5,194 research outputs found

    Effectiveness of segment routing technology in reducing the bandwidth and cloud resources provisioning times in network function virtualization architectures

    Get PDF
    Network Function Virtualization is a new technology allowing for a elastic cloud and bandwidth resource allocation. The technology requires an orchestrator whose role is the service and resource orchestration. It receives service requests, each one characterized by a Service Function Chain, which is a set of service functions to be executed according to a given order. It implements an algorithm for deciding where both to allocate the cloud and bandwidth resources and to route the SFCs. In a traditional orchestration algorithm, the orchestrator has a detailed knowledge of the cloud and network infrastructures and that can lead to high computational complexity of the SFC Routing and Cloud and Bandwidth resource Allocation (SRCBA) algorithm. In this paper, we propose and evaluate the effectiveness of a scalable orchestration architecture inherited by the one proposed within the European Telecommunications Standards Institute (ETSI) and based on the functional separation of an NFV orchestrator in Resource Orchestrator (RO) and Network Service Orchestrator (NSO). Each cloud domain is equipped with an RO whose task is to provide a simple and abstract representation of the cloud infrastructure. These representations are notified of the NSO that can apply a simplified and less complex SRCBA algorithm. In addition, we show how the segment routing technology can help to simplify the SFC routing by means of an effective addressing of the service functions. The scalable orchestration solution has been investigated and compared to the one of a traditional orchestrator in some network scenarios and varying the number of cloud domains. We have verified that the execution time of the SRCBA algorithm can be drastically reduced without degrading the performance in terms of cloud and bandwidth resource costs

    Implementation of QoS onto virtual bus network

    Get PDF
    Quality of Service (QoS) is a key issue in a multimedia environment because multimedia applications are sensitive to delay. The virtual bus architecture is a hierarchical access network structure that has been proposed to simplify network signaling. The network employs an interconnection of hierarchical database to support advanced routing of the signaling and traffic load. Therefore, the requirements and management of quality of service is important in the virtual bus network particularly to support multimedia applications. QoS and traffic parameters are specified for each class type and the OMNeT model has been described

    Satellite ATM network architectures: An overview

    Get PDF
    A satellite ATM network has been envisioned as the next information super-skyway. There has been a migration from traditional bent pipe satellites to onboard processing) ATM satellites. The current congestion in the Internet has motivated the use of alternate paths - using satellites to support global Internet transport and access. This article presents the various system and protocol layer architectures of SATM networks.published_or_final_versio

    Interoperability between WiMAX and broadband mobile space networks

    Get PDF
    In several countries manufacturers, operators, and public authorities look at WiMAX system as a viable technology to fill the "digital divide," providing broadband services mainly in suburban and rural areas, but also in densely populated areas. Nevertheless, as a standalone system it will never offer global services, and to complement its capabilities, the utilization of broadband space-based access shared among users represents a scalable and cost-effective solution to offer wider area coverage, improved performance in terms of QoS, service continuity in case of terrestrial network failure, and long-range user mobility. Integration between WiMAX and a space-based infrastructure, composed of a combination of satellites and high altitude platforms, can be pursued in several ways. The simplest solution is based on connecting a WiMAX network by means of a terrestrial network terminating at a hub station connected to the space infrastructure. A more flexible solution should allow the WiMAX subscriber station or base station to directly access the space infrastructure. This article addresses the identification of suitable scenarios and a feasibility analysis presenting link budget results related to a subset of the identified solutions

    Rural land mobile radio market assessment and satellite and terrestrial system concepts

    Get PDF
    Market potential exists; the nature of the market in terms of service needs, usage characteristics, service requirements, and forecasting the demand to the year 2000; alternative system cncepts that show promise in addressing the identified needs, in a cost effective manner; and advanced technology requirements associated with these concepts are considered

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Business models for deployment and operation of femtocell networks; - Are new cooperation strategies needed for mobile operators?

    Get PDF
    In this paper we discuss different business models for deployment and operation of femtocell networks intended for provisioning of public mobile broad band access services. In these types of business cases the operators use femtocells in order to reduce investments in "more costly" macro networks since the traffic can be "offloaded" to "less costly" femtocell networks. This is in contrast to the many business cases presented in Femtoforum where femtocells mainly are discussed as a solution to improve indoor coverage for voice services in homes and small offices, usually for closed user groups The main question discussed in this paper is if "operators need to consider new forms of cooperation strategies in order to enable large scale deployment of femtocells for public access?" By looking into existing solutions for indoor wireless access services we claim that the answer is both "Yes" and "No". No, since many types of cooperation are already in place for indoor deployment. Yes, because mobile operators need to re-think the femtocell specific business models, from approaches based on singe operator networks to different forms of cooperation involving multi-operator solutions, e.g. roaming and network sharing. --

    On-board processing satellite network architecture and control study

    Get PDF
    The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented
    • …
    corecore