5 research outputs found

    Design, Control, and Perception of Bionic Legs and Exoskeletons

    Full text link
    Bionic systems---wearable robots designed to replace, augment, or interact with the human body---have the potential to meaningfully impact quality of life; in particular, lower-limb prostheses and exoskeletons can help people walk faster, better, and safer. From a technical standpoint, there is a high barrier-to-entry to conduct research with bionic systems, limiting the quantity of research done; additionally, the constraints introduced by bionic systems often prohibit accurate measurement of the robot's output dynamics, limiting the quality of research done. From a scientific standpoint, we have begun to understand how people regulate lower-limb joint impedance (stiffness and damping), but not how they sense and perceive changes in joint impedance. To address these issues, I first present an open-source bionic leg prosthesis; I describe the design and testing process, and demonstrate patients meeting clinical ambulation goals in a rehabilitation hospital. Second, I develop tools to characterize open-loop impedance control systems and show how to achieve accurate impedance control without a torque feedback signal; additionally, I evaluate the efficiency of multiple bionic systems. Finally, I investigate how well people can perceive changes in the damping properties of a robot, similar to an exoskeleton. With this dissertation, I provide technical and scientific advances aimed at accelerating the field of bionics, with the ultimate goal of enabling meaningful impact with bionic systems.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163108/1/afazocar_1.pd

    The Design, Prototype, and Testing of a Robotic Prosthetic Leg

    Get PDF
    Since antiquity, health professionals have sought ways to provide and improve prosthetic devices to ease the suffering of those living with limb loss. Mid-century modern engineering techniques, in part, developed and funded by the American industrial war effort, led to numerous innovations and standardization of mass-customized products. Followed by the Digital Revolution, we are now experiencing the roboticization of prosthetic limbs. As innovations have come and gone, some essential technologies have been forgotten or ignored. Many successful products have been commercialized, but unfortunately, they are often rationed to those who need them most. Here we present a prototype device based on many prior discoveries, utilizing commercially available parts when possible. This device has the potential to reduce the overall costs of powered robotic prosthetics, making them accessible to those with knee instability or the fear of falling. Additional benefits of this device are that it is designed to improve the kinematic and kinetic symmetry of the lower extremities, including the hips. We will design, prototype, and test this robotic prosthetic leg for feasibility and safe performance. KEYWORDS: ENGINEERING, LIMB LOSS, FEAR OF FALLING, POWERED ROBOTIC PROSTHETIC LEG, PROTOTYP

    Conception, analyse et optimisation de méthodes de préhension et de mains mécaniques épicycloïdales pour la prise d'objets plats partiellement contraints

    Get PDF
    Dans les applications robotiques, la plupart des préhenseurs sont plus apparentés à des outils qui sont spécialisés pour effectuer une tâche extrêmement bien plutôt que d’effectuer une variété de tâches et de simplement les réussir. C’est dans cette optique que les travaux rapportés dans cette thèse proposent des solutions de préhension. Premièrement, des méthodes générales sont proposées pour permettre de prendre un type d’objets qui est généralement impossible à prendre pour les préhenseurs simples. Par la suite sont présentés les mécanismes planétaires qui sont au cœur des assemblages subséquents. Ces mécanismes sont utilisés pour améliorer les débattements des doigts et ainsi rendent possible un premier design pouvant prendre des petits et grands objets reposant sur des surfaces dures. Par la suite est présenté la conception d’un préhenseur complet qui inclut les propriétés du premier préhenseur mais aussi des propriétés de prises parallèles qui sont considérées comme indispensables pour être en mesure de saisir une grande panoplie d’objets. Finalement, le design du préhenseur proposé est optimisé et des capteurs y sont intégrés pour tenter de produire un design complet et sécuritaire pouvant être utilisé de manière simple par une grande panoplie de robots.Most robotic grippers excel at completing one task but are ill suited for completing many and very different tasks. It is with this fact in mind that this thesis proposes general solutions to the grasping problem. First, general methods are proposed that aim at picking small flat objects that could not otherwise be grasped by simple mechanical grippers. Planetary mechanisms are then proposed to increase the range of motion of the finger joints, hence providing a way to achieve the necessary properties to build and test a finger capable of grasping small flat objects lying on hard surfaces. A complete gripper design is then proposed and built. The novel design that includes the features of the previous design is also capable of performing parallel grasps which are considered essential to be able to grasp a wide range of unknown objects. Finally, the gripper design is optimised and sensing apparatus is included in the gripper to provide a gripper that is considered a complete solution to grasping and is simple to use on a wide range of robots

    Towards Safe Autonomy in Assistive Robots

    Full text link
    Robots have the potential to support older adults and persons with disabilities on a direct and personal level. For example, a wearable robot may help a person stand up from a chair, or a robotic manipulator may aid a person with meal preparation and housework. Assistive robots can autonomously make decisions about how best to support a person. However, this autonomy is potentially dangerous; robots can cause collisions or falls which may lead to serious injury. Therefore, guaranteeing that assistive robots operate safely is imperative. This dissertation advances safe autonomy in assistive robots by developing a suite of tools for the tasks of perception, monitoring, manipulation and all prevention. Each tool provides a theoretical guarantee of its correct performance, adding a necessary layer of trust and protection when deploying assistive robots. The topic of interaction, or how a human responds to the decisions made by assistive robots, is left for future work. Perception: Assistive robots must accurately perceive the 3D position of a person's body to avoid collisions and build predictive models of how a person moves. This dissertation formulates the problem of 3D pose estimation from multi-view 2D pose estimates as a sum-of-squares optimization problem. Sparsity is leveraged to efficiently solve the problem, which includes explicit constraints on the link lengths connecting any two joints. The method certifies the global optimality of its solutions over 99 percent of the time, and matches or exceeds state-of-the-art accuracy while requiring less computation time and no 3D training data. Monitoring: Assistive robots may mitigate fall risk by monitoring changes to a person’s stability over time and predicting instabilities in real time. This dissertation presents Stability Basins which characterize stability during human motion, with a focus on sit-to-stand. An 11-person experiment was conducted in which subjects were pulled by motor-driven cables as they stood from a chair. Stability Basins correctly predicted instability (stepping or sitting) versus task success with over 90 percent accuracy across three distinct sit-to-stand strategies. Manipulation: Robotic manipulators can support many common activities like feeding, dressing, and cleaning. This dissertation details ARMTD (Autonomous Reachability-based Manipulator Trajectory Design) for receding-horizon planning of collision-free manipulator trajectories. ARMTD composes reachable sets of the manipulator through workspace from low dimensional trajectories of each joint. ARMTD creates strict collision-avoidance constraints from these sets, which are enforced within an online trajectory optimization. The method is demonstrated for real-time planning in simulation and on hardware on a Fetch Mobile Manipulator robot, where it never causes a collision. Fall Prevention: Wearable robots may prevent falls by quickly reacting when a user trips or slips. This dissertation presents TRIP-RTD (Trip Recovery in Prostheses via Reachability-based Trajectory Design), which extends the ARMTD framework to robotic prosthetic legs. TRIP-RTD uses predictions of a person’s response to a trip to plan recovery trajectories of a prosthetic leg. TRIP-RTD creates constraints for an online trajectory optimization which ensure the prosthetic foot is placed correctly across a range of plausible human responses. The approach is demonstrated in simulation using data of non-amputee subjects being tripped.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169822/1/pdholmes_1.pd
    corecore