241 research outputs found

    Design and implementation of a linear motor for multi-car elevators

    Get PDF
    The multi-car elevator system is a revolutionary new technology for high-rise buildings, promising outstanding economic benefits, but also requiring new technology for propulsion, safety and control. In this paper we report on experimental results with new components for linear motor driven multi-car elevators. We show that linear synchronous motors with optimized design and with our new safety and control system can be considered as core components of a new generation of elevator systems. The main new results concern the development of a safety system integrated into the propulsion system, the design methodology of a linear motor optimized for the multi-car elevator task, and the motion control system that is expected to be usable for extra high-rise buildings

    Quantitative comparison of permanent magnet linear machines for ropeless elevator

    Get PDF
    Paper no. YD-026263This paper presents a quantitative comparison of three topologies of double-sided long-stator type permanent magnet linear machines (PMLMs) as possible candidates for the ropeless elevator propulsion system. First, the parameters of each PMLM topology are designed using the same criteria. Then the finite element method (FEM) is employed to evaluate the performance of each topology. Specifically, the translator mass, propulsion forces, detent forces, and no-load EMFs are analyzed and compared. The quantitative comparison results show that the Halbach array PMLM configuration is preferable for the ropeless elevator application because of its small detent force as well as low total mass. © 2015 IEEE.postprin

    Two-phase linear hybrid reluctance actuator with low detent force

    Get PDF
    In this paper, a novel two-phase linear hybrid reluctance actuator with the double-sided segmented stator, made of laminated U cores, and an interior mover with permanent magnets is proposed. The permanent magnets are disposed of in a way that increases the thrust force of a double-sided linear switched reluctance actuator of the same size. To achieve this objective, each phase of the actuator is powered by a single H-bridge inverter. To reduce the detent force, the upper and the lower stator were shifted. Finite element analysis was used to demonstrate that the proposed actuator has a high force density with low detent force. In addition, a comparative study between the proposed linear hybrid reluctance actuator, linear switched reluctance, and linear permanent magnet actuators of the same size was performed. Finally, experimental tests carried out in a prototype confirmed the goals of the proposed actuator.Peer ReviewedPostprint (published version

    Influence of design parameters in the optimization of linear switched reluctance motor under thermal constraints

    Get PDF
    The objective of this paper is to present an original study for optimizing the size of the LongitudinalFlux Double-Sided Linear Switched Reluctance Motor (LSRM) under thermal and weight constraints. The performance is evaluated taken into account duty cycle operating conditions and thermal restrictions. The proposed approach couples Finite Element Analysis for magnetic propulsion force computation and Lumped Parameter Thermal Network for thermal transient analysis. The LSRMs design parameters are characterized by the number of phases and by their size denoted by the pole stroke. The operating conditions are the current density, the duty cycle and the admissible temperature rise of the insulation system. The grid search algorithm is used for solving the optimization problem. From the results, with the help of a novel multivariable optimization chart, a set of optimal configurations regarding to miniaturizations and downsizing of LSRMs is provided.Peer ReviewedPreprin

    Linear Machines for Long Stroke Applications: a review

    Get PDF
    This document reviews the current state of the art in the linear machine technology. First,the recent advancements in linear induction, switched reluctance and permanent magnet machines arepresented. The ladder slit secondary configuration is identified as an interesting configuration for linearinduction machines. In the case of switched reluctance machines, the mutually-coupled configuration hasbeen found to equate the thrust capability of conventional permanent magnet machines. The capabilities ofthe so called linear primary permanent magnet, viz. switched-flux, flux-reversal, doubly-salient and verniermachines are presented afterwards. A guide of different options to enhance several characteristics of linearmachines is also listed. A qualitative comparison of the capabilities of linear primary permanent magnetmachines is given later, where linear vernier and switched-flux machines are identified as the most interestingconfigurations for long stroke applications. In order to demonstrate the validity of the presented comparison,three machines are selected from the literature, and their capabilities are compared under the same conditionsto a conventional linear permanent magnet machine. It is found that the flux-reversal machines suffer froma very poor power factor, whereas the thrust capability of both vernier and switched-flux machines isconfirmed. However, the overload capability of these machines is found to be substantially lower than theone from the conventional machine. Finally, some different research topics are identified and suggested foreach type of machine

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    Recent development on electric vehicles

    Get PDF
    Author name used in this publication: K. W. E. ChengVersion of RecordPublishe

    Analytical Optimal Design of a Two-Phase Axial-Gap Transverse Flux Motor

    Get PDF
    Transverse flux motors (TFMs) are being investigated to be used in vehicle traction applications due to their high torque density. In this paper, a two-phase axial-gap transverse flux motor is designed for an electric scooter, proposing a novel analytical design method. First, the dimensioning equations of the motor are obtained based on the vehicle requirements, and the stationary dq model is calculated. Then, the motor is optimized using a multiobjective genetic algorithm, and finally a 3D-FEM verification is made. Both the motor structure and the design method aim to have a low complexity, in order to favor the sizing and manufacturing processes through a low computation time and simple core shapes. This approach has not yet been explored in axial-gap TFMs

    Magnetic Material Modelling of Electrical Machines

    Get PDF
    The need for electromechanical energy conversion that takes place in electric motors, generators, and actuators is an important aspect associated with current development. The efficiency and effectiveness of the conversion process depends on both the design of the devices and the materials used in those devices. In this context, this book addresses important aspects of electrical machines, namely their materials, design, and optimization. It is essential for the design process of electrical machines to be carried out through extensive numerical field computations. Thus, the reprint also focuses on the accuracy of these computations, as well as the quality of the material models that are adopted. Another aspect of interest is the modeling of properties such as hysteresis, alternating and rotating losses and demagnetization. In addition, the characterization of materials and their dependence on mechanical quantities such as stresses and temperature are also considered. The reprint also addresses another aspect that needs to be considered for the development of the optimal global system in some applications, which is the case of drives that are associated with electrical machines
    corecore