8,402 research outputs found

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    PiCasso: enabling information-centric multi-tenancy at the edge of community mesh networks

    Get PDF
    © 2019 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Edge computing is radically shaping the way Internet services are run by enabling computations to be available close to the users - thus mitigating the latency and performance challenges faced in today’s Internet infrastructure. Emerging markets, rural and remote communities are further away from the cloud and edge computing has indeed become an essential panacea. Many solutions have been recently proposed to facilitate efficient service delivery in edge data centers. However, we argue that those solutions cannot fully support the operations in Community Mesh Networks (CMNs) since the network connection may be less reliable and exhibit variable performance. In this paper, we propose to leverage lightweight virtualisation, Information-Centric Networking (ICN), and service deployment algorithms to overcome these limitations. The proposal is implemented in the PiCasso system, which utilises in-network caching and name based routing of ICN, combined with our HANET (HArdware and NETwork Resources) service deployment heuristic, to optimise the forwarding path of service delivery in a network zone. We analyse the data collected from the Guifi.net Sants network zone, to develop a smart heuristic for the service deployment in that zone. Through a real deployment in Guifi.net, we show that HANET improves the response time up to 53% and 28.7% for stateless and stateful services respectively. PiCasso achieves 43% traffic reduction on service delivery in our real deployment, compared to the traditional host-centric communication. The overall effect of our ICN platform is that most content and service delivery requests can be satisfied very close to the client device, many times just one hop away, decoupling QoS from intra-network traffic and origin server load.Peer ReviewedPostprint (author's final draft

    ICedge: When Edge Computing Meets Information-Centric Networking

    Get PDF
    In today’s era of explosion of Internet of Things (IoT) and end-user devices and their data volume, emanating at the network’s edge, the network should be more in-tune with meeting the needs of these demanding edge computing applications. To this end, we design and prototype Information-Centric edge (ICedge), a general-purpose networking framework that streamlines service invocation and improves reuse of redundant computation at the edge. ICedge runs on top of Named-Data Networking, a realization of the Information-Centric Networking vision, and handles the “low-level” network communication on behalf of applications. ICedge features a fully distributed design that: (i) enables users to get seamlessly on-boarded onto an edge network, (ii) delivers application invoked tasks to edge nodes for execution in a timely manner, and (iii) offers naming abstractions and network-based mechanisms to enable (partial or full) reuse of the results of already executed tasks among users, which we call “compute reuse”, resulting in lower task completion times and efficient use of edge computing resources. Our simulation and testbed deployment results demonstrate that ICedge can achieve up to 50× lower task completion times leveraging its networkbased compute reuse mechanism compared to cases, where reuse is not available

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches
    • …
    corecore