4,675 research outputs found

    Traffic Profiling for Mobile Video Streaming

    Full text link
    This paper describes a novel system that provides key parameters of HTTP Adaptive Streaming (HAS) sessions to the lower layers of the protocol stack. A non-intrusive traffic profiling solution is proposed that observes packet flows at the transmit queue of base stations, edge-routers, or gateways. By analyzing IP flows in real time, the presented scheme identifies different phases of an HAS session and estimates important application-layer parameters, such as play-back buffer state and video encoding rate. The introduced estimators only use IP-layer information, do not require standardization and work even with traffic that is encrypted via Transport Layer Security (TLS). Experimental results for a popular video streaming service clearly verify the high accuracy of the proposed solution. Traffic profiling, thus, provides a valuable alternative to cross-layer signaling and Deep Packet Inspection (DPI) in order to perform efficient network optimization for video streaming.Comment: 7 pages, 11 figures. Accepted for publication in the proceedings of IEEE ICC'1

    Anticipatory Buffer Control and Quality Selection for Wireless Video Streaming

    Full text link
    Video streaming is in high demand by mobile users, as recent studies indicate. In cellular networks, however, the unreliable wireless channel leads to two major problems. Poor channel states degrade video quality and interrupt the playback when a user cannot sufficiently fill its local playout buffer: buffer underruns occur. In contrast to that, good channel conditions cause common greedy buffering schemes to pile up very long buffers. Such over-buffering wastes expensive wireless channel capacity. To keep buffering in balance, we employ a novel approach. Assuming that we can predict data rates, we plan the quality and download time of the video segments ahead. This anticipatory scheduling avoids buffer underruns by downloading a large number of segments before a channel outage occurs, without wasting wireless capacity by excessive buffering. We formalize this approach as an optimization problem and derive practical heuristics for segmented video streaming protocols (e.g., HLS or MPEG DASH). Simulation results and testbed measurements show that our solution essentially eliminates playback interruptions without significantly decreasing video quality
    corecore