7,067 research outputs found

    A training monitoring system for cyclist based on wireless sensor networks

    Get PDF
    This paper presents a training monitoring system for cyclist that is based on the technology of wireless sensor networks (WSNs). A stable and reliable wireless cyclist monitoring system is vital to establish a smart and efficient sports management program. A training monitoring system has been developed and tested in a real cyclist training environment in a velodrome. The system is designed is such a way that the packet loss rate is minimum. Using TelG mote as the basis, customized sensor nodes that function as a forwarder node and the relay nodes are developed to form the WSN. This WSN is linked to the cloud network on the Internet. The cloud network is then established and end users application for data accessing is designed. Several experiments have been conducted in a real scenario in a velodrome to measure the reliability of the system architecture. It is shown from the experiments that the proposed system is reliable even when the cyclist is moving at a high speed. The packet loss is less than 2% which does not give a huge impact to the data transmission

    WSN and M2M for mountain biking performance assessment

    Get PDF
    The thesis describes the design and implementation of the "Smart Mountain Bike” monitoring system enables the acquisition, storage and visualization of data on athlete training referring the cycling activity. The signals provided by the measurement channels are acquired and processed in order to better understand of the variables involved in this sport and consecutively to improve the methodology for the training of athletes. The "Smart Mountain Bike" system consists of a wireless sensor network that acquire data related to the applied force and body position during a training session. Each network end node comprises a microcontroller, a conditioning circuit and a set of sensors. The coordinator node Zig Bee compatible is composed by microcomputer (eg. Raspberry PI or BeagleBone), a GPS and an IMU. The cloud interfacing is done using a 3G/UMTS USB module connected to the microcomputer board. As the main component of the cloud the implemented database is accessed through a mobile application implemented in an Android OS device. The mobile application allows the visualization of the acquired and processed data by the user expressed by the athlete or the coach. This system can be used for other sports and other activities in which it is necessary to monitor physical activities such as physical therapy.Este documento descreve o desenvolvimento de um protótipo "Smart Mountain Bike", este sistema de monitorização permite a recolha, armazenamento e visualização dos dados relativos aos treinos do atleta durante a atividade ciclismo. Esta informação contribui para um melhor entendimento das variáveis envolvidas da prática deste desporto e consecutivamente, melhorar a metodologia de treino dos atletas. O sistema "Smart Mountain Bike" é constituído por uma rede sensores sem fios que recolhe a dados sobre força aplicada e posição do corpo numa sessão de treino, cada nó final da rede é composto por um microcontrolador, um circuito condicionador e um conjunto de sensores. O nó coordenador é composto por um microcomputador, um recetor GPS, um IMU e um módulo de comunicação móvel, este módulo permite um cenário Machine-to-Machine, onde o microcomputador comunica com o a nuvem permitindo o armazenamento da informação recolhida numa base de dados. Esta informação é acedida através de uma aplicação móvel desenvolvida para este projeto, a aplicação móvel permite ao utilizador, atleta ou treinador, visualizar e correlacionar os dados. Este sistema pode ser utilizado noutros desportos e noutras atividades em que seja necessário monitorizar atividades físicas, como por exemplo, fisioterapi

    A proposed assessment scheme for smart sustainable urban development

    Get PDF
    The twenty-first century belongs to the cities. For the first time in history, more than 50% of the world\u27s population now lives in a city and the urban population is expected to double by 2050. The opportunities created by new technologies challenge the way in which we conceive our cities, how we plan, design and construct them and how we will live in them. The current large gap between smart city and sustainable city frameworks implies that there is a need for developing their frameworks further or re-defining the smart sustainable city concept, which is relatively new and can be seen as a successor of information city, digital city and sustainable city. Furthermore, rating standards like LEED and (GPRS) do not cover all the topics behind the Smart Sustainable City Concept. The aim of this study is to conduct and perform qualitative and comparative analysis of International Standards and case studies, to provide a foundation for developing a framework for the planning of a Smart Sustainable City based on rigorous criteria and sub-criteria. This framework, can be used to assess the smart sustainable urban development of the new administrative capital of Egypt. The criteria have been selected according to international standards via ISO37120 and the Focus Group of Smart Sustainable Cities of International Telecommunication Union (ITU-T FGSSC), as a base for the framework. The framework developed in this study is more oriented towards achieving aspects of urban life at the design and planning stage versus other models existing in the literature that are more oriented towards progress in International Communication Technology (ICT) as a dimension by itself and as means to transform already built cities to smart cities. The proposed study is intended to build up and complement key dimensions that were developed by ITU-TFGSSC, by adding sub-dimensions and key indicators filling this gap in research. The outcome of this study could be used to generate a framework and develop recommendations that has been tailored for urban planners, owners, operators and occupiers, to successfully and cost effectively adopt smart sustainable solutions as they plan, design, construct, and manage future cities. City assessment tools can be used as support for decision making in urban development as they provide assessment methodologies for cities to show the progress towards defined targets

    AN INTEGRATED APPROACH FOR POLLUTION MONITORING: SMART ACQUIREMENT AND SMART INFORMATION

    Get PDF
    Air quality is a factor of primary importance for the quality of life. The increase of the pollutants percentage in the air can cause serious problems to the human and environmental health. For this reason it is essential to monitor its values to prevent the consequences of an excessive concentration, to reduce the pollution production or to avoid the contact with major pollutant concentration through the available tools. Some recently developed tools for the monitoring and sharing of the data in an effective system permit to manage the information in a smart way, in order to improve the knowledge of the problem and, consequently, to take preventing measures in favour of the urban air quality and human health. In this paper, the authors describe an innovative solution that implements geomatics sensors (GNSS) and pollutant measurement sensors to develop a low cost sensor for the acquisition of pollutants dynamic data using a mobile platform based on bicycles. The acquired data can be analysed to evaluate the local distribution of pollutant density and shared through web platforms that use standard protocols for an effective smart use

    Housing and Mobility Toolkit for San Mateo County

    Get PDF
    Since the end of the Great Recession, San Mateo County has attracted new workers at a record rate without building anywhere near enough housing. This jobs-housing imbalance drives the cost of housing up and forces many moderate and lower-income employees and their families out of the County. A lack of access to quality affordable housing in the County and the entire Bay Area along with limited transportation options means that an increased number of employees drive in and out of the County every workday. The resultant congestion, gridlock, and long commutes along with other negative environmental, social, and economic impacts create a major concern for communities in the County and beyond. Clearly, this problem has two distinct but interrelated dimensions: housing development and transportation planning. A select group of Mineta Transportation Institute (MTI) Research Associates worked closely with representatives from the San Mateo County Home for All initiative to help address this challenge by developing a toolkit of successful case studies with a holistic approach to housing development and transportation planning

    Motion Hub, the implementation of an integrated end-to-end journey planner

    Get PDF
    © AET 2018 and contributorsThe term “eMobility” and been brought into use partly to encourage use of electric vehicles but more especially to focus on the transformation from electric vehicles as products to electrified personal transport as a service. Under the wider umbrella of Mobility-as-a-Service (MaaS) this has accompanied the growth of car clubs in general. The Motion Hub project has taken this concept a step further to include not just the car journey but the end-to-end journey. The booking of multifaceted journeys is well established in the leisure and business travel industries, where flights, car hire and hotels are regularly booked with a single transaction on a website. To complete an end-to-end scenario Motion Hub provides integration of public transport with electric vehicle and electric bike use. Building on a previous InnovateUK funded project that reviewed the feasibility of an integrated journey management system, the Motion Hub project has brought together a Car Club, a University, and EV infrastructure company, a bicycle hire company with electric bicycle capabilities and a municipality to implement a scheme and test it on the ground. At the heart of the project has been the development of a website that integrates the public transport booking with the hire of electric vehicles or bicycles. Taking the implementation to a fully working system accessible to members of the public presents a number of significant challenges. This paper identifies those challenges, details the progress and success of the Motion Hub and sets out the lessons learnt about end-to-end travel. The project was fortunate to have as its municipal partner the Council of a sizeable South East England town, Southend-on-Sea. With a population of 174,800 residents with good road, rail and air links there is considerable traffic in and out of the town. The Council has already shown its commitment to sustainable transport. In the previous six years it had installed a number of electric vehicle charging points for use by the public and latterly had trialled car club activity. An early challenge in the project was the location of physical infrastructure in an already crowded municipal space in order to provide the local ‘spokes’ of the system. In addition to its existing charging points, Southend now has four locations where electric cars can be hired, five where electric bikes are available and the local resources to maintain these assets. Combining a number of web-based services and amalgamating their financial transactions is relatively straightforward. However, introducing the potential for public transport ticketing as well raises additional security, scale and financial constraints. The project has engaged with major players and regulators across the public transport industry.Peer reviewe

    Guidelines for a participatory urban cycling dashboard: A case study for Münster, Germany

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesUrban cycling as a sustainable mobility system gets increasing attention in practical and academic urban transportation planning. At the same time, many cities are willing to foster their transparency and openness of urban data by utilizing urban dashboards. In conjunction, it lacks digital tools such as an urban cycling dashboard that have the potential of collecting cycling-related data, assessing it, and finally communicating its information with data visualizations. However, intended users are rarely integrated already at the earliest conceptualization stage of such an urban dashboard, which often results in low usability and utility. Simultaneously, there is a lack of integrating cyclists and their experiences into the quality assessments of urban cycling. To address these practical and research problems, this work aims in conceptualizing a user-centered and participatory urban cycling dashboard. Therefore, we conduct a user survey with cyclists/citizens, and decision makers from our case study in Münster, Germany, and apply findings from literature and dashboard reviews. The results show the users’ preference for an informational focus on cycling infrastructure but also their motivation of exchanging information on cycling experiences and future projects. Generally, the feedback for integrating the local users at earliest stage is positive. Such a user-centric conceptualization is a first systematic step of developing a participatory urban cycling dashboard that should support the understanding of a complex urban cycling system as well as fostering more participation and transparency in urban cycling planning

    SensX: About Sensing and Assessment of Complex Human Motion

    Full text link
    The great success of wearables and smartphone apps for provision of extensive physical workout instructions boosts a whole industry dealing with consumer oriented sensors and sports equipment. But with these opportunities there are also new challenges emerging. The unregulated distribution of instructions about ambitious exercises enables unexperienced users to undertake demanding workouts without professional supervision which may lead to suboptimal training success or even serious injuries. We believe, that automated supervision and realtime feedback during a workout may help to solve these issues. Therefore we introduce four fundamental steps for complex human motion assessment and present SensX, a sensor-based architecture for monitoring, recording, and analyzing complex and multi-dimensional motion chains. We provide the results of our preliminary study encompassing 8 different body weight exercises, 20 participants, and more than 9,220 recorded exercise repetitions. Furthermore, insights into SensXs classification capabilities and the impact of specific sensor configurations onto the analysis process are given.Comment: Published within the Proceedings of 14th IEEE International Conference on Networking, Sensing and Control (ICNSC), May 16th-18th, 2017, Calabria Italy 6 pages, 5 figure

    Smart Signs: Showing the way in Smart Surroundings

    Get PDF
    This paper presents a context-aware guidance and messaging system for large buildings and surrounding venues. Smart Signs are a new type of electronic door- and way-sign based on wireless sensor networks. Smart Signs present in-situ personalized guidance and messages, are ubiquitous, and easy to understand. They combine the easiness of use of traditional static signs with the flexibility and reactiveness of navigation systems. The Smart Signs system uses context information such as user’s mobility limitations, the weather, and possible emergency situations to improve guidance and messaging. Minimal infrastructure requirements and a simple deployment tool make it feasible to easily deploy a Smart Signs system on demand. An important design issue of the Smart Signs system is privacy: the system secures communication links, does not track users, allow almost complete anonymous use, and prevent the system to be used as a tool for spying on users
    corecore