4,690 research outputs found

    Modern digital flight control system design for VTOL aircraft

    Get PDF
    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses

    Empirical measurements of small unmanned aerial vehicle co-axial rotor systems

    Get PDF
    Small unmanned aerial vehicles (SUAV) are beginning to dominate the area of intelligence, surveillance, target acquisition and reconnaissance (ISTAR) in forward operating battlefield scenarios. Of particular interest are vertical take-off and landing (VTOL) variants. Within this category co-axial rotor designs have been adopted due to their inherent advantages of size and power to weight ratio. The inter-rotor spacing attribute of a co-axial rotor system appears to offer insight into the optimum design characteristic. The H/D ratio has been cited as a significant factor in many research papers, but to date has lacked an empirical value or an optimal dimensionless condition. In this paper the H/D ratio of a SUAV has been explored thoroughly, reviewing the performance of these systems at incremental stages, the findings from this study have shown that a range of H/D ratios in the region of (0.41-0.65) is advantageous in the performance of SUAV systems. This finding lends itself to the theory of inter-rotor spacing as a non-dimensionally similar figure, which cannot be applied across a spectrum of systems; this could be attributed to the viscous losses of flight at low Reynolds Numbers (< 50,000

    Rotor burst protection program initial test results, phase 4 Final report

    Get PDF
    High speed photographic recording of turbine wheel failure in containment devic

    Prognostic Reasoner based adaptive power management system for a more electric aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled.A hybrid mathematical model based on the Direct-Quadrature (d-q) axis transformation of the generator have been formulated for studying various structural and parametric faults. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study were carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been develope

    Historical overview of V/STOL aircraft technology

    Get PDF
    The requirements for satisfactory characteristics in several key technology areas are discussed and a review is made of various V/STOL aircraft for the purpose of assessing the success or failure of each design in meeting design requirements. Special operating techniques were developed to help circumvent deficiencies. For the most part performance and handling qualities limitations restricted operational evaluations. Flight operations emphasized the need for good STOL performance, good handling qualities, and stability and control augmentation. The majority of aircraft suffered adverse ground effects

    Current developments lighter than air systems

    Get PDF
    Lighter than air aircraft (LTA) developments and research in the United States and other countries are reviewed. The emphasis in the U.S. is on VTOL airships capable of heavy lift, and on long endurance types for coastal maritime patrol. Design concepts include hybrids which combine heavier than air and LTA components and characteristics. Research programs are concentrated on aerodynamics, flight dynamics, and control of hybrid types

    Effect of high lift flap systems on the conceptual design of a 1985 short-haul commercial STOL tilt rotor transport

    Get PDF
    The performances of a derivative concept of a 1985 STOL tilt rotor transport, and of a second concept having a complex mechanical flap system similar to a short field B737 aircraft were compared for a 370 kilometer (200 nautical mile) short haul mission. The flap system of the latter allowed lift to be shifted from the rotor system to the wing, permitting a 26 percent reduction in dynamic component weight, while also permitting the use of a smaller wing. The wing and disc loading of this concept were 5746 (120 psf) and 1915 (40 psf) newtons per square meter, respectively, while the wing and disc loading of the derivative concept were 4788 (100 psf) and 1197 (25 psf) newtons per square meter, respectively. The high lift wing tilt rotor showed slightly improved fuel usage over its entire operating range and about 6 to 8 percent improvement in direct operating costs, resulting from its improved cruise efficiency and reduced weight. Other advantages include improved reliability with potentially reduced maintenance and better riding quality

    Conceptual design study of 1985 commercial tilt rotor transports. Volume 1: VTOL design summary

    Get PDF
    Aircraft were synthesized in the 21-, 45-, and 100- passenger categories. Technological factors were considered and the 45-passenger point design, designated the D312, was selected. Variants of the D312 having sideline noise levels in hover of + or - 5 PNdB were also studied. All three 45-passenger aircraft were analyzed for performance, weights, economics, handling qualities, noise footprints, aeroelastic stability and ride comfort. Results are presented

    Civil applications of high-speed rotorcraft and powered-lift aircraft configurations

    Get PDF
    Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions
    corecore