21,700 research outputs found

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Developing an implementation framework for the future internet using the Y-Comm architecture, SDN and NFV

    Get PDF
    The Future Internet will provide seamless connectivity via heterogeneous networks. The Y-Comm Architecture is a reference model that has been developed to build future mobile systems for heterogeneous environments. However, the emergence of Software Defined Networking and Network Functional Virtualization will allow the implementation of advanced mobile architectures such as Y-Comm to be prototyped and explored in more detail. This paper proposes an implementation model for the Y-Comm architecture based on these mechanisms. A key component is the design of the Core Endpoint which connects various peripheral wireless networks to the core network. This paper also proposes the development of a Network Management Control Protocol which allows the management routines running in the Cloud to control the underlying networking infrastructure. The system being proposed is flexible and modular and will allow current and future wireless technologies to be seamlessly integrated into the overall system

    Developing an implementation framework for the future internet using the Y-Comm architecture, SDN and NFV

    Get PDF
    The Future Internet will provide seamless connectivity via heterogeneous networks. The Y-Comm Architecture is a reference model that has been developed to build future mobile systems for heterogeneous environments. However, the emergence of Software Defined Networking and Network Functional Virtualization will allow the implementation of advanced mobile architectures such as Y-Comm to be prototyped and explored in more detail. This paper proposes an implementation model for the Y-Comm architecture based on these mechanisms. A key component is the design of the Core Endpoint which connects various peripheral wireless networks to the core network. This paper also proposes the development of a Network Management Control Protocol which allows the management routines running in the Cloud to control the underlying networking infrastructure. The system being proposed is flexible and modular and will allow current and future wireless technologies to be seamlessly integrated into the overall system

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    corecore