8,411 research outputs found

    A privacy-preserving approach to grid balancing using scheduled electric vehicle charging

    Get PDF
    The introduction of renewable energy generation (e.g. solar and wind) in the energy distribution infrastructure makes balancing the total energy load and production in the grid more challenging due to the weather-dependent nature of these energy sources. One approach to mitigate the issue is to use weather forecasts to predict the production and then offer incentives to electric vehicle users (EVUs) to charge their vehicles during the times of energy surplus. However, doing this without leaking sensitive information about the EVUs location and identity presents challenges to the system design. This thesis proposes a privacy-preserving architecture that allows the grid operator to offer incentives for contributing to the grid stability, and to reliably and automatically quantify the extent of each contribution while still maintaining the privacy of the EVUs. Furthermore, the architecture enables decentralised privacy-preserving dispute resolution without leaking any personally identifiable information (PII). The architecture fulfils the goal by utilising self-sovereign identity technologies, such as decentralised identifiers (DIDs), and privacy-preserving digital credentials solutions, such as verifiable credentials (VCs). They allow the solution to utilise ephemeral identifiers and to compartmentalise the information into three different knowledge domains to ensure that only the minimum amount of information needed crosses any domain border. An analysis of the solution indicates that the architecture ensures relatively strong privacy guarantees to the EVUs and solves the grid balancing problem while reducing the number of assumptions to the minimum. This makes the architecture applicable to a wide set of use cases in the EV charging field. Future work includes a detailed performance analysis of a proof-of-concept (PoC), although the information available from related research already indicates relatively low latency and a good level of deployability even on resource-constrained Internet-of-things (IoT) devices

    Secure and privacy-aware proxy mobile IPv6 protocol for vehicle-to-grid networks

    Get PDF
    Vehicle-to-Grid (V2G) networks have emerged as a new communication paradigm between Electric Vehicles (EVs) and the Smart Grid (SG). In order to ensure seamless communications between mobile EVs and the electric vehicle supply equipment, the support of ubiquitous and transparent mobile IP communications is essential in V2G networks. However, enabling mobile IP communications raises real concerns about the possibility of tracking the locations of connected EVs through their mobile IP addresses. In this paper, we employ certificate-less public key cryptography in synergy with the restrictive partially blind signature technique to construct a secure and privacy-aware proxy mobile IPv6 (SP-PMIPv6) protocol for V2G networks. SP-PMIPv6 achieves low authentication latency while protecting the identity and location privacy of the mobile EV. We evaluate the SP-PMIPv6 protocol in terms of its authentication overhead and the information-theoretic uncertainty derived by the mutual information metric to show the high level of achieved anonymity
    • …
    corecore