1,428 research outputs found

    Efficient Resource Management Mechanism for 802.16 Wireless Networks Based on Weighted Fair Queuing

    Get PDF
    Wireless Networking continues on its path of being one of the most commonly used means of communication. The evolution of this technology has taken place through the design of various protocols. Some common wireless protocols are the WLAN, 802.16 or WiMAX, and the emerging 802.20, which specializes in high speed vehicular networks, taking the concept from 802.16 to higher levels of performance. As with any large network, congestion becomes an important issue. Congestion gains importance as more hosts join a wireless network. In most cases, congestion is caused by the lack of an efficient mechanism to deal with exponential increases in host devices. This can effectively lead to very huge bottlenecks in the network causing slow sluggish performance, which may eventually reduce the speed of the network. With continuous advancement being the trend in this technology, the proposal of an efficient scheme for wireless resource allocation is an important solution to the problem of congestion. The primary area of focus will be the emerging standard for wireless networks, the 802.16 or “WiMAX”. This project, attempts to propose a mechanism for an effective resource management mechanism between subscriber stations and the corresponding base station

    On scheduling input queued cell switches

    Get PDF
    Output-queued switching, though is able to offer high throughput, guaranteed delay and fairness, lacks scalability owing to the speed up problem. Input-queued switching, on the other hand, is scalable, and is thus becoming an attractive alternative. This dissertation presents three approaches toward resolving the major problem encountered in input-queued switching that has prohibited the provision of quality of service guarantees. First, we proposed a maximum size matching based algorithm, referred to as min-max fair input queueing (MFIQ), which minimizes the additional delay caused by back pressure, and at the same time provides fair service among competing sessions. Like any maximum size matching algorithm, MFIQ performs well for uniform traffic, in which the destinations of the incoming cells are uniformly distributed over all the outputs, but is not stable for non-uniform traffic. Subse-quently, we proposed two maximum weight matching based algorithms, longest normalized queue first (LNQF) and earliest due date first matching (EDDFM), which are stable for both uniform and non-uniform traffic. LNQF provides fairer service than longest queue first (LQF) and better traffic shaping than oldest cell first (OCF), and EDDEM has lower probability of delay overdue than LQF, LNQF, and OCF. Our third approach, referred to as store-sort-and-forward (SSF), is a frame based scheduling algorithm. SSF is proved to be able to achieve strict sense 100% throughput, and provide bounded delay and delay jitter for input-queued switches if the traffic conforms to the (r, T) model

    Scheduling algorithms in broadband wireless networks

    Get PDF
    Scheduling algorithms that support quality of service (QoS) differentiation and guarantees for wireless data networks are crucial to the development of broadband wireless networks. Wireless communication poses special problems that do not exist in wireline networks, such as time-varying channel capacity and location-dependent errors. Although many mature scheduling algorithms are available for wireline networks, they are not directly applicable in wireless networks because of these special problems. This paper provides a comprehensive and in-depth survey on recent research in wireless scheduling. The problems and difficulties in wireless scheduling are discussed. Various representative algorithms are examined. Their themes of thoughts and pros and cons are compared and analyzed. At the end of the paper, some open questions and future research directions are addressed.published_or_final_versio

    Dynamic Traffic Scheduling and Resource Reservation Algorithms for Output-Buffered Switches

    Get PDF
    Scheduling algorithms implemented in Internet switches have been dominated by the best-effort and guaranteed service models. Each of these models encompasses the extreme ends of the correlation spectrum between service guarantees and resource utilisation. Recent advancements in adaptive applications have motivated active research in predictive service models and dynamic resource reservation algorithms. The OCcuPancy_Adjusting (OCP_A) is a scheduling algorithm focused on the design of the above-mentioned research areas. Previously, this algorithm has been analysed for a unified resource reservation and scheduling algorithm while implementing a tail discarding strategy. However, the differentiated services provided by the OCP _A algorithm can be further enhanced. In this dissertation, four new algorithms are proposed. Three are extensions of the OCP _A. The fourth algorithm is an enhanced version of the Virtual Clock (VC) algorithm, denoted as ACcelErated (ACE) scheduler. The first algorithm is a priority scheduling algorithm (i.e. known as the M-Tier algorithm) incorporated with a multitier dynamic resource reservation algorithm. Periodical resource reallocations are implemented. Thus. enabling each tier's resource utilisation to converge to its desired Quality of Service (QoS) operating point. In addition. the algorithm integrates a cross-sharing concept of unused resources between the various hierarchical levels to exemplify the respective QoS sensitivity. In the second algorithm. a control parameter is integrated into the M-Tier algorithm to ensure reduction of delay segregation effects towards packet loss sensitive traffic. The third algorithm, introduces a delay approximation algorithm to justify packet admission. The fourth algorithm enhances the VC scheduling algorithm. This is performed via the incorporation of dynamic features in the computation of the VC scheduling tag. Subsequently, the delay bound limitation of the parameter is eliminated

    Priority Based Switch Allocator in Adaptive Physical Channel Regulator for On Chip Interconnects

    Get PDF
    Chip multiprocessors (CMPs) are now popular design paradigm for microprocessors due to their power, performance and complexity advantages where a number of relatively simple cores are integrated on a single die. On chip interconnection network (NoC) is an excellent architectural paradigm which offers a stable and generalized communication platform for large scale of chip multiprocessors. The existing model APCR has three regulation schemes designed at switch allocation stage of NoC router pipelining, such as monopolizing, fair-sharing and channel-stealing. Its aim is to fairly allocate physical bandwidth in the form of flit level transmission unit while breaking the conventional assumptions i.e.its size is same as phit size. They have implemented channel-stealing scheme using the existing round-robin scheduler which is a well known scheduling algorithm for providing fairness, which is not an optimal solution. In this thesis, we have extended the efficiency of APCR model and propose three efficient scheduling policies for the channel stealing scheme in order to provide better quality of service (QoS). Our work can be divided into three parts. In the first part, we implemented ratio based scheduling technique in which we keep track of average number of its sent from each input in every cycle. It not only provides fairness among virtual channels (VCs), but also increases the saturation throughput of the network. In the second part, we have implemented an age based scheduling technique where we prioritize the VC, based on the age of the requesting flits. The age of each request is calculated as the difference between the time of injection and the current simulation time. Age based scheduler minimizes the packet latency. In the last part, we implemented a Static-Priority based scheduler. In this case, we arbitrarily assign random priorities to the packets at the time of their injection into the network. In this case, the high priority packets can be forwarded to any of the VCs, whereas the low priority packets can be forwarded to a limited number of VCs. So, basically Static-Priority based scheduler limits the accessibility on the number of VCs depending upon the packet priority. We study the performance metrics such as the average packet latency, and saturation throughput resulted by all the three new scheduling techniques. We demonstrate our simulation results for all three scheduling policies i.e. bit complement, transpose and uniform random considering from very low (no load) to high load injection rates. We evaluate the performance improvement because of our proposed scheduling techniques in APCR comparing with the performance of basic NoC design. The performance is also compared with the results found in monopolizing, fair-sharing and round-robin schemes for channel-stealing of APCR. It is observed from the simulation results using our detailed cycle-accurate simulator that our new scheduling policies implemented in APCR model improves the network throughput by 10% in case of synthetic workloads, compared with the existing round-robin scheme. Also, our scheduling policy in APCR model outperforms the baseline router by 28X under synthetic workloads

    Traffic Management for Next Generation Transport Networks

    Get PDF
    corecore