27,701 research outputs found

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    Clouds of Small Things: Provisioning Infrastructure-as-a-Service from within Community Networks

    Get PDF
    Community networks offer a shared communication infrastructure where communities of citizens build and own open networks. While the IP connectivity of the networking devices is successfully achieved, the number of services and applications available from within the community network is typically small and the usage of the community network is often limited to providing Internet access to remote areas through wireless links. In this paper we propose to apply the principle of resource sharing of community networks, currently limited to the network bandwidth, to other computing resources, which leads to cloud computing in community networks. Towards this vision, we review some characteristics of community networks and identify potential scenarios for community clouds. We simulate a cloud computing infrastructure service and discuss different aspects of its performance in comparison to a commercial centralized cloud system. We note that in community clouds the computing resources are heterogeneous and less powerful, which affects the time needed to assign resources. Response time of the infrastructure service is high in community clouds even for a small number of resources since resources are distributed, but tends to get closer to that of a centralized cloud when the number of resources requested increases. Our initial results suggest that the performance of the community clouds highly depends on the community network conditions, but has some potential for improvement with network-aware cloud services. The main strength compared to commercial cloud services, however, is that community cloud services hosted on community-owned resources will follow the principles of community network and will be neutral and open

    ERA: A Framework for Economic Resource Allocation for the Cloud

    Full text link
    Cloud computing has reached significant maturity from a systems perspective, but currently deployed solutions rely on rather basic economics mechanisms that yield suboptimal allocation of the costly hardware resources. In this paper we present Economic Resource Allocation (ERA), a complete framework for scheduling and pricing cloud resources, aimed at increasing the efficiency of cloud resources usage by allocating resources according to economic principles. The ERA architecture carefully abstracts the underlying cloud infrastructure, enabling the development of scheduling and pricing algorithms independently of the concrete lower-level cloud infrastructure and independently of its concerns. Specifically, ERA is designed as a flexible layer that can sit on top of any cloud system and interfaces with both the cloud resource manager and with the users who reserve resources to run their jobs. The jobs are scheduled based on prices that are dynamically calculated according to the predicted demand. Additionally, ERA provides a key internal API to pluggable algorithmic modules that include scheduling, pricing and demand prediction. We provide a proof-of-concept software and demonstrate the effectiveness of the architecture by testing ERA over both public and private cloud systems -- Azure Batch of Microsoft and Hadoop/YARN. A broader intent of our work is to foster collaborations between economics and system communities. To that end, we have developed a simulation platform via which economics and system experts can test their algorithmic implementations

    Prototype of running clinical trials in an untrustworthy environment using blockchain.

    Get PDF
    Monitoring and ensuring the integrity of data within the clinical trial process is currently not always feasible with the current research system. We propose a blockchain-based system to make data collected in the clinical trial process immutable, traceable, and potentially more trustworthy. We use raw data from a real completed clinical trial, simulate the trial onto a proof of concept web portal service, and test its resilience to data tampering. We also assess its prospects to provide a traceable and useful audit trail of trial data for regulators, and a flexible service for all members within the clinical trials network. We also improve the way adverse events are currently reported. In conclusion, we advocate that this service could offer an improvement in clinical trial data management, and could bolster trust in the clinical research process and the ease at which regulators can oversee trials
    • …
    corecore