14,773 research outputs found

    A highly parameterized and efficient FPGA-based skeleton for pairwise biological sequence alignment

    Get PDF

    High Performance Biological Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP

    Get PDF
    This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies, namely, Field Programmable Gate Arrays (FPGAs), Graphics Processor Units (GPUs), and IBM’s Cell Broadband Engine (Cell BE), in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria. In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and development tools), FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors and one order of magnitude speed-up compared to domain-specific technologies such as GPUs

    String Matching with Multicore CPUs: Performing Better with the Aho-Corasick Algorithm

    Full text link
    Multiple string matching is known as locating all the occurrences of a given number of patterns in an arbitrary string. It is used in bio-computing applications where the algorithms are commonly used for retrieval of information such as sequence analysis and gene/protein identification. Extremely large amount of data in the form of strings has to be processed in such bio-computing applications. Therefore, improving the performance of multiple string matching algorithms is always desirable. Multicore architectures are capable of providing better performance by parallelizing the multiple string matching algorithms. The Aho-Corasick algorithm is the one that is commonly used in exact multiple string matching algorithms. The focus of this paper is the acceleration of Aho-Corasick algorithm through a multicore CPU based software implementation. Through our implementation and evaluation of results, we prove that our method performs better compared to the state of the art
    • 

    corecore