). Since the rate of
data transfers is increased when smaller windows are used, energy consumption
is also increased.

To summarize, when the optimization target is performance, DMA transfers
and R/W OpenCL buffers provide higher throughput than the rest of the design
choices. Large windows yield increased throughput, while smaller ones provide
low latency. Finally, window sizes that allow processing in local memory benefit
both performance and energy.

The methodology we propose in this work provides a systematic approach to
the efficient customization of the streaming aggregation on embedded platforms.
Instead of trying to tune the application and hardware parameters arbitrary
to achieve the desired results, the proposed methodology provides a set of
customization solutions from which developers can select the one that is more
suitable according the design constraints.

Finally, it is important to state that the methodology is not fundamentally
limited to streaming aggregation. The design space could be adapted to be
applicable to other streaming operators, as well (such as join, filter, etc.) and to
embedded platforms with various other features. New attributes can be integrated
in the design space for exploration as new decision trees, leaves or categories.
The application and hardware constraints should be updated accordingly to retain
the coherency of the customized implementations.

6.6 Conclusion

We proposed a customization methodology for the implementation of streaming
aggregation in modern embedded devices. The methodology was demonstrated
in 4 different embedded architectures, 2 aggregation scenarios and a real-world

190 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

data set. The customized implementations provided by the methodology can
be utilized by developers to perform trade-offs between several parameters,
taking into consideration the design constraints that are imposed by both the
application requirements and the embedded architecture. In the future, we intend
to extend the design space by integrating more streaming aggregation operators
and evaluate the approach in embedded platforms with various features.

Acknowledgments
This work was partially supported by EXCESS Project (www.excessproject.eu)
under grant agreement 611183. The authors would like to thank Movidius Ltd.
for providing us with Myriad evaluation boards in material transfer to conduct
this research.

Bibliography
[1] “Appliedmicro x-gene2,” in IEEE Hot Chips 26 Symposium (HCS), 2014, pp. 1–24.

[2] Scott Schneidert, Henrique Andrade, Buǧra Gedik, Kun-Lung Wu, and Dimitrios S
Nikolopoulos, “Evaluation of streaming aggregation on parallel hardware architec-
tures,” in Proceedings of the International Conference on Distributed Event-Based
Systems. 2010, pp. 248–257, ACM.

[3] Phillip Stanley-Marbell and Victoria Caparrós Cabezas, “Performance, power, and
thermal analysis of low-power processors for scale-out systems,” in Proceedings of
the International Parallel and Distributed Processing Symposium Workshops. 2011,
pp. 863–870, IEEE.

[4] Karl Fürlinger, Christof Klausecker, and Dieter Kranzlmüller, “Towards energy
efficient parallel computing on consumer electronic devices,” in Information and
Communication on Technology for the Fight against Global Warming, pp. 1–9.
Springer, 2011.

[5] Nikola Rajovic, Alejandro Rico, Nikola Puzovic, Chris Adeniyi-Jones, and Alex
Ramirez, “Tibidabo: Making the case for an arm-based hpc system,” Future
Generation Computer Systems, vol. 36, pp. 322–334, 2014.

[6] Mircea Horea Ionica and David Gregg, “The movidius myriad architecture’s
potential for scientific computing,” IEEE Micro, vol. 35, no. 1, pp. 6–14, 2015.

[7] Cagri Balkesen, Nesime Tatbul, and M. Tamer Özsu, “Adaptive input admission and
management for parallel stream processing,” in Proceedings of the International
Conference on Distributed Event-based Systems. 2013, pp. 15–26, ACM.

[8] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Sori-
ente, and Patrick Valduriez, “Streamcloud: An elastic and scalable data streaming

BIBLIOGRAPHY 191

system,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 12,
pp. 2351–2365, 2012.

[9] Uri Verner, Assaf Schuster, and Mark Silberstein, “Processing data streams with hard
real-time constraints on heterogeneous systems,” in Proceedings of the International
Conference on Supercomputing. 2011, pp. 120–129, ACM.

[10] Daniel Cederman, Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatri-
antafilou, and Philippas Tsigas, “Brief announcement: Concurrent data structures
for efficient streaming aggregation,” in Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures. 2014, pp. 76–78, ACM.

[11] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alexander
Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik, “The
design of the borealis stream processing engine.,” in Conference on Innovative Data
Systems Research, 2005, vol. 5, pp. 277–289.

[12] Yoonseo Choi, Yuan Lin, Nathan Chong, Scott Mahlke, and Trevor Mudge, “Stream
compilation for real-time embedded multicore systems,” in Proceedings of the
IEEE International Symposium on Code Generation and Optimization. 2009, pp.
210–220, IEEE Computer Society.

[13] Ryan R. Newton, Lewis D. Girod, Michael B. Craig, Samuel R. Madden, and
John Gregory Morrisett, “Design and evaluation of a compiler for embedded
stream programs,” in Proceedings of the ACM SIGPLAN-SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems. 2008, pp. 131–140, ACM.

[14] Tony Givargis, Frank Vahid, and Jörg Henkel, “System-level exploration for pareto-
optimal configurations in parameterized systems-on-a-chip,” in Proceedings of the
IEEE International Conference on Computer-aided Design. 2001, pp. 25–30, IEEE
Press.

[15] Christos Baloukas, Jose L. Risco-Martin, David Atienza, Christophe Poucet,
Lazaros Papadopoulos, Stylianos Mamagkakis, Dimitrios Soudris, J. Ignacio Hi-
dalgo, Francky Catthoor, and Juan Lanchares, “Optimization methodology of
dynamic data structures based on genetic algorithms for multimedia embedded
systems,” Journal of Systems and Software, vol. 82, no. 4, pp. 590–602, 2009.

[16] Sotirios Xydis, Alexandros Bartzas, Iraklis Anagnostopoulos, Dimitrios Soudris,
and Kiamal Z. Pekmestzi, “Custom multi-threaded dynamic memory management
for multiprocessor system-on-chip platforms,” in 2010 International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation, 2010, pp.
102–109.

[17] “Movidius Ltd.:,” http://www.movidius.com.

[18] “Project Tango:,” https://www.google.com/atap/project-tango/.

[19] David Moloney, “1tops/w software programmable media processor,” in IEEE Hot
Chips 23 Symposium (HCS), 2011, pp. 1–24.

http://www.movidius.com
https://www.google.com/atap/project-tango/

192 CHAPTER 6. STREAMING AGGREGATION IN EMBEDDED SYSTEMS

[20] Brendan Barry, Cormac Brick, Fergal Connor, David Donohoe, David Moloney,
Richard Richmond, Martin O’Riordan, and Vasile Toma, “Always-on vision pro-
cessing unit for mobile applications,” IEEE Micro, vol. 35, no. 2, pp. 56–66,
2015.

[21] “Freescale i.mx 6 quad application processors for industrial products data manual,”
Tech. Rep., Freescale Semiconductor Inc., 2014.

[22] Hongsuk Chung, Munsik Kang, and Hyun-Duk Cho, “Heterogeneous multi-
processing solution of exynos 5 octa with arm® big. little™ technology,” .

[23] “Hardkernel. Odroid-xu:,” http://www.hardkernel.com/.

[24] “SoundCloud:,” https://www.soundcloud.com.

[25] Nicholas Hunt, Paramjit Singh Sandhu, and Luis Ceze, “Characterizing the perfor-
mance and energy efficiency of lock-free data structures,” in Proceedings of the
Workshop on Interaction Between Compilers and Computer Architectures. 2011, pp.
63–70, IEEE Computer Society.

[26] Karan Singh, Major Bhadauria, and Sally A McKee, “Real time power estimation
and thread scheduling via performance counters,” ACM SIGARCH Computer
Architecture News, vol. 37, no. 2, pp. 46–55, 2009.

[27] “AMD Radeon HD 6450 GPU:,” http://www.amd.com/en-us/
products/graphics/desktop/6000/6450.

http://www.hardkernel.com/
https://www.soundcloud.com
http://www.amd.com/en-us/products/graphics/desktop/6000/6450
http://www.amd.com/en-us/products/graphics/desktop/6000/6450

PAPER VI

Ivan Walulya, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vincenzo
Gulisano, Marina Papatriantalou and Philippas Tsigas

Viper: A Module for Communication-Layer
Determinism and Scaling in Low-Latency Stream

Processing

Future Generation Computer Systems
Vol. 88, pp. 297–30, Elsevier 2018.

7
Viper: A Module for

Communication-Layer Determinism
and Scaling in Low-Latency Stream

Processing

Abstract
Stream Processing Engines (SPEs) process continuous streams of data and
produce results in a real-time fashion, typically through one-at-a-time tuple
analysis. In Fog architectures, the limited resources of the edge devices, enabling
close-to-the-source scalable analysis, demand for computationally- and energy-
efficient SPEs. When looking into the vital SPE processing properties required
from applications, determinism, which ensures consistent results independently
of the way the analysis is parallelized, has a strong position besides scalability in
throughput and low processing latency. SPEs scale in throughput and latency by
relying on shared-nothing parallelism, deploying multiple copies of each operator
to which tuples are distributed based on its semantics. The coordination of the
asynchronous analysis of parallel operators required to enforce determinism is
then carried out by additional dedicated sorting operators. To prevent this costly
coordination from becoming a bottleneck, we introduce the Viper communication

195

196 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

module, which can be integrated in the SPE communication layer and boost the
coordination of the parallel threads analyzing the data. Using Apache Storm
and data extracted from the Linear Road benchmark and a real-world smart
grid system, we show benefits in the throughput, latency and energy efficiency
coming from the utilization of the Viper module.

7.1 Introduction

Data streaming emerged to meet the stringent demands of massive on-line data
analysis in various contexts, such as cloud and edge-computing architectures.
Stream Processing Engines (SPEs) allow programmers to formulate continuous
queries, defined as Directed Acyclic Graphs of interconnected operators, to
process incoming data producing results in a continuous fashion; e.g., Stream-
Cloud [1], Apache Storm and Flink [2, 3] and Saber [4].

In upcoming IoT-based cyber-physical systems, edge and fog devices can
enable close-to-the-source analysis minimizing latency for time-critical applica-
tions and adding high cumulative computational power to the resources available
in existing data centers. To do so, nevertheless, the limited resources of indi-
vidual edge and fog devices demand for computationally and energy efficient
SPEs.

Parallelism in SPEs is key for achieving high-throughput and low latency
processing for large data volumes in evolving cyber-physical infrastructures [5].
The importance of scaling in throughput while keeping low-latency processing
in SPEs is clearly understood, it has also been manifested by work in [1, 6–9].
Pipeline and task parallelism are easily extracted from Directed Acyclic Graphs
with operators or tasks assigned to different processing units. However, with data
parallelization or fission [10–14], careful orchestration of operators’ execution
is required to preserve determinism, which is required to ensure consistent
results independently of the way in which the analysis is parallelized. Data
parallelism involves replicating instances of operators, that work concurrently on
data streams. An operator’s parallel implementation is deterministic if, given the
same sequences of input tuples, the same sequence of output tuples is produced
independently of the tuples’ inter-arrival times or the parallelism degree of the
operator [12, 13, 15, 16].

Previous attempts to guarantee determinism in SPEs under execution of
parallel instances of an operator rely on dedicated merge-sorting operators. These
operators are either added to continuous queries by query compilers [1, 12, 13]
or left for developers to place within their streaming applications in SPEs,
such as Apache Storm [2]. This type of approach is henceforth referred to

7.1. INTRODUCTION 197

as operator-layer determinism in the paper. Minimizing the computational
overhead introduced by such dedicated operators is challenging, especially for
one-at-a-time, fine-grained low latency tuple processing.

We address the issue of guaranteeing determinism in a modular, automated
and efficient way. We start by observing that, commonly in SPEs, each phys-
ical stream is piped from a producer (e.g., an incoming link from a sensor, or
an outgoing link of an operator instance) to its consumer (another operator in-
stance), without coordination or sharing state. Efficient synchronization over
shared memory achieved transparently, is challenging but integral to providing
determinism to application developers without requiring the latter to develop
custom solutions.

Gulisano et al. [15] proposed ScaleGate, a data structure which is customized
to guarantee determinism, and which has been used for aggregate and join op-
erators in shared memory systems. In this paper we build upon ScaleGate
and provide the following contributions: (i) We modularly shift a procedure of
guaranteeing determinism, from the operator-layer to the communication layer
of an SPE, thus relieving application developers from the burden of devising
application-dependent methods. (ii) We design and implement a module, called
Viper, which can be transparently integrated in an SPE communication layer.
Building on ScaleGate, we lift the data-structure’s context into the communica-
tion layer of an SPE architecture. From ScaleGate to Viper, the novelty is on the
transparency provided to the application developer in efficiently guaranteeing
determinism. (iii) We integrate Viper in Apache Storm (as a representative ex-
ample of an SPE) and demonstrate the idea of modularly providing determinism,
while caring for efficiency in parallelism, through an experimental evaluation of
the proposed methodology. For the evaluation, we chose streaming operators
of the Linear Road benchmark [17] and a use-case from a real-world smart grid
system as representative examples of where stream processing in fog and edge
architectures can be far better than processing in the cloud, as also discussed
in [18]. The study clearly shows the throughput, latency and energy-efficiency
benefits induced.

In the paper, we present preliminary concepts in Section 7.2; we describe
our proposal for enforcing determinism at the communication layer (rather than
the operator layer) of an SPE and discuss the advantages of the former as we
introduce the Viper module, in Section 7.3. We show the use of Viper, as an SPE
module, by using Apache Storm as a use case in Section 7.4.1 and we evaluate
the benefits of Viper in Section 7.5. We discuss related work and conclude in
Sections 7.6 and 7.7, respectively.

198 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

7.2 System Model
This section introduces data streaming, parallel and deterministic execution of
continuous queries and the performance metrics to assess the results.

7.2.1 Data Streaming

A stream is defined as an unbounded sequence of tuples t0, t1, . . . sharing the
same schema ⟨ts, A1, . . . ,An⟩. Given a tuple t, t.ts represents its creation
timestamp while A1, . . . ,An are application-related attributes.

Continuous queries (henceforth simply queries) are defined as DAGs of
operators that consume and produce tuples. Operators are distinguished into
stateless or stateful, depending on whether they keep any state that evolves with
the tuples being processed. Stateless operators include Map (to alter the schema
of tuples) and Filter (to discard or route tuples). Stateful operators include
Aggregate (to compute aggregation functions such as sum or average over tuples)
and Join (to match tuples coming from multiple streams). Due to the unbounded
nature of streams, stateful operations are computed over sliding windows, which
can be time-based or tuple-based and are defined by parameters size and advance.
Following the data streaming literature (e.g., [1, 19, 20]), we assume that streams
fed by each data source contain timestamp-sorted tuples. If this is not the case,
sorting mechanisms such as [21] can be leveraged.

The performance of an operator depends on its cost and selectivity. The cost
represents the average time needed to process an input tuple and (optionally)
produce any resulting output tuple. It is thus coupled with the selectivity, which
represents the average number of output tuples produced upon the processing of
one input tuple (e.g., an operator with selectivity 0.5 will produce, on average,
one output tuple each time it processes two input tuples).

To illustrate the aforementioned terms and notions, Figure 7.1A presents a
sample streaming application from the Linear Road benchmark [17]*, where po-
sition reports are forwarded by vehicles traveling on a highway. The application
performs three updates for each incoming report. First, it checks if the report
refers to a vehicle entering, leaving or changing segment. It then updates the
number of vehicles and the tolls of the involved segments. Finally, it notifies the
interested vehicles.

Figure 7.1B presents an example centralized query that implements the
application’s semantics through basic streaming operators. The schema of each
stream is presented on top of the operators. A first Aggregate A1 enriches
each position report with the previous segment observed for the same vehicle.

*Section 7.5 contains a detailed description of the benchmark.

7.2. SYSTEM MODEL 199

Compute and
notify tolls

Count vehicles
per segment

Find vehicles entering
or leaving a segment

Stream of position reports
Streaming application’s
semantics (defined by the
programmer)

Aggregate
A1

Filter
F

Aggregate
A2

Map
M

<ts,id,seg> <ts,id,segA,segB> <ts,seg,count> <ts,seg,toll>
Centralized continuous
query (defined by the
programmer)

M1MA21MF1MA11M

M2MA22MF2MA12M

Parallel continuous query
(compiled by the
Stream Processing Engine)

Syntactic transparency allows for the continuous query to be compiled in its
parallel counterpart with minimal (or no) input from the programmer

A

B

C

Highway
segment

LEGEND

Stream

Operator

M
Merge-sorting
step

Figure 7.1: Streaming application part of the Linear Road benchmark [17],
presented together with a sample centralized continuous query implementing its
semantics and its parallel counterpart.

Subsequently, a Filter F discards reports referring to vehicles that have not
changed segment. Aggregate A2 updates the count for each segment and Map
M computes the toll for a segment, based on the number of vehicles in it, and
notifies vehicles.

7.2.2 Parallelism, determinism and syntactic transparency

A parallel version of a centralized query (such as the sequential one in the
example of Figure 7.1B) is desirable because of two reasons: (i) to cope with
the large and fluctuating volume of data (in this example the position reports
observed in a highway); (ii) to possibly deploy the analysis over a distributed
network of nodes, each responsible for e.g. a subset of segments. The latter
would avoid centralized data gathering and processing, which indeed might
not be feasible because of too high data transmission latency, infrastructure
limitations or privacy legislation, among other reasons.

For a parallel query, deterministic execution should ensure that the results
given by it are exactly the same that would be given by its centralized counter-
part. This is equivalent to the notion of external determinism (or determinacy),
as described in e.g., [22, 23]. As shown in [23], processing systems that are
described as directed graphs of operations guarantee this property on the global
level, if they satisfy determinacy (i) on the operation level and (ii) in the data
flows between communicating operations. This implies that if we have a par-
allel implementation of the query using deterministic processing components
and deterministic flow of the results to downstream operators, then the issue is
addressed. As argued in [1, 24], in the context of query processing in SPEs,
for having global determinism it is sufficient to enforce that (i) splitting streams

200 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

to downstream operator is done according to the semantics of those operators
(e.g. for aggregates, tuples with the same group-by key and same timestamp are
routed along the same outgoing link); and (ii) when merging streams, attention
is paid to order the tuples, so that they provide a single timestamp sorted stream.
For this reason, special merge-sorting (M) operators are defined before each
operator instance fed by a parallel upstream operator, while splitting steps† are
defined after each operator instance feeding a parallel downstream operator; in
Figure 7.1C, we can see an example presenting a parallel version of the sample
centralized query with two instances for each of the example query’s operators.
M merge-sorts deterministically the incoming timestamp-sorted input streams
of an operator instance into a single timestamp-sorted stream of tuples. By
doing this, it allows for the operator instance’s execution to be deterministic
independently of the arrival interleaving of its input streams [1, 24] and degree
of parallelism. A sufficient condition to guarantee deterministic merge-sorting
of multiple incoming streams of tuples is for the M step to ensure that tuples are
forwarded when they are ready. More specifically:

Definition 7.1 (ready tuple [15, 16]). Let tji be the i-th tuple from timestamp-
sorted stream Sj . tji is ready to be processed if tji .ts ≤ mergets, where
mergets =mink{t

k
l .ts} is the minimum timestamp among the timestamps in the

set of tuples comprising the latest received tuples tkl from each timestamp-sorted
stream Sk.

Given Definition 7.1, as soon as a tuple t is ready, so are all other tuples
sharing t’s timestamp. Furthermore, if the latest received tuples tkl from each
timestamp-sorted stream Sk share the same timestamp, all of them are ready. In
general, a tuple becomes ready as soon as another, at least equally timestamped
tuple is available at the other timestamp-sorted streams. Notice that the latency
incurred in becoming ready does not depend on the incoming tuples’ timestamps.
If the order of tuples sharing the same timestamp can potentially affect the
sequence of tuples produced by an operator, this ordering can become unique
by making each timestamp unique. In practice, this can be achieved by having
each data source and operator augmenting each input tuple’s timestamp with the
unique source-id or operator-id and an increasing counter.

Splitting involves routing tuples between an operator instance and its down-
stream operator instances. For example, it guarantees that tuples referring to the
same vehicle are always routed to the same (and unique) operator instance in the
example of Figure 7.1C.

†We use here the term steps rather than operators because, as shown in the following sections,
merge-sorting and splitting can be both assigned to dedicated operators or integrated in the commu-
nication layer of an SPE.

7.3. OPERATOR- VS COMMUNICATION-LAYER DETERMINISM 201

Syntactic transparency allows for the centralized query to be converted
into its parallel counterpart with minimal [2] or possibly no [1] configuration
requested from the programmer. Elastic systems such as [1, 13] can initially
deploy one instance of each operator and later provision and decommission
instances depending on their load. Static systems, on the other hand, rely on the
programmer to define the number of instances of each operator.

7.2.3 Streaming operators’ performance metrics

We refer to streaming operators’ metrics that are commonly used to assess the
performance of a streaming framework (from individual operators to queries
or SPEs). In particular, we focus on throughput, latency [1, 15] and energy
consumption [25]. Throughput, commonly measured in tuples per sec (t/s), rep-
resents the maximum rate at which tuples can be fed to the operators composing
a given query. Latency, commonly measured in msec, is the time between the
forwarding of an output tuple and the timestamp carried by the latest input tuple
contributing to it. Finally, energy consumption measures the average power
consumption (in Watts) incurred by the SPE.

7.3 Operator- vs communication-layer determinism

As we explained in Section 7.1, determinism is typically enforced at the SPE
operator layer. That is, the merge-sorting required to enforce determinism
(cf. Section 7.2) is run by dedicated operators, deployed together with the
operators defined by the application programmer. Alternatively, as we propose,
determinism can be taken care of in the communication layer of an SPE, the one
in charge of buffering operators’ input and output tuples. To introduce layering
for the SPE functionality provisioning, wlog, we consider in the following the
node in Figure 7.2. This node shows the operators F , A2 and M of Figure 7.1B.
Our discussion holds independently of whether other operators are deployed
within the SPE running the query or if more than two instances are defined for
each operator.

7.3.1 Limitations of operator-layer determinism

Here we explain limitations and potential bottlenecks from implementing deter-
minism in the SPE operator-layer, that can be alleviated through provisioning of

202 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

Operator layer

M1A21F1

M2A22F2 A2-M2

A2-M1

M-M2

M-M1

Communication layer

Dedicated merge-sorting operators

Dedicated channel between
each pair of operator instances

Figure 7.2: Parallel query run by an SPE with operator-layer determinism.

determinism in a communication-layer module, as we propose.

Limitation 1. Determinism implemented in the SPE-operator layer implies
more operators to deploy and run at each node.

As discussed in Section 7.2, determinism is typically
achieved by deploying dedicated operators merge-sorting the multiple timestamp-
sorted input streams of each operator instance fed by two or more upstream
operator instances (e.g., input mergers [1] or SUnions [19]). In our example
in Figure 7.2, two instances for such dedicated operator A2-M are defined for
operator A2.

The deployment of dedicated merge-sorting operators in-between the query’s
operators results in a higher number of threads in SPEs such as Storm [2]
or Flink [3] or in scheduling overheads for SPEs with schedulers [1, 26, 27]
ordering operators’ execution, thus degrading throughput and increasing energy
consumption.

Limitation 2. Determinism implemented in the SPE-operator layer implies the
inter-operator overhead per tuple increases.

Dedicated merge-sorting operators rely on dedicated queues that allow for
the pipelining of their data processing with the processing defined by the operator
instance to which they are connected to, as shown in Figure 7.2. The overhead
grows with the increase in operator instances and queues each tuple traverses.
The additional operator instances (and the subsequent traversing of queues)
decrease the overall throughput, increasing the processing latency and the energy
consumed by the node [25]. In our example, each tuple goes through 3 queues
and 3 operator instances to traverse operator A2 from operator F to operator M.

Limitation 3. Determinism implemented in the SPE-operator layer implies that
merge-sorting steps can become a bottleneck.

The maximum throughput of an operator instance can be observed only if its
preceding operator(s) (that is, its upstream operators and the latter’s upstream

7.3. OPERATOR- VS COMMUNICATION-LAYER DETERMINISM 203

peers) are not under-provisioned. If dedicated merge-sorting operators are used,
this implies that the maximum throughput of an operator instance can be achieved
as long as the cost of the merge-sorting itself does not constitute a bottleneck.
Unfortunately, the latter might have a cost comparable to or higher than both
stateful and stateless operators, depending on the latter’s selectivity, as we show
in Section 7.5.

Limitation 4. Determinism implemented in the SPE-operator layer implies that
the parallelism degree of an operator depends on its upstream and downstream
peers.

If we have an overloaded operator Op, parallel instances of operator Op,
may mitigate the processing overhead at A, however resulting in a bottleneck
for upstream operators feeding Op, or for the downstream operators that take
resulting tuples from the parallel instances of Op,. Therefore, a high degree
of parallelism is not always the solution, as it will not only increase compute
resource requirements, but it might also cause degradation on the throughput
and latency. In the example deployment of Figure 7.2, for instance, assume that
the cost of merge-sorting for operator instances A2-M1,A2-M2 is higher than
the processing cost of operator instances A21,A22. In such a case, the degree of
parallelism for operator A2 could be increased to e.g., four instances. By doing
this, each of the four instances of operator A2-M would then be responsible for
the merge-sorting of half of the input tuples. Nevertheless, each instance of the
merge-sorting operator preceding operator M (not shown in the figure) would
now observe a higher cost for the merge-sorting of its input tuples (coming from
four rather than two input streams). Hence, increasing the degree of parallelism
for A2 could overload the merge-sorting of tuples feed to M , thus decreasing,
rather than increasing, the overall throughput of the query to which the two
operators belong to. The critical drawback to this synchronization overhead
is not given by the cost of merge-sorting since this must be paid to enforce
determinism. It is rather to be found in the fact that such cost is assigned to
a specific operator with dedicated input and output queues rather than shared
among multiple operators [15].

Limitation 5. Determinism implemented in the SPE-operator layer implies that
the pipelining of the query’s operators might be limited by the merge-sorting
steps.

A second synchronization overhead depends on how operator instances
are assigned to threads by a given SPE. On one hand, a single thread can
be in charge of the processing of multiple operators instances. SPEs such
Aurora [26], Borealis [27] and StreamCloud [1] define a scheduler thread within

204 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

each node that runs (one at a time) the operator instances associated with the node.
This design decision simplifies the synchronization for the operator instances’
communication since it avoids concurrent access to the shared queues (i.e.,
it does not require locking mechanisms that can affect operator’s throughput
and latency performance). On the downside, it also limits the throughput and
latency performance by having, for each scheduler, exactly one operator instance
running at the time. A different option is to have dedicated threads for each
operator instance, as done in Storm. This might have a higher synchronization
cost because of the concurrent accesses to the shared queues and might also
result in unbalanced work, depending on the cost and selectivity of each operator.
When assigning one thread per operator instance, threads assigned to the query’s
operators might be underutilized when compared with threads assigned to merge-
sorting operators. The optimal mapping of threads to operators is itself complex,
given that it depends on many factors (some of which might change at runtime
in a deployed query) such as the number of input streams to be merge-sorted by
a given operator instance or the cost and selectivity of the latter, among others.

The synchronization overhead (especially when using naive locking mech-
anisms as in [26, 27]) can result in throughput and latency degradation while
unbalanced workload among the threads deployed within one node can poten-
tially result in unnecessary energy consumption, especially if a smaller number
of threads than the ones deployed in a node are sufficient to carry out the latter’s
analysis.

7.3.2 Additional potential benefits from determinism provi-
sioning in the SPE-communication-layer

A basic aim of communication-layer determinism is to avoid the deployment of
merge-sorting operators in between each operator and its upstream peer instances.
As shown in Figure 7.3, this allows for the parallel instances of an operator F to
be directly connected to those of operator A2. Since the merge-sorting would
still need to run to attain determinism, a requirement of communication-layer
determinism is to leverage threads that are already deployed by the SPE and
share the merge-sorting cost rather than assigning them to a dedicated sort
operator, as this would, in turn, result in the previously discussed overheads.
As discussed in [15], communication-layer merge-sorting can be carried out by
multiple threads in a scalable fashion where the cost and the degradation that
merge-sorting itself introduces, in terms of throughput and latency, is minimized
by avoiding coarse-grained locking mechanisms.

7.4. THE VIPER MODULE 205

Operator layer M1A21F1

M2A22F2

Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

Figure 7.3: Parallel query run by an SPE with communication-layer determinism.

7.4 The Viper module

The Viper module enables determinism at communication-layer, thereby coping
with the potential bottlenecks and limitations described above. In a nutshell, it en-
ables determinism by merge-sorting the tuples delivered to an operator instance
when such tuples are delivered by two or more physical streams. This is achieved
transparently (without requiring the application programmer to explicitly place
any merge-sorting operator) at the communication-layer of the SPE, allowing for
the merge-sorting cost to be distributed among the threads delivering the tuples
rather than assigning them to a dedicated thread, as we further explain in the
remainder. Viper provides an API defined by three main methods, as presented
in Table 7.1. A channel is maintained at the communication-layer for any set of
source operator instances S1, . . . , Sm feeding a reader operator instance R (we
use the term channel to refer to the data object used by a set of operator instances
to share information, be it a queue or other buffer object). The channel is either a
thread-safe concurrent queue (when exactly one source S1 and the reader R are
connected) or a ScaleGate [15] object (when at least two source operators S1, S2

and the reader R are connected). ScaleGate allows tuples from different input
streams to be merge-sorted into a single list, assuming that each source delivers
tuples in non-decreasing timestamp order (ScaleGate’s API provides for this
the addTuple(channel, sourceID, tuple) method). Furthermore,
ScaleGate allows the list to be read in timestamp order by an arbitrary num-
ber of readers (method getNextReadyTuple(channel, readerID)),
guaranteeing that only ready tuples (cf. Definition 7.1) will be delivered. The
original ScaleGate is a dynamic data structure with a poll-based API where
sources work independently from readers. Thus, the data structure can grow arbi-
trarily in size, e.g., in cases where the readers are slower than the sources. In this
work, we propose and integrate a flow-control approach using special watermark
tuples [28] internally in the data structure. Such tuples are added periodically
by the sources and allow the readers to acknowledge the consumption rate to
the sources, through a handshake mechanism, so that the latter can limit their
injection rate if the readers are slower.

206 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

Viper allows for the cost of merge-sorting to be shared by the threads assigned
to the parallel instances of an operator which feed the same downstream operator
instance. It also results in a scalable, probabilistically logarithmic merge-sorting
due to its algorithmic implementation (presented in [15]), which is also lock-free,
thus reducing the necessary synchronization overheads [29].

Table 7.1: API of the Viper module

Method Description
void register(channel,
sources, reader)

Register a new channel, specifying which sources
will add tuples to it and which reader will get such
tuples as a timestamp-sorted stream of ready tuples.

void addTuple(channel,
sourceID, tuple)

Add a tuple from a given sourceID to the specified
channel.

tuple
getNextReadyTuple(channel,
readerID)

Retrieve next ready tuple (if any) for the given read-
erID from the specified channel.

7.4.1 Viper as an SPE module: Apache Storm use case
To provide an evaluation on how communication-layer determinism boosts

the intra-node performance of an SPE, we integrated the Viper module in Apache
Storm [2] (henceforth referred to as Storm), one of the most widely used open
source SPEs. In this section, we provide an overview of Storm’s architecture
(focusing on the operator instances deployed within a given node) and discuss its
communication and synchronization overheads, in relation to those introduced
in Section 7.3.1. Subsequently, we present how the Viper module is leveraged
within Storm, discussing why it improves the performance of operators de-
ployed in the same node, complementing the empirical evaluation presented in
Section 7.5.

Storm refers to queries as topologies while it distinguishes operators into
spouts and bolts. The former represent data sources and thus define only one
(or multiple) output streams. The latter are generic operators and define one (or
multiple) input and output streams. When deployed within the same Worker
(an instance of the JVM), the instances of an operator share the same virtual
memory. In this sense, a Worker represents Storm’s counterpart of our node, to
which we refer to in the previous sections.

Storm partially provides deterministic execution and syntactic transparency.
With respect to determinism, Storm allows the programmer to specify a routing
policy (referred to as grouping) for the tuples exchanged between an operator
instance and its downstream peer’s instances. It leaves the merge-sorting task to
the programmer, who must then deploy it using regular operators placed before

7.4. THE VIPER MODULE 207

LEGEND

shared queue

forward thread

route/Forward
tuple

output queue

transfer thread

transfer to shared
queue

input queue

process thread

process tuple

Worker

A2-M1 A2-M2 A21 A22

Tuples from
operator F

Tuples to
operator M

Figure 7.4: Storm Worker with two instances of the A2 operator (and the
instances of its merge-sorting operator A2-M) deployed in it. To ensure deter-
minism, a dedicated thread is required for merge-sorting the tuples fed to each
operator instance.

each operator instance fed by two or more upstream operator instances. With
respect to syntactic transparency, Storm relies on the programmer to specify
the number of instances for each parallel operator composing a certain query
and the aforementioned routing policy. It offers transparency, nevertheless, on
the compilation and deployment of the parallel instances at the set of available
Workers.

(A) Overheads of operator-layer determinism in Apache Storm

Figure 7.4 overviews the architecture of a Worker, also presenting the differ-
ent threads operating in it. The figure shows a Worker with the same operators
presented in Figure 7.2. As shown, dedicated merge-sorting operator instances
A2-M1, A2-M2 are deployed for the operator instances A21, A22.

Each operator instance is deployed with a local input and output queue and
assigned two threads. A process thread is responsible for processing tuples

208 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

from the input queue and for storing resulting tuples into its output queue (also
specifying the downstream instance to which an output tuple should be routed
to). A second transfer thread is then responsible for copying tuples to a shared
queue (shared among all the operators deployed within the same Worker). A
global forward thread is responsible for copying tuples from the shared queue
to the input queue of a locally deployed operator instance (if the former are to
be fed to such instance) or sending them (through the network) to a different
Worker. A distinct dedicated thread (not shown in the figure) is responsible for
the delivery of input tuples taken from the network to the input queue of an
operator instance. The queues used by Storm are the ones defined by the LMAX
Disruptor library [30]. It should be noted that one individual input and one
individual output queue are defined for each operator instance. Tuples coming
from multiple operator instances are thus maintained in the same queue.

Based on its architecture, Storm incurs all the limitations discussed in Sec-
tion 7.3.1. As shown in Figure 7.4, a tuple traveling from operator F to operator
M is traversing seven queues (the shared queue, the input and output queues of
a merge-sorting operator instance, the shared queue, the input and output queues
of an instance of operator A2 and, finally, the shared queue). At the same time,
by having one dedicated thread in charge of performing the merge-sorting of
the tuples fed to each operator instance, the merge-sorting operation itself can
constitute a bottleneck to the scaling up of the instances deployed within the
same Worker, especially when the cost of the operator is lower than the cost of
merge-sorting itself.

(B) Additional overheads - sharing tuples

As presented, a dedicated transfer queue accommodates all the tuples produced
by the operator(s) instances within a Worker before the latter are either forwarded
to another Worker or copied to the input queue of a different operator within the
same Worker. This extra transfer step further affects performance and energy
consumption. Moreover, it also introduces a second bottleneck (non-disjoint
parallelism) since the operator(s) instances running at a Worker can be only fed
as fast as this thread can deliver tuples. This architectural choice can also limit
the lockstep processing of tuples. If two tuples to be processed by two different
operators exist in this shared queue, the respective operators will get them in
sequential order while in principle both tuples could be processed in parallel.

(C) Integration of the Viper module

As shown in Figure 7.5, the integration of the Viper module in Storm allows
for each operator to (1) bypass its input and output queues, and rather rely on

7.4. THE VIPER MODULE 209

LEGEND

Process
thread

Process and
route tuple

Worker

A21 A22

Tuples from
operator F

Tuples to
operator M

Viper ScaleGate

Figure 7.5: Storm Worker with two instances of the A2 operator connected by
the Viper module.

two channels maintained at the Communication-layer and (2) rely on a single
thread to fetch input tuples and route and store output tuples. Bypassing input
and output queues removes the need for a transfer thread. Since channels ensure
deterministic processing, the Viper module does not require the deployment of
dedicated merge-sorting operators (as discussed in Section 7.4). This further
reduces the number of threads running in a Worker by a factor of two, for each
operator instance fed by two or more upstream operator instances. This joint
reduction results in higher-throughput because of the reduced number of copies
and queues each tuple traverses in this setup. At the same time, it results in lower
energy consumption given that it requires for fewer active threads deployed in a
Worker instance.

It is important to note that Viper enables disjoint-parallel execution of opera-
tor(s) instances as all operators can access input and output channels concurrently,
without compromising consistency of the channel. When used with SPEs that,
such as Storm, provide routing but not merge-sorting, an additional benefit of the
Viper module is that, while enforcing determinism, it also augments the syntactic
transparency from the programmer’s perspective, since the latter does not need
to deploy dedicated merge-sorting operators at all.

210 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

Table 7.2: IDs, description, cost and selectivity of the Linear Road operators
included in the performance evaluation.

ID Description Selectivity
pos rep Forward an incoming tuple if it is a position report

(stateless operator).
0.99

new seg Check whether a vehicle is entering a new seg-
ment. That is, if the previous and the current
tuples’ positions refer to two different segments
(stateful operator).

0.34

zero speed Forward an incoming tuple if it indicates that the
vehicle’s speed is zero (stateless operator).

0.0001

7.5 Evaluation
In this section, we evaluate the performance achieved by a streaming application
when relying on the Operator-layer determinism as provided by Storm and
compare it with the Communication-layer determinism provided by the Viper
module (cf. Section 7.4) integrated in Storm. We study this both from an
intra-node perspective in relation to parallel analysis defined by the Linear
Road benchmark and from an inter-node parallel and distributed stream analysis
perspective with an application from a real-world smart grid. For both cases, we
first introduce the hardware, the software, and the experimental setup. We then
proceed studying the performance that, as mentioned in Section 7.2, is measured
in terms of throughput (t/s), latency (ms) and, for intra-node parallelism case, the
power consumption (Watts) for both Communication-layer and Operator-layer.

7.5.1 Intra-Node Parallel Analysis - Setup
We conducted our experiments on a dual-socket Intel Xeon E5-2687W 3.4GHz
server, with 8 cores per socket (yielding a total of 16 cores, 32 threads) and 64 GB
of RAM. The server runs Scientific Linux 6.5 (5) based on the Red Hat Enterprise
Linux operating systems. We used likwid [31] to read out RAPL Energy counters
for the power metrics presented in our evaluation. All experiments were run
using Storm version 0.9.7 and OpenJDK Java version 1.8.0 91. The ScaleGate
implementation utilized in the Viper module is the one available at [32]. For
channels accessed by a single source and reader (cf. Section 7.3), the Viper
module relies on Java’s ConcurrentLinkedQueue.

As discussed in Section 7.2, dedicated merge-sorting operators are deployed
for operator instances fed by two or more upstream operator instances to enforce

7.5. EVALUATION 211

deterministic processing in Operator-layer. State of the art merge-sorting opera-
tors such as Input Mergers [1] rely on individual queues where tuples forwarded
by the upstream operator instances are buffered and later merge-sorted.

In our evaluation, we make use of data generated from the Linear Road
benchmark [17]. Linear Road is an established benchmark to study SPEs’
performance that simulates vehicular traffic on a number of linear expressways,
each composed of predefined segments. Position reports are forwarded every 30
seconds and carry the vehicle’s position and speed. Vehicles are charged with a
variable toll based on the traffic congestion level and the presence of accidents.
The generated data is continuously processed to (i) detect possible accidents and
(ii) compute tolls and notify vehicles‡. The Linear Road benchmark [17] is a
representative example where stream processing in fog/edge architectures can
imply extra benefits compared to processing in the cloud, as discussed in [18].
The generated data simulated the traffic over 10 highways.

We provide the evaluation results for both a stateful and a stateless operator
on data extracted from the benchmark. Table 7.2 contains a summary of the
operators, their ids, and selectivity. We evaluate individual operators rather than
pipelines since the increased number of Storm’s communication channels, and
synchronization bottlenecks in the latter case would unfairly degrade its Operator-
layer based parallelization approach compared to Communication-layer.

7.5.2 Intra-Node Parallel Analysis - Scalability

To study the performance of parallel instances of an operator, we start by deploy-
ing one instance of such operator together with one data injector and one sink
(pipeline parallel). The injector generates input tuples as fast as downstream
operators can process them while maintaining the throughput statistics. Dur-
ing execution, we measure throughput as the number of tuples generated over
each 5-second period and report the average throughput per second. The sink
maintains average latency statistics in seconds. The experiments are repeated
6 times; the reported values are averages over the runs of the same experiment.
This initial deployment allows us to measure the performance of an operator’s
centralized execution.

The performance of the data parallel counterpart depends on the parallelism
degree (i.e., its number of parallel instances) and the parallelism degree of its
upstream operator (i.e., the overhead introduced by deterministic merge-sorting
of the streams of the parallel upstream operator), as discussed in Section 7.3.
For this reason, we increase the number of instances both for the injector and

‡The benchmark also defines other historical queries, which do not relate to the topic of this
paper and are thus not discussed here.

212 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

the operator to 2, 4 and 6 (i.e., we deploy 1 injector and 1, 2, 4 and 6 parallel
operator instances, 2 parallel injectors and 1, 2, 4 and 6 parallel instances, . . .)
for a total of 16 configurations for each operator. The number of parallel sink
instances deployed in each experiment is equal to the number of parallel operator
instances for the sink not to constitute a bottleneck.

The purpose of the benchmarks is to highlight the overheads of achieving
determinism. Therefore, with Operator-layer determinism, a merge-sorting
operator is deployed for each instance of the operator if two or more injectors are
deployed. Similarly, a merge-sorting operator is deployed before each instance of
the sink if two or more parallel operator instances are deployed (no extra merge-
sorting operators are needed for Communication-layer determinism using the
Viper module). The highest degree of parallelism for the injector and operator
is chosen so that the overall number of threads for both Operator-layer and
Communication-layer that process and forward tuples is in the same order as the
number of logical threads provided by the server.

(A) Operator pos rep

Figure 7.6 presents the performance results for the pos rep operator for
Communication-layer (left) and Operator-layer (right) determinism. Each sub-
graph contains 4 lines, for 1, 2, 4 and 6 injectors, respectively. The upper
sub-graphs present the throughput for the increasing number of instances of the
parallel pos rep operator. The middle sub-graphs present the latency while the
lower sub-graphs present energy consumption.

The stateless operator pos rep has a very high selectivity, almost each input
tuple results in an output tuple. Thus, although it is a light filtering operator, its
communication overhead (i.e., receiving and forwarding tuples) dominates the
cycles spent processing tuples.

For Operator-layer, the best throughput is achieved when one injector is
deployed, increasing the number of injectors degrades the performance. There
is no significant improvement in performance as we increase the number of
processing operators. This is mainly a result of communication overheads being
the dominant factor and these coupled with parallelization overheads (managing
contention when processing in parallel while maintaining determinism) out-
weigh the benefits of data-parallel processing. Latency figures follow a similar
trend, with latency increasing with injectors and operators, indicating that with
communication bottlenecks, data parallel execution does not offer performance
improvements and may result in degradation.

In contrast, Communication-layer determinism, which optimizes the commu-
nication and parallelization costs, offers better performance with both increasing

7.5. EVALUATION 213

Communication−layer (CL) Operator−layer (OL)

200

300

400

0

500

1000

1500

2000

80

100

120

140

2 4 6 2 4 6

of Op. instances

T
h
ro

u
g
h
p
u
t
(1

0
3
 t
/s

)
L
a
te

n
c
y
 (

m
s
)

A
v
.
P

o
w

e
r

(W
)

inj.=1

inj.=2

inj.=4

inj.=6

Figure 7.6: Operator pos rep performance evaluation.

injectors and processing operator instances. The performance with a single
injector does not improve with increasing operators, which leads us to conjecture
that the injector is a bottleneck in this deployment. We examine this conjecture
later in this section. The figure further shows that Communication-layer deter-
minism manages to achieve a significant improvement in throughput without

214 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

compromising latency. The latency values increase with mores injectors or
operators, however, the values are less than the ones observed for Operator-layer
determinism.

While still incurring similar latency (lower in this case for Communication-
layer), Operator-layer’s consumption grows up to 165W; at the same time,
Communication-layer’s consumption does not grow with increasing number
of operators, due to the shared sorting work performed by the threads already
deployed in Storm. We defer a discussion on power consumption to Section (D).

inj.=1 inj.=2 inj.=4 inj.=6

0

100

200

300

400

0

100

200

300

400

C
L

O
L

I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S

C
o
s
t(

m
ic

ro
s
e
c
o
n
d
s
)

Figure 7.7: Costs of the operators deployed for Communication-layer (CL) and
Operator-layer (OL) when 6 instances of operator pos rep are deployed in a
Worker.

For better insight into performance results for both Communication-layer
and Operator-layerdeterminism, we show in Figure 7.7 the costs for the different
operators deployed in the Storm Worker for Communication-layer (top row)
and Operator-layer (bottom row). The operator names are I, Op-M, Op, S-M,
and S; for the injector, the operator upstream merge-sorting peer, the operator
itself, the sink upstream merge-sorting peer and the sink respectively. As shown,
the cost of merge-sorting for Operator-layer (Op-M and S-M) is comparable to
the cost of the operator pos rep itself. Comparing the two, we observed that,
due to the reduced number of operators and the fine-grained synchronization
enabled by ScaleGate, the costs for both the processing operator (OP) and the
sink (S) are significantly reduced. The lower cost for operator pos rep in
Communication-layer and reduced cost of achieving determinism (no need for
Op-M, S-M) allows for higher throughput which scales with data parallelism.
Additionally, the figure further highlights that the injectors are the bottlenecks
as conjectured earlier. Observe that the cost of the Injector (I), includes that of

7.5. EVALUATION 215

sorting tuples and synchronization in the shared channels.

Communication−layer (CL) Operator−layer (OL)

200

300

400

500

600

0

1000

2000

80

100

120

140

2 4 6 2 4 6

of Op. instances

T
h
ro

u
g
h
p
u
t
(1

0
3
 t
/s

)
L
a
te

n
c
y
 (

m
s
)

A
v
.
P

o
w

e
r

(W
)

inj.=1

inj.=2

inj.=4

inj.=6

Figure 7.8: Operator new seg performance evaluation.

(B) Operator new seg

Figure 7.8 presents the performance results for Communication-layer and Operator-
layer determinism for the execution of new seg operator. In contrast to the
stateless operator pos rep, the stateful operator new seg is characterized by

216 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

lower selectivity. This implies that, for the same input rate, the latter results in a
lower output stream rate. Given its stateful nature, a higher number of cycles is
spent executing the operator compared to communication overheads and thus
expected to benefit from data-parallel execution. Figure 7.8, top row, shows that
both Communication-layer and Operator-layer benefit from data-parallelism,
thus as we increase number of operators, throughput increases significantly.

With a single injector in Communication-layer, the injector becomes the bot-
tleneck, and thus the overheads of parallelization dominate causing a degradation
in performance as we increase to more than two operators. Increasing the number
of injectors enables increased utilization of parallel operator instances, thus re-
sulting in improved throughput performances. Generally, Communication-layer
achieves higher throughput than Operator-layer, which increases with more injec-
tors and saturates at 4 injectors. Similar to pos rep, increasing injectors while
maintaining one processing operator offers less throughput compared to a single
injector case. This is expected as a result of sorting overheads incurred to achieve
deterministic processing in Communication-layer as well as Operator-layer.

Additionally, we note that even for the stateful operator, increasing the num-
ber of operators while maintaining determinism should increase the latency.
This is the trend observed in Figure 7.8 (middle row), latency increases with
both increase in injectors and with operators, with worst latency record for
6 injectors and 6 injectors. However, we still observe that Communication-
layerdeterminism offers better performance on latency than observed with
Operator-layerdeterminism.

The power consumption trend is also similar to that observed for pos rep.
Communication-layer determinism consumes less power than Operator-layer
determinism by not deploying dedicated merge-sorting operators.

Figure 7.9 presents the costs of processing tuples for the different operators
deployed in the Storm Worker for Communication-layer and Operator-layer
determinism (the layout of the figure is the same as the one discussed for
Figure 7.7). The figure shows that the cost of the new seg operator (I) is lower
than that of the merge-sorting operators for Operator-layer determinism. This
is because of the lower selectivity of operator new seg. In this case, a lower
probability of producing an output tuple results in lower amounts of time (on
average) spent creating the objects, encapsulating the output tuples and copying
them in their respective output queue.

Additionally, the higher throughput observed for
Communication-layer determinism is due to the lower cost of operator (Op)
and the fact that no merge-sorting operators are deployed. However, as high-
lighted previously, the injector cost (I) is significantly higher since it includes
synchronization and sorting overheads using shared channels.

7.5. EVALUATION 217

inj.=1 inj.=2 inj.=4 inj.=6

0

50

100

0

50

100

C
L

O
L

I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S

C
o
s
t(

m
ic

ro
s
e
c
o
n
d
s
)

Figure 7.9: Costs of the operators deployed for Communication-layer (CL) and
Operator-layer (OL) when 6 instances of operator new seg are deployed in a
Worker.

(C) Operator zero speed

The last operator we take into account is the stateless zero speed operator
(Figure 7.10 and Figure 7.11). In contrast to previous operators, zero speed
is characterized by a considerably low selectivity (0.0001). As a result, the
operator incurs negligible cost, since it seldom creates and forwards an output
tuple. We expect that low selectivity and very light processing should benefit
from operator parallelism. Figure 7.10 shows that indeed, the throughput in
both Communication-layer and Operator-layer scales with increasing number of
operators. Communication-layer determinism achieves very good scalability up
to 850k tuples per second with 6 operators without significantly compromising
latency. The exceptions are cases where the injector becomes a bottleneck. As
with previous operators, Operator-layer determinism achieves best performance
with a single injector instance.

Figure 7.11 presents details on the inexpensive nature of the processing
operator (Op) and that most of the overheads are due to injectors (I) for both
Operator-layer and Communication-layer, and merge-sorting operators (Op-M
and S-M) for the Operator-layer based topology.

The performance results for zero speed (Figure 7.10) show that inexpen-
sive operators also benefit from data parallel executions when communication
overheads and parallelization costs are optimized. Communication layer deter-
minism allows us to optimize both costs and achieves better performance than
Operator-layer determinism.

218 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

Communication−layer (CL) Operator−layer (OL)

200

400

600

800

0

1000

2000

3000

4000

60

80

100

120

2 4 6 2 4 6

of Op. instances

T
h
ro

u
g
h
p
u
t
(1

0
3
 t
/s

)
L
a
te

n
c
y
 (

m
s
)

A
v
.
P

o
w

e
r

(W
)

inj.=1

inj.=2

inj.=4

inj.=6

Figure 7.10: Operator zero speed performance evaluation.

(D) Discussion on Power Consumption

Modern architectures deploy dynamic frequency scaling or CPU throttling where
processors in idle state run at low frequency to conserve power and scale up the
frequency on-demand. We observe in Figures 7.6, 7.8 and 7.10, that Operator-
layer determinism dissipates on average more power than Communication-
layer determinism. This is a result of differences in the number of threads

7.5. EVALUATION 219

inj.=1 inj.=2 inj.=4 inj.=6

0

50

100

150

0

50

100

150

C
L

O
L

I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S I

O
p
−

M

O
p

S
−

M S

C
o
s
t(

m
ic

ro
s
e
c
o
n
d
s
)

Figure 7.11: Costs of the operators deployed for Communication-layer (CL) and
Operator-layer (OL) when 6 instances of operator zero speed are deployed
in a Worker.

utilized during a computation. Operator-layer determinism employs active
merge-sorting threads and inter-operator transfer threads which are not required
with Communication-layer determinism, with increasing number of execution
threads, more cores are activated and run at high frequency which ultimately
increases the power consumption. In this work we present power in Watts,
instead of energy per tuple, as one can easily argue that with higher throughput
we expect less energy per tuple. The values presented as average power during
execution allow us to highlight the benefits of utilizing Communication-layer
determinism in terms of energy regardless of the throughput values achieved.

7.5.3 Inter-Node Distributed Parallel Analysis - Setup
The experiments about distributed and parallel analysis share the same software
setup described in Section 7.5.1 but are conducted using with a network of 6
Odroid-XU4 [33] (or simply Odroid in the remainder), equipped with a Samsung
Exynos5422 Cortex-A15 2Ghz and Cortex-A7 Octa core CPUs and with 2 GB
of memory.

The use-case is an application that validates and aggregates continuously the
data retrieved in a smart grid setup, in which communication-enabled “smart”
meters (SMs) sense energy consumption and report it continuously to the energy
utility through a network of Meter Concentrator Units (MCUs). Each MCU
validates the data incoming from SMs (or other MCUs) and, when receiving mul-
tiple input streams, aggregates them before forwarding the aggregated readings

220 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

Smart
Meter

Meter
Concentrator Unit

Meter
Concentrator Unit

Energy
Utility

Smart
Meter

Smart
Meter

AM

V

V

...

...

...

Validate the data
delivered by each

input stream

Aggregate the data
sharing the same

timestamp delivered
by each input stream

Merge-sort deterministically the data
forwarded by the validation operators

Figure 7.12: Distributed and parallel analysis performed by each Meter Concen-
trator Unit to validate and aggregate deterministically the data gathered from the
Smart Meters up to the Energy Utility.

to the energy provider.
Figure 7.12 shows how the data flows from the SMs to the Energy Utility

while also presenting the query that validates and aggregates the data. As shown
in the figure, multiple validation operators (V) are deployed at each MCU, one
for each incoming stream. The validation operators check the correctness of the
readings (which cannot be negative and should not exceed the capacity of the
fuse installed at each SM) and feed an aggregate operator (A) that aggregates
readings sharing the same timestamp. As presented in the figure, merge-sorting
steps are defined in order to aggregate data deterministically.

In our setup, each Odroid device represents one MCU. Five Odroids represent
MCUs that gather data from SMs while one Odroid aggregates together the data
forwarded through the network by the previous Odroids. The used data consists
of anonymized energy consumption readings collected from households in 2010.
In the experiment, we increase the parallelism of the validation operators (and
the number of sources, accordingly) from 1 to 2, 3 and 4. We choose 4 as the
maximum since, for the latter value, the number of threads deployed within the
SPE instance running at each Odroid exceeds the number of available physi-
cal threads. Each experiment (for a fixed parallelism degree of the validation
operator) lasts five minutes.

7.5.4 Inter-Node Distributed Parallel Analysis - Scalability

Figure 7.13 presents the throughput results (upper row) and latency results (bot-
tom row) for for Communication-layer determinism (left column) and Operator-
layer determinism (right column) for the increasing number of validation opera-

7.5. EVALUATION 221

Communication−layer (CL) Operator−layer (OL)

50

75

100

125

250

500

750

1000

5 10 15 20 5 10 15 20

of Op. instances

T
h
ro

u
g
h
p
u
t
(1

0
3
 t
/s

)
L
a
te

n
c
y
 (

m
s
)

Figure 7.13: Throughput and latency results for the distributed and parallel
validation and aggregation query for Communication-layer and Operator-layer
determinism.

tors deployed at the five Odroid gathering data from the SMs (5 when each Odroid
gathers data from 1 SM, 10 when each Odroids gathers data from 2 SMs, and so
on). As it can be observed, then determinism is enforced at the Communication-
layer, we observe an increasing throughput that starts at approximately 100,000
t/s and grows to approximately 140,000 t/s. As shown, the throughput increases
with a milder slope when more than 3 validation operators are deployed at each
Odroid. This is expected since the number of threads deployed within each SPE
instance starts exceeding the available physical threads. An opposite trend can
be observed for Operator-layer determinism, with a throughput that degrades
from 80,000 t/s to less than 50,000 t/s accordingly to the increasing number of
validation operators. At the same time, we can observe a latency that increases
accordingly with the increasing parallelism of the validation operator for both
Communication-layer and Operator-layer determinism. While in both cases the
latency observed when each Odroid deploys gathers data from a single SM is
less than 250 ms, nonetheless, it does not exceed 400 ms for Communication-
layer determinism while it grows to more than one second for Operator-layer
determinism.

222 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

7.6 Related work

Parallel execution of streaming operators has been first discussed by Flux [34]
and StreamCloud [1, 24]. The latter provided dedicated merge-sorting operators
(added to queries by a compiler) to enforce deterministic execution at the operator
layer, incurring the limitations discussed in Section 7.3. The techniques in [1,
24, 34] are now found in widely-adopted SPEs. It should be noted that parallel
execution of streaming operators is a first step towards elastic protocols [1, 1, 6–
9, 13] that can adjust the parallelism degree of streaming operators according
to varying computational loads. However, these works either rely on dedicated
mergers [1,6,7,13] or assume operators are stateless [9] and ignore determinism.

Schneider et. al. [13], present a compiler and run-time system that transpar-
ently extracts data parallelism, with consideration for determinism (termed as
safe data parallelism). In their work, the compiler generates parallel regions and
ordering is maintained on tuples exiting the parallel regions regardless of the
degree of parallelism. However, as with previous efforts to achieve determinism,
ordering is achieved through dedicated mergers. This is thus prone to the limita-
tions highlighted in Section 7.3.1 and discussed further in the evaluation section
(Section 7.5.2)).

The communication-layer determinism we introduce in this paper is moti-
vated by the increasing research interest in shared-memory parallelism. The
most relevant advances, nonetheless, have so far been only tailored to Aggre-
gates [16, 35] and Joins [15, 36, 37]. The principles of the ScaleGate data
object [32] have been proposed in [38] and leveraged in parallel streaming aggre-
gation [16] and joining [15]. In relation with our work, papers such as [25, 39]
discuss and provide evidence of the importance of careful design decisions for
the internal communication mechanisms of SPEs. Differently from this work,
nonetheless, optimizations focus on the reduction of unnecessary copies of tuples
for the Borealis SPE in [25] (not considering determinism) and in a batching
mechanism (complementary to the mechanism we propose) for Apache Storm.

7.7 Conclusions

Motivated by the observation that deterministic execution of streaming oper-
ators requires expensive synchronization to merge-sort the streams delivered
by multiple operator instances (or data sources), we studied the limitations of
operator-layer parallelism and how these can be overcome by communication-
layer determinism. Reducing the communication and synchronization costs
among operator instances running within an SPE is key in boosting the latter’s

BIBLIOGRAPHY 223

scale-up potential, as needed in emerging cloud, fog and edge architectures in
cyber-physical systems.

We propose Viper, a module that encapsulates and reduces the aforemen-
tioned costs, enabling deterministic execution to be provided transparently in the
communication layer of an SPE. We provide evidence that such a module can be
leveraged by SPEs, by integrating it into Apache Storm, a representative SPE
of one-at-a-time analysis paradigm, for low latency processing. Our evaluation
shows that, with Viper, the throughput of parallel operators increases by up to
70% and results in half of the energy consumption.

We separate discussions about general contributions from those specific
to Apache Storm. The work shows that the common approach to scalability
achieved by having dedicated per-thread input and output queues for each op-
erator does not necessarily perform as good as approaches in which shared
data objects (as proposed in Viper) can distribute among threads the work that
could otherwise saturate an individual thread when assigned exclusively to the
latter (as in the case of merge-sorting for deterministic execution of parallel
and distributed streaming applications). Our contribution is a first step towards
handling the communication and synchronization for deterministic streaming
analysis outside the scope of the operators defining the latter. Future work can
focus on the integration of Viper in Software Defined Networks, reducing the
synchronization cost bypassing the OS stack.

Bibliography
[1] Vincenzo Gulisano, StreamCloud: An Elastic Parallel-Distributed Stream Process-

ing Engine, Ph.D. thesis, Universidad Politécnica de Madrid, 2012.

[2] “Apache Storm,” http://storm.apache.org/, 2017.

[3] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” IEEE Data Engineering Bulletin, vol. 36, no. 4, 2015.

[4] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch, “Saber: Window-based hybrid stream
processing for heterogeneous architectures,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2016, pp. 555–569, ACM.

[5] Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Papatriantafilou,
and Philippas Tsigas, “Deterministic real-time analytics of geospatial data streams
through scalegate objects,” in Proceedings of the International Conference on
Distributed Event-Based Systems. 2015, pp. 316–317, ACM.

[6] Tiziano De Matteis and Gabriele Mencagli, “Keep calm and react with foresight:
Strategies for low-latency and energy-efficient elastic data stream processing,” in

224 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 2016, pp. 13:1–13:12, ACM.

[7] Tiziano De Matteis and Gabriele Mencagli, “Proactive elasticity and energy aware-
ness in data stream processing,” Journal of Systems and Software, vol. 127, no. C,
pp. 302–319, 2017.

[8] Nicolas Hidalgo, Daniel Wladdimiro, and Erika Rosas, “Self-adaptive processing
graph with operator fission for elastic stream processing,” Journal of Systems and
Software, vol. 127, no. C, pp. 205–216, 2017.

[9] Le Xu, Boyang Peng, and Indranil Gupta, “Stela: Enabling stream processing sys-
tems to scale-in and scale-out on-demand,” in Proceedings of the IEEE International
Conference on Cloud Engineering, 2016, pp. 22–31.

[10] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm, “A
catalog of stream processing optimizations,” ACM Computing Surveys, vol. 46, no.
4, pp. 46:1–46:34, 2014.

[11] Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-Lung Wu,
“Elastic scaling of data parallel operators in stream processing,” in Proceedings of
the International Parallel and Distributed Processing Symposium. 2009, pp. 1–12,
IEEE.

[12] Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu, “Auto-
parallelizing stateful distributed streaming applications,” in Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques.
2012, pp. 53–64, ACM.

[13] Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu, “Safe data
parallelism for general streaming,” IEEE Transactions on Computers, vol. 64, no. 2,
pp. 504–517, 2015.

[14] Sai Wu, Vibhore Kumar, Kun-Lung Wu, and Beng Chin Ooi, “Parallelizing stateful
operators in a distributed stream processing system: How, should you and how
much?,” in Proceedings of the International Conference on Distributed Event-Based
Systems. 2012, pp. 278–289, ACM.

[15] Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou, and Philippas
Tsigas, “Scalejoin: A deterministic, disjoint-parallel and skew-resilient stream
join,” in Proceedings of the IEEE International Conference on Big Data. 2015, pp.
144–153, IEEE.

[16] Vincenzo Gulisano, Yiannis Nikolakopoulos, Daniel Cederman, Marina Papatri-
antafilou, and Philippas Tsigas, “Efficient data streaming multiway aggregation
through concurrent algorithmic designs and new abstract data types,” ACM Trans-
actions on Parallel Computing, vol. 4, no. 2, pp. 11:1–11:28, 2017.

[17] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts, “Linear road: a stream
data management benchmark,” in Proceedings of the International Conference on
Very Large Data Bases. 2004, pp. 480–491, VLDB Endowment.

BIBLIOGRAPHY 225

[18] Stefania Costache, Vincenzo Gulisano, and Marina Papatriantafilou, “Understanding
the data-processing challenges in intelligent vehicular systems,” in Proceedings of
IEEE Intelligent Vehicles Symposium (IV). 2016, pp. 611–618, IEEE.

[19] Magdalena Balazinska, Hari Balakrishnan, Samuel R Madden, and Michael Stone-
braker, “Fault-tolerance in the Borealis distributed stream processing system,” ACM
Transactions on Database Systems, vol. 33, no. 1, 2008.

[20] Evangelia Kalyvianaki, Marco Fiscato, Theodoros Salonidis, and Peter Pietzuch,
“Themis: Fairness in federated stream processing under overload,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data. 2016, pp.
541–553, ACM.

[21] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hackenbroich,
and Christof Fetzer, “Quality-driven continuous query execution over out-of-order
data streams,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data. 2015, pp. 889–894, ACM.

[22] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun, “In-
ternally deterministic parallel algorithms can be fast,” in Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 2012,
pp. 181–192, ACM.

[23] Richard M Karp and Rayamond E Miller, “Properties of a model for parallel
computations: Determinacy, termination, queueing,” SIAM Journal on Applied
Mathematics, vol. 14, no. 6, pp. 1390–1411, 1966.

[24] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, and Patrick
Valduriez, “Streamcloud: A large scale data streaming system,” in Proceedings of
the IEEE International Conference on Distributed Computing Systems. 2010, pp.
126–137, IEEE.

[25] Shoaib Akram, Manolis Marazakis, and Angelos Bilas, “Understanding and im-
proving the cost of scaling distributed event processing,” in Proceedings of the
International Conference on Distributed Event-Based Systems. 2012, pp. 290–301,
ACM.

[26] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik, “Aurora:
a new model and architecture for data stream management,” The International
Journal on Very Large Data Bases, vol. 12, no. 2, pp. 120–139, 2003.

[27] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alexander
Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik, “The
design of the borealis stream processing engine.,” in Conference on Innovative Data
Systems Research, 2005, vol. 5, pp. 277–289.

[28] Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, and Oliver
Spatscheck, “A heartbeat mechanism and its application in gigascope,” in Pro-
ceedings of the International Conference on Very Large Data Bases. 2005, pp.
1079–1088, VLDB Endowment.

226 CHAPTER 7. COMMUNICATION-LAYER DETERMINISM AND SCALING

[29] Daniel Cederman, Bapi Chatterjee, Nhan Nguyen, Yiannis Nikolakopoulos, Marina
Papatriantafilou, and Philippas Tsigas, “A study of the behavior of synchronization
methods in commonly used languages and systems,” in Proceedings of the Inter-
national Parallel and Distributed Processing Symposium. 2013, pp. 1309–1320,
IEEE.

[30] LMAX-Exchange, “Lmax disruptor: High performance alternative to
bounded queues for exchanging data between concurrent threads,” http://lmax-
exchange.github.io/disruptor/, 2011.

[31] Jan Treibig, Georg Hager, and Gerhard Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in Proceed-
ings of the International Conference on Parallel Processing Workshops. 2010, pp.
207–216, IEEE.

[32] “ScaleGate,” https://github.com/dcs-chalmers/ScaleGate Java, 2017.

[33] “Odroid-XU4,” http://www.hardkernel.com, 2016.

[34] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and Michael J.
Franklin, “Flux: An adaptive partitioning operator for continuous query systems,”
in Proceedings of the IEEE International Conference on Data Engineering. 2003,
pp. 25–36, IEEE.

[35] Scott Schneider, Henrique Andrade, Buǧra Gedik, Kun-Lung Wu, and Dimitrios S.
Nikolopoulos, “Evaluation of streaming aggregation on parallel hardware architec-
tures,” in Proceedings of the International Conference on Distributed Event-Based
Systems. 2010, pp. 248–257, ACM.

[36] Buğra Gedik, Rajesh R. Bordawekar, and Philip S. Yu, “CellJoin: a parallel stream
join operator for the cell processor,” The International Journal on Very Large Data
Bases, vol. 18, no. 2, pp. 501–519, 2009.

[37] Jens Teubner and Rene Mueller, “How soccer players would do stream joins,” in
Proceedings of the ACM SIGMOD International Conference on Management of
Data. 2011, pp. 625–636, ACM.

[38] Daniel Cederman, Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatri-
antafilou, and Philippas Tsigas, “Brief Announcement: Concurrent Data Structures
for Efficient Streaming Aggregation,” in Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures. 2014, pp. 76–78, ACM.

[39] Meichun Hsu, Matthias J. Sax, Qiming Chen, and Malu Castellanos, “Aeolus: An
optimizer for distributed intra-node-parallel streaming systems,” in Proceedings
of the IEEE International Conference on Data Engineering. 2013, pp. 1280–1283,
IEEE.

http://www.hardkernel.com

8
Conclusions and Future Work

As the number of cores available in multicore systems continues to grow, high-
performance concurrent applications remain a challenge. In this thesis, we pre-
sented designs and implementations of efficient, practical concurrent data struc-
tures for both inherently sequential data structures and more scalable concurrent
search data structures. We proposed mechanisms to minimize the synchroniza-
tion bottlenecks by employing the combining technique without compromising
the progress guarantees of lock-free vector implementations. Additionally, we
extend the lock-free vector to implement a non-bounded heap-based priority
queue with mutable priorities.

As future work for concurrent heap-based priority queues, one exciting
continuation is the implementation of a concurrent multi-way heap to reduce
bottlenecks on inserting items into the heap. The multi-way heaps lower the
traversal cost by reducing the height of the tree but increase the synchronization
overhead as an operation attempts to determine the priorities of all the d-children.
The techniques introduced in this may be useful in implementing non-blocking
versions of the heap-ordered d-ary heaps. Furthermore, relaxation of heap
semantics may increase the scalability of the heap, making it easier to parallelize.

We presented efficient designs of concurrent lock-free linked-lists and binary
search trees. The presented designs can easily be implemented in any program-
ming language as they do not rely on any language specific constructs such as

227

228 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

reference marking or runtime type introspection. We believe that such language
independent designs contribute to the uptake of non-blocking data structures
by application developers. We extend our research into concurrent search data
structures to multi-dimensional data and similarity search.

Although tremendous effort has gone towards search data structures, not
much attention has been paid to multi-dimensional data. However, many ad-
vanced applications require the manipulation of multidimensional data. We
present the first lock-free multi-dimensional data structure and a lock-free lin-
earizable algorithm for nearest neighbor search. Our method to implement
the linearizable nearest neighbor search is generic and can be adapted to other
multidimensional data structures.

The popularity of in-memory databases has led to a significant interest in
the index structures that can support nearest neighbor search with dynamic
concurrent addition and removal of data. As a continuation of our work on
search data structures, we intend to explore k-nearest neighbor search, range-
search queries, and iterators on multi-dimensional data. kD-trees suffer from
the curse of dimensionality (performance degrades as the number of dimensions
increases), so we plan to design lock-free data structures which are suitable for
nearest neighbor search in high dimensions, for example, the ball-tree.

Finally, we considered higher-level abstractions of concurrent data structures
as communication modules in data stream processing applications. Data stream
applications process possibly infinite streams of data with high-throughput and
low-latency demands; meeting these demands requires parallelism. There is also
a growing interest in combining Cloud-server based analytics with processing
closer to the Edge in order to improve performance. Data processing closer to
the Edge allows for low-latency, real-time response to events, and utilization of
energy efficient embedded devices. However, this requires the design of stream
processing applications to consider constraints present in embedded devices.
Another challenge is how to build hybrid systems that seamlessly integrate both
processing at the Edge and in the Cloud.

Our experience in design and development of concurrent data structures has
shown that memory management has a profound influence on the performance
of dynamic data structures. Although, some memory reclamation schemes have
been proposed in the literature, add significant overhead to the implementation,
while others are not trivial for programmers to use efficiently. Additionally,
many a time, programmers are compelled to utilize blocking memory recla-
mation schemes for non-blocking data structures. Therefore, there is a need
for research into efficient memory management mechanisms that are easy to
integrate correctly without compromising progress guarantees associated with
the data structure.

	List of Publications
	Personal Contribution
	Acknowledgements
	Introduction
	Shared-Memory Multicore Systems
	Caches and Memory Consistency
	Atomic Primitives

	Synchronization
	Blocking Synchronization
	Non-blocking Synchronization
	Power of Synchronization Primitives

	Concurrent Data Structures
	Correctness of Concurrent Data Structures

	Non-blocking Concurrent Data Structures
	Design and Implementation Approaches
	Concurrent Data Structures for Efficient Data Stream Processing

	Contributions
	Bibliography

	Scalable Lock-Free Vector with Combining
	Introduction
	Related Work:

	System Model and Definitions
	Algorithm
	Overview of the Algorithm
	Implementation Details
	Correctness
	Memory Management and ABA Problems

	Performance Evaluation
	Experimental Results and Discussion

	Conclusion
	Bibliography

	Concurrent Lock-free Unbounded Priority Queue
	Introduction
	Preliminaries
	Algorithm
	Lock-free ADT Operations
	Design Optimizations

	Correctness Proof
	Evaluation
	Conclusion
	Bibliography

	Help-optimal and Language-portable Lock-free Concurrent Data Structures
	Introduction
	Overview
	Related Work

	Help-optimality: Motivation
	Help-optimal Lock-free Linked-list
	Design
	Correctness and Lock-freedom
	Amortized Step Complexity

	Help-optimal Lock-free BST
	Design
	Correctness and Lock-freedom

	Help-optimality: Specification
	Experimental Evaluation
	Overview
	Experimental Set-up
	Performance Results and Discussion

	Conclusion
	Bibliography

	Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree
	Introduction
	Background
	A high-level summary of the work

	LockFree-kD-tree: Basic Design
	Design of the LFkD-tree
	Sequential Behaviour of the ADT Operations

	LockFree-kD-tree: Implementation
	Lock-free Synchronization: Basics
	Linearizable Add, and Contains operations
	Linearizable Nearest Neighbour Search

	Correctness and Lock-freedom
	A real-life application
	Experimental Evaluation
	Experimental Setup
	Datasets
	Observations and Discussion

	Conclusion and Future Work
	Bibliography

	Customization Methodology for Implementation of Streaming Aggregation in Embedded Systems
	Introduction
	Related Work
	Streaming Aggregation
	Streaming Aggregation description

	Customization Methodology
	Design Space
	Methodology description

	Demonstration of the Methodology
	Platforms description
	Experimental Setup
	Time-based aggregation results
	Count-based aggregation results
	Performance per watt evaluation
	Discussion of Experimental Results

	Conclusion
	Bibliography

	Viper: A Module for Communication-Layer Determinism and Scaling in Low-Latency Stream Processing
	Introduction
	System Model
	Data Streaming
	Parallelism, determinism and syntactic transparency
	Streaming operators' performance metrics

	Operator- vs communication-layer determinism
	Limitations of operator-layer determinism
	Additional potential benefits from determinism provisioning in the SPE-communication-layer

	The Viper module
	Viper as an SPE module: Apache Storm use case

	Evaluation
	Intra-Node Parallel Analysis - Setup
	Intra-Node Parallel Analysis - Scalability
	Inter-Node Distributed Parallel Analysis - Setup
	Inter-Node Distributed Parallel Analysis - Scalability

	Related work
	Conclusions
	Bibliography

	Conclusions and Future Work

