25 research outputs found

    Performance evaluation of user mobility on QoS classes in a 3G network

    Get PDF
    The popularity of IP services is increasing and the demand for managing traffic with different QoS classes has become more challenging. The stability of the system is affected by the rate of voice traffic. Mobility allows users to be connected at all time where handover may occur as it is not always possible to be connected to the same base station. Mobility and handover cause severe interference, which affects overall throughput and capacity of the system. The system requires greater capacity with more coverage area. This study deals with the impact of user mobility on voice quality in IP based application in a 3G Network. The aim is to improve the system performance in mixed traffic environment. A mathematical model is used to analyse the impact of using different type of coder on packet end-to-end delay and packet loss. The simulation results indicate that types of coder affect the system performance. Application of scheduling based on weight and load balancing technique can improve the system performance. The deployment of scheduling based on weight and a load balancing technique have been investigated to reduce the end-to-end delay and to improve overall performance in mixed traffic environment. The results under different conditions are analysed and it is found that by applying scheduling scheme, the quality of voice communication can be improved. In addition, load balancing technique can be used to improve the performance of the system. Apart from the decrease in delay, the technique can increase the capacity of the system and the overall stability of the system can be further improved. Finally, network security is another important aspect of network administration. Security policies have to be defined and implemented so that critical sections of the network are protected against unwarranted traffic or unauthorized personnel. The impact of implementing IPSec has been tested for voice communication over IP in a 3G network. Implementing the security protocol does not significantly degrade the performance of the system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Implementation of Vertical Handoff Algorithm between IEEE802.11 WLAN and CDMA Cellular Network

    Get PDF
    Today’s wireless users expect great things from tomorrow’s wireless networks. These expectations have been fueled by hype about what the next generations of wireless networks will offer. The rapid increase of wireless subscribers increases the quality of services anytime, anywhere, and by any-media becoming indispensable. Integration of various networks such as CDMA2000 and wireless LAN into IP-based networks is required in these kinds of services, which further requires a seamless vertical handoff to 4th generation wireless networks. The proposed handoff algorithm between WLAN and CDMA2000 cellular network is implemented. The results of the simulation shows the behavior of the handoff and the time spent in WLAN or CDMA. The number of weak signal beacons determines whether a handoff is required or not. In this algorithm, traffic is classified into real-time and non real-time services

    Efficient admission control schemes in cellular IP networks

    Get PDF
    The rapid growth of real-time multimedia applications over IP (Internet Protocol) networks has made the Quality of Service (QoS) a critical issue. One important factor affecting the QoS in the overall IP networks is the admission control in the fast expanding wireless IP networks. Due to the limitations of wireless bandwidth, wireless IP networks (cellular IP networks in particular) are generally considered to be the bottlenecks of the global IP networks. Admission control is to maintain the QoS level for the services admitted. It determines whether to admit or reject a new call request in the mobile cell based on the availability of the bandwidth. In this thesis, the term “call” is for general IP services including voice calls (VoIP) and the term “wireless IP” is used interchangeably with “cellular IP”, which means “cellular or mobile networks supporting IP applications”. In the wireless IP networks, apart from new calls, there are handoff (handover) calls which are calls moving from one cell to another. The general admission control includes the new call admission control and handoff call admission control. The desired admission control schemes should have the QoS maintained in specified levels and network resources (i.e. bandwidth in this case) are utilised efficiently. The study conducted in this thesis is on reviewing current admission control schemes and developing new schemes. Threshold Access Sharing (TAS) scheme is one of the existing schemes with good performance on general call admission. Our work started with enhancing TAS. We have proposed an improved Threshold Access Sharing (iTAS) scheme with the simplified ratebased borrowing which is an adaptive mechanism. The iTAS aims to lower handoff call dropping probability and to maximise the resource utilisation. The scheme works at the cell level (i.e. it is applied at the base station), on the basis of reserving a fixed amount of bandwidth for handoff calls. Prioritised calls can be admitted by “borrowing” bandwidth from other ongoing calls. Our simulation has shown that the new scheme has outperformed the original TAS in terms of handoff prioritisation and handling, especially for bandwidth adaptive calls. However, in iTAS, the admission decision is made solely based on bandwidth related criteria. All calls of same class are assumed having similar behaviour. In the real situation, many factors can be referred in decision making of the admission control, especially the handoff call handling. We have proposed a novice scheme, which considered multiple criteria with different weights. The total weights are used to make a decision for a handoff. These criteria are hard to be modelled in the traditional admission models. Our simulated result has demonstrated that this scheme yields better performance in terms of handoff call xiv dropping compared with iTAS. We further expand the coverage of the admission control from a cell level to a system level in the hierarchical networks. A new admission control model was built, aiming to optimise bandwidth utilisation by separating the signalling channels and traffic channels in different tiers. In the new model, handoff calls are also prioritised using call classification and admission levels. Calls belonging to a certain class follow a pre-defined admission rule. The admission levels can be adjusted to suit the traffic situation in the system. Our simulated results show that this model works better than the normal 2-tier hierarchical networks in terms of handoff calls. The model settings are adjustable to reflect real situation. Finally we conclude our research and suggest some possible future work

    Journal of Telecommunications and Information Technology, 2003, nr 4

    Get PDF
    kwartalni

    System level performance of ATM transmission over a DS-CDMA satellite link.

    Get PDF
    PhDAbstract not availableEuropean Space Agenc

    Development of resource allocation strategies based on cognitive radio

    Get PDF
    [no abstract
    corecore