

Edinburgh Research Explorer

High Performance Biological Pairwise Sequence Alignment:
FPGA versus GPU versus Cell BE versus GPP

Citation for published version:
Benkrid, K, Akoglu, A, Ling, C, Song, Y, Liu, Y & Tian, X 2012, 'High Performance Biological Pairwise
Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP' International Journal of
Reconfigurable Computing, vol 2012, pp. 1-15., 10.1155/2012/752910

Digital Object Identifier (DOI):
10.1155/2012/752910

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
International Journal of Reconfigurable Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

http://dx.doi.org/10.1155/2012/752910
http://www.research.ed.ac.uk/portal/en/publications/high-performance-biological-pairwise-sequence-alignment-fpga-versus-gpu-versus-cell-be-versus-gpp(f5341150-9d67-4f1e-a532-dccadbf418ea).html

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 752910, 15 pages
doi:10.1155/2012/752910

Review Article

High Performance Biological Pairwise Sequence Alignment:
FPGA versus GPU versus Cell BE versus GPP

Khaled Benkrid,1 Ali Akoglu,2 Cheng Ling,1 Yang Song,2 Ying Liu,1 and Xiang Tian1

1 Institute of Integrated Systems, School of Engineering, The University of Edinburgh, Kings Buildings, Mayfield Road,
Edinburgh EH9 3JL, UK

2 Electrical and Computer Engineering Department, The University of Arizona, Tucson, AZ 85721-0104, USA

Correspondence should be addressed to Khaled Benkrid, k.benkrid@ed.ac.uk

Received 15 December 2011; Revised 13 February 2012; Accepted 17 February 2012

Academic Editor: Kentaro Sano

Copyright © 2012 Khaled Benkrid et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient
computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies,
namely, Field Programmable Gate Arrays (FPGAs), Graphics Processor Units (GPUs), and IBM’s Cell Broadband Engine (Cell
BE), in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general
purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase
and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance
per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller
margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria.
In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and
development tools), FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors
and one order of magnitude speed-up compared to domain-specific technologies such as GPUs.

1. Introduction

Since it was first announced in 1965, Moore’s law has
stood up the test of time, providing exponential increases
in computing power for science and engineering problems
over time. However, while this law was largely followed
through increases in transistor integration levels and clock
frequencies, this is no longer possible as power consumption
and heat dissipation are becoming major hurdles in the face
of further clock frequency increases, the so-called frequency
or power wall problem.

In order to keep Moore’s law going, general-purpose
processor manufacturers, for example, Intel and AMD,
are now relying on multicore chip technology in which
multiple cores run simultaneously on the same chip at
capped clock frequencies to limit power consumption. While
this has the potential to provide considerable speed-up for
science and engineering applications, it is also creating a

semantic gap between applications, traditionally written in
sequential code, and hardware, as multicore technologies
need to be programmed in parallel to take advantage of
their performance potential. This problem is however also
opening a window of opportunity for hitherto niche parallel
computer technologies such as Field Programmable Gate
Arrays (FPGAs) and Graphics Processor Units (GPUs) since
the problem of parallel programming has to be tackled for
general-purpose processors anyway.

This paper presents a comparative study between
three different acceleration technologies, namely, Field Pro-
grammable Gate Arrays (FPGAs), Graphics Processor Units
(GPUs), and IBM’s Cell Broadband Engine (Cell BE), in
the design and implementation of the widely-used Smith-
Waterman pairwise sequence alignment algorithm, with
general purpose processors as a base reference implementa-
tion. Comparison criteria include the speed of the resulting
implementation, its energy consumption, as well as purchase

2 International Journal of Reconfigurable Computing

and development costs. Note that the aim of this paper
is not to present the best implementation (from a speed
point of view) on the four architectures but to perform a
fair comparison of all four technologies in terms of speed,
energy consumption, and development time and cost. We
thus chose not to use the results of the best implementations
reported in the literature, but instead to perform our own
experiments using a set of Ph.D. students with relatively
equal experience on each platform and measure the speed,
development time, cost and energy consumption of each
resulting implementation.

The rest of this paper is organized as follows. The
following section will first present background on the Smith-
Waterman algorithm, together with an overview of the target
implementation platforms, namely, Xilinx Virtex-4 FPGAs,
NVIDIA GeForce 8800GTX GPU, IBM’s Cell BE processor
and finally the Pentium 4 Prescott processor. Sections 3, 4, 5,
and 6 will then report our design and implementation of the
Smith-Waterman algorithm on each of the above platforms,
in turn. After that, comparative implementation results on all
platforms are presented in Section 7 before final conclusions
are drawn.

2. Background

Pairwise biological sequence alignment is a basic operation
in the field of bioinformatics and computational biology
with a wide range of applications in disease diagnosis, drug
engineering, biomaterial engineering, and genetic engineer-
ing of plants and animals [1]. The aim of this operation is
to assign a score to the degree of similarity or correlation
between two sequences, for example, Protein or DNA,
which can then be used to find out whether two sequences
are related or not, build a multiple sequence alignment
profile, or construct phylogenetic trees. The most accurate
algorithms for pairwise sequence alignment are exhaustive
search dynamic-programming- (DP-) based algorithms such
as the Needleman-Wunsch algorithm [2] and the Smith-
Waterman algorithm [3]. The latter is the most commonly
used DP algorithm as it finds the best local alignment of
subsegments of a pair of biological sequences. However,
biological sequence alignment is also a computationally
expensive application as its computing and memory require-
ments grow quadratically with the sequence length [4]. Given
that a query sequence is often aligned to a whole database
of sequences in order to find the closest matching sequence
(see Figure 1) and given the annual increase in the size of
biological databases, there is a need for a matching increase
in computing power at reasonable cost [5].

The following subsections will present theoretical back-
ground on the Smith-Waterman algorithm, followed by an
architectural overview of each of the four target hardware
platforms.

2.1. The Smith-Waterman Algorithm for Pairwise Biologi-
cal Sequence Alignment. Biological sequences, for example,
DNA or protein sequences of residues (a DNA residue is
one of four nucleotides while a protein residue is one of

Table 1: Denotations of the alignment between sequences s and t.

s : A G C A C A C − C

t : A − C A C A C T A

….ACCCTTTTGGGG

….ACGCTCTAAACCGTC...
….ACGCGCTACACCATG..

….GCCCTCTAGAAAGTC...
….AGGAGCGACCCGATA..

Query sequence Biological sequence
databases

Find the closest matching
sequence

Figure 1: Pairwise sequence alignment, for example, DNA.

20 aminoacids [1]) evolve through a process of mutation,
selection, and random genetic drift [6]. Mutation, in partic-
ular, manifests itself through three main processes, namely,
substitution of residues (i.e., a residue A in the sequence is
replaced by another residue B), insertion of new residues,
and deletion of existing residues. Insertion and deletion are
referred to as gaps. The gap character “-” is introduced to
present a character insertion or deletion between sequences.
There are four ways to indicate the alignment between two
sequence s and t as shown below:

(a, a) denotes a match (no change from s to t),

(a,−) denotes deletion of character a (in s),

(a, b) denotes replacement of a (in s) by b (in t),

(−, b) denotes insertion of character b (in s).

For example, an alignment of two sequences s and t
(see Table 1) is an arrangement of s and t by position, where
s and t can be padded with gap symbols to achieve the same
length and where (A,A) indicates a match, (G,−) indicates
the deletion of G, (−,T) indicates the insertion of T , and
(C,A) indicates the replacement of C by A.

The most basic pairwise sequence analysis task is to ask
whether two sequences are related or not, and by how much.
It is usually done by first aligning the sequences (or part of
sequences) and then deciding whether the alignment is more
likely to have occurred because the sequences are related or
just by chance. The parameters of the alignment methods are
[1] as follows:

(i) the types of alignment to be considered;

(ii) the scoring system used to rank the alignments;

(iii) the algorithm used to find optimal (or good) scoring
alignments;

(iv) the statistical methods used to evaluate the signifi-
cance of an alignment score.

The degree of similarity between pairs of biological
sequences is measured by a score, which is a summation
of odd-log scores between pairwise residues, in addition to
gap penalties. The odd-log scores are based on the statistical

International Journal of Reconfigurable Computing 3

likelihood of any possible alignment of pairwise residues
and is often summarised in a substitution matrix (e.g.,
BLOSUM50, BLOSUM62, PAM). The gap penalty depends
on the length of gaps and is often assumed independent of
the gap residues. There are two types of gap penalties, known
as linear gaps and affine gaps. The linear gap is a simple model
with constant gap penalty (d) multiplied by the length of the
gap (g), denoted as

Penalty
(
g
) = −g ∗ d. (1)

An Affine gap has opening and extension penalties. The
constant penalty for opening a gap is normally bigger than
the penalty for extending a gap, which is more biologically
realistic as few gaps are as frequent as a single gap in practice.
Affine gaps are thus formulated as (d is the opening penalty
and e is the extension penalty)

Penalty
(
g
) = −d − (g − 1

)∗ e, where d > e. (2)

For the sake of simplicity the following presents the
Smith-Waterman algorithm in the case of linear gaps. The
extension to the case of affine gaps is straightforward [1].

The Smith-Waterman (SW) algorithm is a widely used
pairwise sequence alignment algorithm as it finds the best
possible aligned subsegments in a pair of sequences (the so-
called local alignment problem). It entails the construction
of an alignment matrix (F) by a recursion equation as shown
for an alignment between two sequences X = {xi} and Y =
{yj}:

F
(
i, j
) = max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0,

F
(
i− 1, j − 1

)
+ s
(
xi,yj

)
,

F
(
i− 1, j

)− d,

F
(
i, j − 1

)− d.

(3)

Here, the alignment score is the largest of three alterna-
tives (saturated to zero in case all three values are negative
as it is better to start a new subsegment alignment than
continue a subalignment with a negative score). These three
alternatives are:

(i) An alignment between xi and yj , in which case the
new score is F(i − 1, j − 1) + s(xi, yj), where s(xi, yj)
is the substitution matrix score or entry for residues
xi and yj .

(ii) An alignment between xi and a gap in Y , in which
case the new score is F(i−1, j)−d, where d is the gap
penalty.

(iii) An alignment between yj and a gap in X , in which
case the new score is F(i, j−1)−d, where d is the gap
penalty.

The dependency of each cell is shown in Figure 2. Here, each
cell on the diagonal of the alignment matrix is independent
of each other, which allows for a systolic architecture to be
used in hardware in order to exploit this parallelism and
hence speed up the algorithm execution.

After populating the alignment matrix, the best align-
ment between X and Y is obtained by tracing back from the

F(i− 1, j − 1) F(i, j − 1)

−d

−d
F(i, j)F(i− 1, j)

s(xi, yj)

Figure 2: Data dependency of dynamic programming algorithms.

H E A G A W G H E E

0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 5 0 5 0 0 0 0 0

W 0 0 0 0 2 0 20 12 4 0 0

H 0 10 2 0 0 0 12 18 22 14 6

E 0 2 16 8 0 0 4 10 18 28 20

A 0 0 8 21 13 5 0 4 10 20 27

E 0 0 6 13 18 12 4 0 4 16 26

A W G H E

A W-H E
Best local alignment:

Query sequence: H E A G A W G H E E

Subject sequence: P A W H E A W

Figure 3: Illustration of the Smith-Waterman algorithm.

cell with the maximum score in the alignment matrix back
to the first zero matrix element. For this, we keep track of the
matrix cell from which each cell’s F(i, j) was derived, that
is, above, left, or above-left. The complete Smith-Waterman
algorithm is illustrated in Figure 3 using the BLOSUM50
substitution matrix and a linear gap penalty equal to 8.

The following subsections will present an architectural
overview of each of the four implementation platforms, in
turn, namely, Xilinx’ Virtex-4 FPGAs, NVIDIA’s GeForce
8800GTX GPU, IBM’s Cell BE processor, and Intel’s Pentium
4 Prescott processor. To enable a fair comparison, these
specific implementation platforms were chosen because they
are all based on 90 nm CMOS technology and were pur-
chased off-the-shelf at around the same time. Moreover, each
platform was targeted by a different but equally experienced
programmer.

2.2. The FPGA Implementation Platform. For the purpose
of our FPGA-based implementation of the Smith-Waterman
algorithm, we targeted an HP ProLiant DL145 server
machine [7] which has an AMD 64bit processor and a
Celoxica RCHTX FPGA board [8]. The latter has a Xilinx
Virtex-4 LX160-11 FPGA chip, which is based on 90 nm

4 International Journal of Reconfigurable Computing

……
Multiprocessor 2

Registers

Registers

Registers

Registers

Registers

……

Processor 1

Processor 2

Processor 3

Processor 4

Processor 8

……

Shared
memory

16KB

Instruction
unit

Constant
cache
8KB

Texture
cache
8KB

Multiprocessor 1

Device
memory
768MB

Multiprocessor 16
Device
(GPU)

Figure 4: Architecture of NVIDIA’s GeForce 8800 GTX.

copper CMOS process with a core voltage of 1.2 V [9]. All
data transfer between the host processor and FPGA chip on
the HP ProLiant server pass through the Hyper-Transport
interface with a bandwidth of 3.2 GB/s.

The XC4VLX160 FPGA (see [9]) contains 67,584 slices,
1056 Kb of distributed memory, 96 XtremeDSP slices (not
used in this paper’s application) which can be configured as
18 × 18 multiplier with 48-bit accumulator, 288 BlockRAMs
each 18 Kbit in size and configurable in dual ported mode
with various word lengths and depths, and 960 user I/Os.
Each slice has two 4-input look-up tables, which can be
configured as 16 × 1 RAM, and two flip-flops in addition
to some dedicated logic for fast addition and multiplication.

The FPGA design for the Smith-Waterman algorithm
was captured in a C-based high level hardware language,
called Handel-C [10], with the DK5 suite used to compile
Handel-C into FPGA netlist, and Xilinx ISE software used
for generating FPGA configuration bitstreams. A host appli-
cation written in C++ services user queries and transfers
them onto the FPGA board through the Hyper-Transport
link. The FPGA configuration accepts a query sequence
using an input/output interface based on the DSM library in
Handel-C and starts alignment processing against a sequence
database held on the FPGA board memory. Alignment
results are then fed back to the host application through the
FPGA input/output interface and Hyper-Transport link.

2.3. The GPU Platform. For the purpose of our GPU-
based implementation of the Smith-Waterman algorithm, we
targeted the GeForce 8800GTX GPU from NVIDIA Corp.
[11]. This GPU is fabricated in 90 nm CMOS technology
and consists of 16 Stream Multiprocessors (SMs), with each
SM having eight Stream Processors (SPs) used as Arithmetic
Logic Units (ALUs) with 8 KB constant cache, 8 KB texture
cache, and 16 KB shared memory (see Figure 4). The SP clock
frequency is 1,350 MHz.

This architecture, known as CUDA (Compute Uni-
fied Device Architecture), is a generic parallel computing
architecture developed by NVIDIA Corp. to make the
computing engines of graphics processing units accessible
to general purpose software developers through a standard
programming language, for example, C, with an API to
exploit the architecture parallelism. Like many-core CPUs,
CUDA uses threads for parallel execution. However, whereas
multicore CPUs have only few threads running in parallel
at any particular time, GPUs allow for thousands of parallel
threads to run at the same time (768 threads per SM in the
case of the GeForce 8800 GTX).

The memory hierarchy in CUDA devices consists of
registers, shared memory, global memory, texture memory,
and constant memory. Each SP has its own registers (1024)
and operates the same kernel code as other SPs, but with
different data sets. Shared memory (16 KB per SM) can be
read and written to by any thread in a block of threads (or
thread block) assigned to an SM. Access speed to shared
memory is as fast as accessing SP registers as long as there are
no bank conflicts [12]. Device memory offers global access
to a larger (768 MB) but slower storage. Any thread in any SP
can read from or write to any location in the global memory.
Since computational results can be transferred back to CPU
memory through it, global memory can be thought of as
a bridge which achieves communication between GPU and
CPU.

Local shared memory is allocated automatically if the
size of variable required is bigger than the register size. It
is not cached and cannot be accessed in a coalesced manner
like global memory. Texture memory within each SM can be
filled with data from the global memory. It acts as a cache,
and so does constant memory, which means that their data
fetch time is shorter. However, threads running in the SMs
are restricted to read only access to these memories. The
host CPU, on the other hand, does have write access to these
memories.

International Journal of Reconfigurable Computing 5

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

PPE

L1

L2

XDR
DRAM
interface

EIB

I/O
interface

Coherent
interface

Synergistic processing unit
with SIMD engine

Memory flow controller
and DMA engine

256KB local store
memory

PowerPC
processor

Figure 5: Architecture of Cell BE processor.

2.4. The Cell BE Platform. For the purpose of our Cell BE-
based implementation, we used an IBM IntelliStation Z Pro
Workstation with a Cell Acceleration Board (CAB). The
CAB has one Cell Broadband Engine (Cell BE) running
at 2.8 GHz, and 1 GB of XDR RAM. The IBM Cell BE is
essentially a distributed memory, multiprocessing system on
a single chip (see Figure 5). It consists of a ring bus that
connects a single PowerPC Processing Element (PPE), eight
Synergistic Processing Elements (SPEs), a high bandwidth
memory interface to the external XDR main memory, and
a coherent interface bus to connect multiple Cell processors
together [13]. All these elements are connected with an
on-chip Element Interconnect Bus (EIB). The first level
instruction and data cache on the PPE are 32 KB and the
level 2 cache is 512 KB. From a software perspective, the PPE
can be thought of as the “host” or “control” core, where
the operating system and general control functions for an
application are executed.

The eight SPEs are the primary computing engines
on the Cell processor. Each SPE contains a Synergistic
Processing Unit (SPU), a memory flow controller, a memory
management unit, a bus interface, and an atomic unit
for synchronization mechanisms [14]. SPU instructions
cannot access the main memory directly. Instead, they
access a 256 KB local store (LS) memory, which holds both
instructions and data. The programmer should keep all the
codes and data within the size of LS and manage its contents
by transferring data between off-chip memory and LS via
mailboxes or direct memory access (DMA). This allows the
programmer to overlap the computations and data transfer
via double-buffering techniques [15].

We used Cell SDK version 3.0 and Mercury’s MultiCore
Framework (MCF) to develop our CellBE implementation.
MCF uses a Function Offload Engine (FOE) model. In this
model, the PPE acts as a manager directing the work of the

SPEs. Sections of the algorithm in hand are loaded into the
SPEs as individual “tasks.” Data is then moved to the SPE
where it is processed.

2.5. The GPP Platform. For the purpose of our GPP-
based implementation of the Smith-Waterman algorithm, we
targeted a PC with a 3.4 GHz Pentium 4 Prescott processor,
1 GB of RAM, running Windows XP OS. The Prescott
processor has a 31 stage pipeline, 16 K 8-way associative L1
cache, and 1 MB L2 cache, and like all of the above platforms,
it is also based on 90 nm CMOS technology.

3. Implementation of the Smith-Waterman
Algorithm on FPGA

In this section, we will present the design of the Smith-
Waterman algorithm implementation on FPGA. Figure 6
presents a linear systolic array for the implementation of
a general purpose pairwise sequence alignment algorithm
based on the dynamic programming algorithms presented
in Section 2.1 above. The linear systolic array consists of
a pipeline of basic processing elements (PEi) each holding
one query residue xi, whereas the subject sequence is shifted
systolically through the array [4]. Each PE performs one
elementary calculation (see (3)) in one clock cycle and
populates one column of the alignment matrix in turn (see
Figure 7). The calculation at PEi+1 depends on the result
from PEi, which means that each PE is one cycle behind its
predecessor. The full alignment of two sequences of lengths
N and M is hence achieved in M + N − 1 cycles.

The architecture of Figure 6 can cater for different
sequence symbol types, sequence lengths, match scores,
and matching task. Indeed, the sequence symbol type, for

6 International Journal of Reconfigurable Computing

PEiPE1 PE2 PEN

Subject sequence

Query sequence Y = (y1, y2, y3,yN)

xM , xM−1, ..., x2, x1

Figure 6: Linear processor array architecture for the FPGA implementation of the Smith-Waterman algorithm.

H E A G A W G H E E

0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 5 0 5 0 00 0 0

W 0 0 0 0 2 0 20 12 4 0 0

H 0 10 2 0 0 0 12 18 22 14 6

E 0 16 8 0 0 4 10 18 28 20

A 0

2

8 21 13 5 0 4 10 20 27

E 0 0 6 13 18 12 4 0 4 16 26

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10

t = 0

t = 1

t = 2

t = 6

t = 7 t = 8 t = 15

AW G H E
AW-H E

Best local alignment:

Query sequence: H E A G A W G H E E

Subject sequence: P A W H E A W

Figure 7: Illustration of the execution of the Smith-Waterman on
the linear array processor.

example, DNA or Proteins, will only influence the word
length of the input sequence, for example, 2 bits for DNA
and 5 bits for Proteins, the query sequence length dictates the
number of PEs, and the match score attributed to a symbol
match depends on the substitution matrix used. Given a
particular substitution matrix, for example, BLOSUM50,
all possible match scores for a particular symbol represent
one column in the substitution matrix. Hence, for each
PE, we store the corresponding symbol’s column in the

substitution matrix, which we use as a look-up table. A
different substitution matrix will hence simply mean a
different look-up table content. The penalties attributed to
a gap can also be stored in the PE.

The linear array of Figure 6 can also cater for different
matching tasks with few changes. For instance, the difference
between global alignment, local alignment, and overlapped
matching [1, 4] resides in the initial values of the alignment
matrix (border values), the recursive equation implemented
by the PE, as well as the starting cell of the traceback
procedure. Although a query sequence is often compared to
a large set of database sequences, the traceback procedure is
only needed for few sequences with high alignment scores. As
such, it is customary to perform this on a host (sequential)
processor as the time involved in this operation is negligible
compared to the time it takes to align the query sequence
against a whole sequence database.

3.1. The Case of Long Sequences. The number of PEs that
could be implemented on an FPGA is limited by the logic
resources available on-chip. For instance, the maximum
number of PEs that could be implemented on a Xilinx
XC2V6000 Virtex-II FPGA in the case of the Smith-
Waterman algorithm with affine gap penalties is ∼250.
Clearly, this is not sufficient for many real world sequences
where query sequence lengths can be in the thousands.
The solution in such cases is to partition the algorithm in
hand into small alignment steps and map the partitioned
algorithm onto a fixed size linear systolic array (whose size
is dictated by the FPGA in hand) as illustrated in Figure 8
below [4]. Here, the sequence alignment is performed in
several passes. A First-In-First-Out (FIFO) memory block

International Journal of Reconfigurable Computing 7

Max

Subject sequence
and control

Max

FIFO

0
1

First?

Intermediate results, subject
sequence and control

Configuration
memory

WE
Din Dout

Addr

Cfg

0
1

Dynamic programming

recursion equation

circuit

PE1 PEυ PEυ+1 PE2υ PE(k−1)υ+1 PEkυ

PEi PEMPE1 PE2 PEi+1

Linear array of size υ

Partitioning into k (= ⌈M/υ⌉)
arrays, each of size υ

Linear array of size M

PEυPE1 PE2

Mapping onto one linear
array of size υ

Cfg Addr

Cfg Data in
Cfg Data out

Figure 8: Partitioning/Mapping of a sequence alignment algorithm onto a fixed size systolic array.

is used to store intermediate results from each pass before
they are fed back to the array input for the next pass. The
depth of the FIFO is dictated by the length of the subject
sequence. Another consequence of the folded architecture is
that each PE should now hold k substitution matrix columns
(or look-up tables) instead of just one. In order to load the
initial values of the look-up tables used by the PEs, a serial
configuration chain is used, as illustrated in Figure 8. When
the control bit Cfg is set to 1, the circuit is in configuration
mode. Distributed memory in each PE then behaves as a
register chain. Each PE configuration memory is loaded with
the corresponding look-up tables sequentially. At the end of
the configuration, Cfg is reset to 0 indicating the start of the
operation mode.

4. Implementation of the Smith-Waterman
Algorithm on GPU

The parallelization strategy adopted for our GPU imple-
mentation is based on multithreading and multiprocessing.
Indeed, several threads are allocated to the computation of
a single alignment matrix in parallel within a thread block,
while several thread blocks are allocated to compute the
alignments of different pairs of sequences [16]. We sepa-
rate a single alignment matrix computation into multiple
submatrices with a certain number of threads allocated
to calculate each submatrix in parallel, depending on the
maximum number of threads and maximum amount of
memory available (see Figure 9). Once the allocated batch of

threads completes a sub-matrix calculation, the final thread
in the batch records the data in the row of which it takes
charge and stores it into shared memory or global memory,
depending on the size of database subject sequence, ready for
the calculation of the next sub-matrix. The first thread in
the batch, on the other hand, loads this data as initial data
for the subsequent sub-matrix calculation. This operation
continues in turn until the end of the entire alignment matrix
calculation.

The above procedure makes this GPU implementation
scalable to any sequence length. On the NVIDIA GeForce
8800GTX GPU, each SM can have 768 parallel threads
running at the same time. Hence, we split this number into
batches of threads or blocks, where each block computes
one alignment matrix. For example, we can split the overall
number of threads into 8 blocks of 96 threads, with 10
registers allocated to each thread and each block could use
almost 2 KB of shared memory. Global memory will be used
if this amount of allocated shared memory space is not
enough for any database subject sequence. Note here that if
the length of the database subject sequence is smaller than
the number of threads in the block, additional waiting time
should be added for the threads in the batch to finish their
computations. This is easy to imagine, for example, if thread
0 has already completed its row calculation, but thread n has
not completed yet or has not even started its row, then thread
0 would have to wait for thread n of the previous sub-matrix
alignment to complete its task before obtaining its initial data
for the sub-matrix alignment.

8 International Journal of Reconfigurable Computing

Thread 0
Thread 1

Thread 3

Thread n
· · · · · ·
Thread 2

BLOCK k

BLOCK 2

BLOCK 1

BLOCK 0

Database

Database

Database

Database

Q [0]
Q [1]
Q [2]
Q [3]

Q [n]
· · · · · ·

Query

D[k][0] D[k][1] D[k][2] D[k][3] D[k][m]

D[2][0] D[2][1] D[2][2] D[2][3] D[2][m]

D[1][0] D[1][1] D[1][2] D[1][3] D[1][m]

D[0][0] D[0][1] D[0][2] D[0][3] D[0][m]

··· ···
··· ···

··· ···
··· ···

Thread 0
Thread 1

Thread 3

Thread n
· · · · · ·
Thread 2

Global
memory

0
0
0
0
0

0
· · · · · · · · · · · ·· · · · · · · · · · · · · · · · · ·· · · · · · · · · · · ·

0
H 0 H 0.1 H 0.2 H 0.3
H 1 H 1.1 H 1.2 H 1.3
H 2 H 2.1 H 2.2 H 2.3
H 3 H 3.1 H 3.2 H 3.3

H n.0 H n.1 H n.2 H n.3

0 0 0

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

H 0.m
H 1.m
H 2.m
H 3.m

H n.m

H n.0 H n.1 H n.2 H n.3 H n.m

· · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · ·· · · · · · · · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

Q [n + 1]
Q [n + 2]
Q [n + 3]
Q [n + 4]

Q [n + n]

0
0
0
0
0

0

H n + 3.1

H n + 1.1
H n + 2.1

H n + n.0 H n + n.1 H n + n.2 H n + n.3 H n + n.m

H n + 1
H n + 2
H n + 3
H n + 4

0

Store/load operation

· · · · · ·
H n + 4.1

H n + 3.2

H n + 1.2
H n + 2.2

H n + 4.2
H n + 3.3

H n + 1.3
H n + 2.3

H n + 4.3

H n + 1.m
H n + 2.m
H n + 3.m
H n + 4.m

Figure 9: Our GPU parallel thread implementation of the Smith-Waterman algorithm: store and load operations are performed by the final
thread and the first thread in each thread batch (block) to allow for any sequence length processing.

Thread 0

Thread 1

Thread 2

Thread n

Q[0]

Q[1]

Q[2]

Q[n]

D[0], D[1] D[2], D[3] D[m−1], D[m]

· ·

D[0], D[1]

D[0], D[1]

D[0], D[1]

D[2], D[3]

D[2], D[3]

D[2], D[3]

D[4], D[5]

D[4], D[5]

D[4], D[5]

D[4], D[5]

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

D[m−1], D[m]

D[m−1], D[m]

D[m−1], D[m]

D[m−1], D[m]

Figure 10: Alignment matrix calculation with vector variable char2.

4.1. Load Partitioning Strategy. In our GPU implementation,
we used constant cache to store the commonly-used constant
parameters in order to decrease access time, including the
substitution matrix and the query sequence. In addition, we
used global memory to store the database sequence as the size
of the latter can be in the hundreds of Megabytes. Moreover,
we used texture cache to shade database sequences. The
bottleneck of speed-up in our implementation is the store
operation of temporary data by the last thread and the load
operation by the first thread in each batch, because the
latency between SP registers and global memory is much
longer than the one between registers and shared memory.
No matter how fast other threads can execute the kernel
code, they have to wait for a synchronization point of all
threads. Obviously, this only occurs when the length of
the database subject sequence is longer than the allocated
space in shared memory. Therefore, our acceleration strategy
mainly focuses on the efficient allocation of resources to each
block to make the maximum use of the available parallelism.
This can be achieved through setting the proper number
of threads in each block. Here, since each SM has 8192
registers and can keep at most 768 parallel threads, for a
query sequence of length 512, if we use 1 block of 512 threads,
16 registers can be used for each thread. In this case, only

one pairwise sequence alignment can be computed in each
SM. If we use 8 blocks of 64 threads, also 16 registers can
be allocated to each thread, but the number of sequence
alignments that can be processed at the same time becomes 8.
Rather than adopting the simple method used in [17] which
utilizes the full memory resources for each block, we flexibly
allocate resources through setting the number of threads
in each block, with no limitation on the overall length of
the query sequence. Table 2 presents execution times of the
Smith-Waterman algorithm on GPU using our technique,
with different numbers of threads per block. For a query
sequence of length 1023, 64 threads per block leads to the
best performance.

Note finally that we used vector type char2 as illustrated
in Figure 10 to decrease the data fetch times compared to
using char [12]. This was empirically found to be more
efficient than using vector char4.

5. Implementation of the Smith-Waterman
on IBM Cell BE

Our IBM Cell BE implementation exploits the data par-
allelism involved in aligning one query sequence with a
large database of sequences by assigning different database

International Journal of Reconfigurable Computing 9

MCF initialization

Read all
sequences and
transmit each
sequence in a

message queue

SPE 1 SPE 8

Receive
sequence from
message queue

Call
Smith-Waterman()

Send scores in a
message queue

Receive data
from message

queue

Receive scores
from SPEs

Write the results
to output files
and terminate

· · ·

PPE

PPE

Call
Smith-Waterman()

Send scores in a
message queue

Figure 11: The parallel code flow of Smith-Waterman algorithm on Cell BE. The PPE transmits data to SPEs via one message queue and
receives the results from SPEs by another.

sequences to the eight SPEs, that is, through multiprocessing.
The PPE operates as a manager handling data I/O, assigning
tasks and scheduling the SPEs. It reads input database
sequences from disk, transmits different database sequences
to different SPEs, and invokes SPEs to perform pairwise
sequence alignment using the Smith-Waterman algorithm
on independent sequences as illustrated in Figure 11.

The Cell BE uses two schemes to transfer data between
the DRAM and the SPEs: (1) message queue and (2) direct
memory access (DMA). In the message queue mode, the
PPE reads the data from the DRAM, packetizes the data, and
places packets into the message queue for the target SPE to
read. DMA is a mechanism for an SPE to bypass the PPE and
read data from the DRAM directly. This feature makes DMA

a desirable option for data intensive applications. However,
based on our timing trace results on the Cell BE, we found
that the computation time within each SPE is the dominant
component of the total execution time. For the case of query
sequence length 256, we observed that 92.7% of the time is
spent on computation and only 7.3% on the data transfer
with the message queue. From this perspective, switching
from message queue to DMA will not improve the per-
formance considerably. Indeed, the average sequence length
of the SWISS-PROT database is about 360, which can be
completely packetized into a message queue and transmitted
between PPE and SPEs. Therefore, we chose message queue
as the parallelism strategy on the Cell BE due to the short
bandwidth and latency of data communication [19].

10 International Journal of Reconfigurable Computing

Table 2: Performance comparison for different numbers of threads
per block (64, 128, 256). All query sequences run against the SWISS-
PROT database [18].

Query length
Thread 64 Thread 128 Thread 256

time (sec) time (sec) time (sec)

63 2.1 3.1 6.2

127 6.1 4.2 7.2

191 9.3 11.9 8.3

255 12.5 12.9 9.6

511 25.1 26.4 29.2

1023 50.4 53.1 57.8

We packetize and transmit each sequence in a message
queue between PPE and SPEs. First, the manager and the
workers all initialize the MCF network. Then, the PPE feeds
the worker code into the local store memory of each SPE and
signals them to start. As part of the initialization process,
we dynamically set up two message queues, one is for PPE
sending data to SPEs, and the other is backwards, for SPEs
passing results back towards the PPE. After reading one
sequence from the database, the manager puts it into one
message queue and sets up a loop in which the PPE sends
the message to SPEs separately. The manager then waits for
the synchronization semaphore from the SPEs when they
finish pulling the data into local store. Sequentially, the SPEs
start processing the data in a concurrent manner. Whoever
completes its computation first sends the results back to the
PPE by means of the other message queue. This process
continues until PPE transmits all the sequences to the SPEs.
The manager then deallocates memory, destroys the MCF
network, and terminates the program.

Parallelization of any algorithm requires careful attention
to the partitioning of tasks and data across the system
resources. Each SPE has a 256 KB local store memory that is
allocated between executable code and data. The executable
code section must contain the top-level worker code, the
MCF functions, and any additional library functions that are
used. If the total amount of executable code is too large for
the allocated memory, it may be loaded as several “plug-ins.”
If the total amount of data exceeds the data allocation, it
may be loaded down as “tiles.” MCF contains plug-in and tile
channel constructs to facilitate this as required. The tradeoff
here is in increased code complexity. The core functions of
the Smith-Waterman algorithm implementation compile to
less than 83 KB. MCF adds up to 64 KB depending on the
functions that are used. Rounding this up suggests that the
worker code would somewhat be greater than half of the
available SPE memory (128 KB). For our specific database,
the maximum length of all the sequences is 35,213 bytes,
which amounts to ∼36 KB of data. These estimates suggest
that each SPE could receive a full code segment and a
complete set of protein sequence without the need for further
partitioning.

Inside each SPE, a pairwise sequence alignment using
the Smith-Waterman algorithm is performed column-wise,
four cells at a time as illustrated in Figure 12 for a database

sequence of length 4 and a query of length 8. When cells
are calculated, we keep track of their updated values in
a temporary register (cell calculations) which is updated
each time a new column is calculated. The entire pairwise
alignment matrix is not stored in memory, but rather just the
temporary cell calculations column. Four dependency values
are read at the beginning of an inner loop, and the new values
for which the next column will be dependent are written at
the end of the inner loop. The number of dependent cells
needed for each alignment is simply equal to the length of
the query sequence, since we are calculating cells column
by column. After all SPE pairwise alignments are completed,
the highest pairwise score calculated by each SPE is returned
to the main program (in the PPE) for final reduction. The
sequence with the highest score achieves the best alignment.
Finally, it is worth mentioning that, currently, our query
lengths are limited to 1024 residues, but we are working on
some indexing strategies which will allow us to increase the
length of a query.

6. Implementation of the Smith-Waterman
Algorithm on GPP

Since our aim is to compare all four technologies not just
in terms of speed, but also in terms of energy consump-
tion, and purchase and development costs, we chose to
use a widely adopted GPP implementation of the Smith-
Waterman algorithm, namely, SSEARCH (version 35.04)
from the FASTA set of programs [20]. SSEARCH was run
on a 3.4 GHz Pentium 4 Prescott processor with 1 GB RAM,
running Windows XP Professional. Using the SSEARCH
program is perfectly justified for the purpose of this paper
since it is a mature piece of software that is widely used
by Bioinformaticians in practice. We are aware of better
GPP implementations in the literature, for example, [21].
However, here again, such implementations do not give us
the development time, for instance, nor do they guarantee
a fair balance of experience between the developers of each
implementation. They hence do not serve the particular aims
of this paper.

7. Comparative Implementation Results
and Evaluation

This section presents the implementation results of our
Smith-Waterman designs on FPGA, GPU, Cell BE, and GPP.
Table 3 first presents the execution times of the Smith-
Waterman implementation on all four platforms for a num-
ber of query sequences against the SWISS-PROT database (as
of August 2008) when it contained 392,768 sequences and a
total of 141,218,456 characters. For the FPGA, GPU, and Cell
BE implementations, we assume that the database is already
on the accelerator card’s memory. Thus, the execution times
shown in Table 3 do not include the database transfer time as
it is an initial step. In practice, queries are made against fairly
static databases, and hence this assumption is reasonable.

Note that for smaller sequences, the target FPGA chip
could easily fit more processing elements on chip and thus

International Journal of Reconfigurable Computing 11

G A C A
Database sequence

A

G

T

C

C

G

T

C

C
el

l c
al

cu
la

ti
on

s

(a)

A C A

Database sequence

A

G
T

C

C

G

T

C

Q
u

er
y

se
qu

en
ce

C
el

l c
al

cu
la

ti
on

s

(b)

C A
Database sequence

C
el

l c
al

cu
la

ti
on

s

A

G

T

C

C

G

T

C

(c)

A
Database sequence

A

G

T

C

C

G

T

C

C
el

l c
al

cu
la

ti
on

s

(d)

Figure 12: Illustration of the Smith-Waterman calculation on the Cell BE.

Table 3: Performance comparison. All query sequences run against the SWISS-PROT database.

Query (protein name) Query length
FPGA

time (sec)
GPU

time (sec)
Cell BE

time (sec)
GPP

time (sec)

P36515 4 1.5 4.1 0.5 24

P81780 8 1.6 4.1 1.0 30

P83511 16 1.6 4.3 1.3 43

O19927 32 1.6 4.7 1.4 62

A4T9V0 64 1.6 6.7 2.5 115

Q2IJ63 128 1.6 12.8 5.1 210

P28484 256 1.9 30.0 9.4 424

Q1JLB7 512 4.5 76 17.2 779

A2Q8L1 768 6.7 136.2 22.2 1356

P08715 1024 8.9 172.8 31.8 1817

(provided there is enough bandwidth to transfer more data
to the FPGA chip in parallel) the execution time could be
reduced several fold. A fairer comparison in speed would
take the results of sequence length 256 since it is close to
the average sequence length in the SWISS-PROT database
(360). Each PE in the FPGA systolic array consumes ∼110
slices, and, consequently, we were able to fit ∼500 PEs
on a Xilinx Virtex-4 LX160-11 FPGA [22]. Moreover, the
processing word length in the FPGA systolic array is 16 bits,
and the circuit was clocked at 80 MHz. Table 4 presents the
corresponding performance figures in Giga Cell Updates Per
Seconds (GCUPS) (the CUPS (or Cell Updates Per Second)
is a common performance measure used in computational

biology. Its inverse represents the equivalent time needed
for a complete computation of one entry of the alignment
matrix) as well as the speed-up figures normalized with
respect to the GPP implementation result. This shows the
FPGA solution to be two orders of magnitude quicker than
the GPP solution, with the Cell BE and GPU coming second
and third, respectively. The latter two achieve one order of
magnitude speed-up compared to GPP.

We note before embarking on result evaluation that faster
implementations do exist in the literature. For instance,
in [21], the author presented a GPP implementation of
the Smith-Waterman algorithm on a 2.0 GHz Xeon Core
2 Duo processor with 2 GB of RAM running Windows

12 International Journal of Reconfigurable Computing

Table 4: Performance comparison for query sequence of length
256.

Platform GCUPS Speed-up

FPGA 19.4 228 : 1

GPU 1.2 14 : 1

Cell BE 3.84 45 : 1

GPP 0.085 1 : 1

Table 5: Development times of the Smith-Waterman algorithm
implementation on all four technologies.

Platform Development time in days

FPGA 300

GPU 45

Cell BE 90

GPP 1

XP SP2. The software implementation exploited Intel SSE2
technology and resulted in a much higher performance of
1.37 GCUPS. Moreover, a Smith-Waterman implementation
on an NVIDIA GTX 295 Dual Core GPU, which contains
30 SPs, 896 MB memory per GPU core, installed on a PC
with a Core 2 Duo E7200 2.53 GHz processor, with 2 GB
RAM, and running Cent OS 5.0, resulted in ∼11 GCUPS
performance [23]. This shows that GPPs and GPUs can
outperform the above results considerably with more design
effort, for example, exploiting SSE2 technology in [21], and
optimizing thread scheduling and memory architecture [23]
as well as exploiting more advanced process technologies
(below 90 nm). However, the aim of this paper is to perform
a fair comparison of all four technologies in terms of
speed, development time, cost, and energy consumption. For
instance, the process technology of the GPP and GPU devices
reported in [21, 23], respectively were more advanced than
the FPGA technology we used in this study. Moreover, these
implementations do not report the development time which
is crucial to assess productivity as will be shown below. As
such, the following will concentrate on the results shown in
Table 4 above rather than other implementations reported in
the literature as these do not serve the particular aims of this
paper, despite their worth.

In order to put the speed-up figures shown in Table 4 into
perspective, we measured the time it took to develop each
of these implementations. Indeed, each of the four imple-
mentations was developed by a different Ph.D. student with
a comparable experience in programming his/her respective
platform. Table 5 presents the resulting development times.

This shows FPGA development time to be one order
of magnitude higher than that of Cell BE and GPU, and
two orders of magnitude higher than that of GPP. It is
worth mentioning that the majority of FPGA development
time (∼80%) was spent in learning the specific FPGA
hardware application programming interface (API) as well as
debugging the FPGA implementation in hardware. As such
the choice of the hardware description language (e.g., VHDL
or Verilog instead of Handel-C) in itself would not have

Table 6: Cost of purchase and development of the Smith-Waterman
algorithm implementation on all four technologies.

Platform
Purchase
cost ($)

Development
cost ($)

Overall
cost ($)

Normalized
overall cost

FPGA 10,000 48,000 58,000 50

GPU 1450 7,200 8,650 8

Cell BE 8,000 14,400 22,400 19

GPP 1000 160 1160 1

Table 7: Performance per $ spent for each technology.

Platform
Performance

(MCUPS) per $ spent

Normalized
performance
per $ spent

FPGA 0.34 4.6

GPU 0.14 1.9

Cell BE 0.17 2.3

GPP 0.07 1

had a major impact on the figures. The lack of standards
(e.g., standard FPGA hardware boards, standard FPGA APIs)
however remains a major problem for FPGA programmers.

By accounting for the cost of development (measured on
the basis of US$20/hour as the average salary of a freshly
graduated student where the experiments took place) and the
cost of purchase of the respective platforms, Table 6 gives the
overall development cost of all four solutions. Note here that
the purchase cost of FPGA, GPU and Cell BE includes the
cost of the host machine.

We can see that the FPGA solution is 50x more expensive
than the GPP solution, followed by the Cell BE (19x) and
the GPU (8x). Based on these figures, we can measure the
performance per dollar spent by dividing the GCUPS figures
of Table 4 by the overall cost figures given in Table 6 for
each platform. The results are presented in Table 7 below
(performance is expressed in Mega CUPS per dollar).

This shows the FPGA platform to be a more economical
solution for this particular algorithm despite its relatively
high cost, thanks to its much higher performance. The
CellBE and GPU came second and third, respectively.

We have also measured the power consumed by each
implementation (excluding the host in the case of FPGA,
GPU, and Cell BE) as shown in Table 8. We used a
power meter connected between the power socket and the
machine under test for this purpose. We noted the power
meter reading, at steady state, when the Smith-Waterman
algorithm was running. This includes two parts: an idle
power component and a dynamic power component. The
idle power component can be obtained from the power meter
when the machine is in the idle state, which means that
no Smith-Waterman algorithm implementation was running
on it. The dynamic power consumption is thus obtained
by deducting the idle power reading from the steady state
power reading. The power measurement results are shown
in Table 8.

International Journal of Reconfigurable Computing 13

Table 8: Power consumption of the Smith-Waterman algorithm
implementation on all four technologies.

Platform Idle power (watt) Steady state power (watt)

FPGA
(clocked at
80 MHz)

100 139

GPU 70 126

Cell BE 180 140

GPP 70 100

Table 9: Power and energy consumption of the Smith-Waterman
algorithm implementation on all four technologies.

Platform
Power
(watt)

Energy
(joule)

Normalized energy
consumption

FPGA
(clocked at
80 MHz)

39 73 0.0017

GPU 56 1682 0.04

Cell BE 140 1317 0.03

GPP 100 42400 1

Table 10: Performance per watt figures of the Smith-Waterman
algorithm implementation on all four technologies.

Platform
Performance

(MCUPS) per watt
Normalized

performance per watt

FPGA 508 584

GPU 22 25

Cell BE 27 31

GPP 0.87 1

We use the dynamic power figures for the accelerated
implementations, that is, the FPGA, GPU, and Cell BE-
based implementations, as nearly all of the processing is
done on the accelerator, with the host only sending query
data and collecting results from the accelerator. As such, the
cost and power consumption of the host could be made
as small as needed without affecting the overall solution
performance. The GPP implementation’s steady state power
figure however is used, instead of the dynamic power, as there
is no distinction between host and accelerator in this case.

Multiplying the power figure for each platform with the
execution time, we obtain the energy consumed by each
implementation as shown in the Table 9.

This shows the FPGA solution to be three orders of
magnitude more energy efficient than GPP, while the Cell
BE and the GPU came second and third, respectively (with
one order of magnitude energy efficiency compared to GPP).
The performance per watt figure can thus be calculated
by dividing the GCUPS figures of Table 4 by the power
consumption figure in Table 9 for each platform. The results
are presented in Table 10 (performance is expressed in Mega
CUPS per watt).

This again highlights the high energy efficiency of the
FPGA solution, followed by Cell BE and GPU. The latter

Table 11: Performance per $ and per watt for each technology using
the GPP implementation of [21] and GPU implementation of [23].

Platform
Performance

(MCUPS) per $
Performance

(MCUPS) per watt

FPGA 0.34 508

GPU 1.27 196

Cell BE 0.17 27

GPP 1.18 13.7

is often unfairly characterized as energy inefficient in the
computing community, something that the results of this
study dispute. Indeed, factoring the speed-up gains, GPUs
can be much more energy efficient than GPPs, as shown in
this study.

It is important to note at this stage that the above
results are very sensitive to the technology used and level
of effort spent on the implementation. For instance, if we
consider the GPP and GPU implementations reported in [21,
23], respectively, and assuming that development times and
power consumption figures were similar to the GPP and GPU
implementations reported in this paper, then the resulting
performance per $ and performance per watt figures of the
GPP and GPU implementations would have been as shown
in Table 11.

This shows GPUs to be more economic on performance
per $ grounds compared with other technologies, followed
closely by GPPs. Such conclusion however is not valid
according to the criteria set in this paper, since the GPP
and GPU implementations reported in [21, 23], respectively
were based on more advanced process technologies, brought
to market after Virtex-4 FPGAs. In addition, these imple-
mentations needed more design effort. Nonetheless, we note
that the performance per watt figures in Table 11 still show
FPGAs to be far superior to the other technologies on energy
efficiency criterion.

We note finally that the Smith-Waterman algorithm
implementation scales extremely well with data sizes and
computing resources with the four technologies used
(FPGAs, GPUs, Cell BE, or GPP). Indeed, the algorithm
is characterized by high level data and instruction level
parallelism, and given the parameterizable way in which
we designed our solutions, the same piece of code can
be used to take advantage of increasing resources on the
target platform, for example, FPGAs with more slices and
memory, GPUs with more stream processors and threads,
Cell BEs with more SPEs. In the case of GPUs, for instance,
allocating different pairwise alignments to extra GPU stream
processors would increase the speed-up proportionally,
assuming memory bandwidth is also increased. Beyond a
single chip, a straightforward way of scaling up the algorithm
is to split the subject database into N subdatabases and
allocate each subdatabase to one GPU chip. Partial results are
then reduced by a host processor in a typical scatter-gather
manner, as demonstrated in [23]. The same reasoning applies
to general purpose processors and Cell BE. As for FPGAs,
bigger chips would result in an increase of the number of
PEs that could fit on chip, which would in turn increase

14 International Journal of Reconfigurable Computing

the GCUPS performance proportionally, provided proper
control circuitry is employed to use all PEs (or a large
proportion of them) at any given time. Such techniques were
illustrated in [5]. In general, and given the high computation
to communication ratio of the algorithm, the scalability
of the execution time as a function of available hardware
resources is near linear.

In view of the above, the following conclusion section
summarizes the findings of this study and presents a number
of general lessons learnt through it.

8. Conclusion

This paper showed the design and parallel implementa-
tion of the Smith-Waterman algorithm on three different
technologies: FPGA, GPU, and IBM Cell BE and compared
the results with a standard sequential GPP implementation.
Comparison criteria included speed, development time,
overall cost, and energy consumption. This study revealed
FPGAs to be a cost effective and energy efficient platform
for the implementation of the Smith-Waterman algorithm
as it came on top on both performance per dollar and
performance per watt criteria. FPGAs achieved 4.6x more
performance for each $ spent and 584x more performance
for each Watt consumed, compared to GPPs. The IBM Cell
BE came second as it achieved 2.3x more performance for
each $ spent and 31x more performance for each Watt
consumed, compared to CPUs. Finally, the GPU came third
as it achieved 1.9x more performance for each $ spent and
25x more performance for each watt consumed, compared
to GPPs.

The speed of FPGA implementation was limited by the
amount of logic resources on chip as more parallelism could
be obtained with more processing elements. As for the GPU,
the parallelism was limited by the size of local memory
(shared memory and number of registers) as well as the
number of parallel processes and threads that could be
launched at the same time, which is dictated by the number
of stream processors and their parallelism potential. Finally,
for the Cell-BE, the parallelism was mainly limited by the
number of Synergistic Processing Elements (SPEs) and the
parallelism potential of each SPE. Specifically, with the Cell
BE, it is not feasible to match the fine grained parallelism
level of the GPU. Indeed in the Cell BE implementation,
we divided the workload equally among the SPEs and let
each SPE run the sequence alignment algorithm on its own
data set. If an SPE is assigned to process “n” sequences,
the program is executed over these one after the other, in a
sequential manner.

We note, however, that the overall cost of the implemen-
tations did not include the energy cost as this would depend
on the amount of use of the platform. More importantly
perhaps these calculations did not account for issues such
as technology maturity, backward and forward compatibility,
and algorithms’ rate of change, which all play an important
role in technology procurement decisions. Unfortunately,
these issues are more difficult to quantify and are often
subjective and time/location-sensitive. We also note that the

comparison presented in this paper has been conducted
for one single algorithm, which limits the generalizability
of the results. Indeed, we recognize that our experiment is
not statistically significant and that development times for
instance would vary significantly for one programmer to
another. Nonetheless, our objective was to put the “speed-
up” values achieved into perspective with an analysis of
productivity based on the personal experience of an average
Ph.D. student. As such, the following general lessons could
be learnt from the case study presented in this paper.

First, the reason FPGAs outperform other architectures
in this Smith-Waterman case study is three-fold: (1) the high
level of data and instruction level parallelism available in the
algorithm which suits FPGA distributed resources very well,
(2) the fine granularity of the instructions involved which
suits the fine-grained FPGA computing resources (e.g.,
abundant 4-bit lookup tables and shift registers), and (3) the
relatively low dynamic range requirement, which means that
fixed point arithmetic with a relatively small number of bits
can be used, which also suits FPGAs’ fine-grained architec-
tures. Thus, any application with high fine-grained instruc-
tion and data level parallelism, and modest dynamic range
data requirements should be expected to achieve similar
performance gains on FPGAs. General purpose processors
should be expected to fare better for less parallel/regular algo-
rithms on the other hand. Second, FPGA technology’s main
competitive advantage is on performance per watt criteria.
High performance computing applications where power
consumption is often a bottleneck should hence benefit from
this technology. Third, on the economic viability front (i.e.,
performance per dollar spent), and using currently available
hardware and development tools, FPGAs need to achieve at
least two orders of magnitude speed-up compared to GPPs
and one order of magnitude speed-up compared to GPUs
and CellBE to justify their relatively longer development
times and higher purchase costs. This relatively high hurdle
represents a major problem in the face of further market
penetration for FPGA technology, and it is mainly due to
FPGAs’ relatively longer development times. Standard FPGA
boards with standard communication and application pro-
gramming interfaces can lower the aforementioned hurdle
drastically as the majority of FPGA development time is often
spent on learning and debugging specific FPGA hardware
application programming interfaces and tools.

References

[1] R. Durbin, S. Eddy, S. Krogh, and G. Michison, Biological
Sequence Analysis: Probabilistic Models for Proteins and Nucleic
Acids, Cambridge University Press, 1998.

[2] S. B. Needleman and C. D. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of Molecular Biology, vol.
48, no. 3, pp. 443–453, 1970.

[3] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, no. 1, pp. 195–197, 1981.

[4] K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameterized
and efficient FPGA-Based skeleton for pairwise biological

International Journal of Reconfigurable Computing 15

sequence alignment,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 4, pp. 561–570, 2009.

[5] T. Oliver, B. Schmidt, and D. Maskell, “Hyper customized
processors for bio-sequence database scanning on FPGAs,”
in Proceedings of the ACM/SIGDA 13th ACM International
Symposium on Field Programmable Gate Arrays (FPGA ’05),
pp. 229–237, February 2005.

[6] G. A. Harrison, J. M. Tanner, D. R. Pilbeam, and P. T.
Baker, Human Biology: An Introduction to Human Evolution,
Variation, Growth, and Adaptability, Oxford Science, 1988.

[7] HP Proliant DL145 Server Series, Hewlett-Packard, 2007,
http://www.hp.com/.

[8] Celoxica, The RCHTX FPGA Acceleration Card Data Sheets,
Celoxica, 2007, http://www.hypertransport.org/docs/tech/
rchtx datasheet screen.pdf.

[9] Xilinx Corporation, Virtex-4 Family Data Sheets, 2007,
http://www.xilinx.com/support/documentation/virtex-4
data sheets.htm.

[10] Agility DS, Handel-C Reference Manual, 2009, http://www
.mentor.com/products/fpga/handel-c/upload/handelc-refer-
ence.pdf.

[11] Nvidia Corporation, GeForce 8800 GPUs, 2009, http://
www.nvidia.co.uk/page/geforce 8800.html.

[12] CUDA, CUDA Programming Guide Version 1.1, NVIDIA
Corporation, 2009, http://developer.nvidia.com/cuda/.

[13] Mercury Computer Systems, Datasheet: Cell Accelerator
Board, 2009, http://www.mc.com/.

[14] F. Blagojevic, D. S. Nikolopous, A. Stamatkis, and C. D.
Antonopoulos, “Dynamic multigrain parallelization on the
cell broadband engine,” in Proceedings of the ACM SIGPLAN
Principles and Practice of Parallel Computing (PPoPP ’07), San
Jose, Calif, USA, March 2007.

[15] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, “Introduction to the cell multipro-
cessor,” IBM Journal of Research and Development, vol. 49, no.
4-5, pp. 589–604, 2005.

[16] C. Ling, K. Benkrid, and T. Hamada, “A parameterisable
and scalable smith-Waterman algorithm implementation on
CUDA-compatible GPUs,” in Proceedings of the IEEE 7th
Symposium on Application Specific Processors (SASP ’09), pp.
94–100, July 2009.

[17] Y. Munekawa, F. Ino, and K. Hagihara, Design and Imple-
mentation of the Smith-Waterman Algorithm on the CUDA-
Compatible GPU, 2008.

[18] A. Bairoch and R. Apweiler, The SWISS-PROT protein
knowledgebase and its supplement TrEMBL, Nucleic Acid
Research, Release 56.3, October 2008.

[19] Y. Song, G. M. Striemer, and A. Akoglu, “Performance analysis
of IBM Cell Broadband Engine on sequence alignment,” in
Proceedings of the NASA/ESA Conference on Adaptive Hardware
and Systems (AHS ’09), pp. 439–446, August 2009.

[20] W. R. Pearson and D. J. Lipman, “Improved tools for biological
sequence comparison,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 85, no. 8, pp. 2444–
2448, 1988.

[21] M. Farrar, “Striped Smith-Waterman speeds database searches
six times over other SIMD implementations,” Bioinformatics,
vol. 23, no. 2, pp. 156–161, 2007.

[22] Y. Liu, K. Benkrid, A. Benkrid, and S. Kasap, “An FPGA-
based web server for high performance biological sequence
alignment,” in Proceedings of the NASA/ESA Conference on
Adaptive Hardware and Systems (AHS ’09), pp. 361–368,
August 2009.

[23] K. Dohi, K. Benkrid, C. Ling, T. Hamada, and Y. Shibata,
“Highly efficient mapping of the Smith-Waterman algorithm
on CUDA-compatible GPUs,” in Proceedings of the 21st
IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP ’10), pp. 29–36, July 2010.

Submit your manuscripts at
http://www.hindawi.com

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013
Part I

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Distributed
Sensor Networks

International Journal of

ISRN
Signal Processing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Mechanical
Engineering

Advances in

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

ISRN
Sensor Networks

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

The Scientific
World Journal

ISRN
Robotics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

International Journal of

Antennas and
Propagation

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Electronics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Journal of 

Sensors

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Active and Passive
Electronic Components

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Electrical and Computer
Engineering

Journal of

ISRN
Civil Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in
Acoustics &
Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

