222 research outputs found

    On Improving Throughput of Multichannel ALOHA using Preamble-based Exploration

    Full text link
    Machine-type communication (MTC) has been extensively studied to provide connectivity for devices and sensors in the Internet-of-Thing (IoT). Thanks to the sparse activity, random access, e.g., ALOHA, is employed for MTC to lower signaling overhead. In this paper, we propose to adopt exploration for multichannel ALOHA by transmitting preambles before transmitting data packets in MTC, and show that the maximum throughput can be improved by a factor of 2 - exp(-1) = 1.632, In the proposed approach, a base station (BS) needs to send the feedback information to active users to inform the numbers of transmitted preambles in multiple channels, which can be reliably estimated as in compressive random access. A steady-state analysis is also performed with fast retrial, which shows that the probability of packet collision becomes lower and, as a result, the delay outage probability is greatly reduced for a lightly loaded system. Simulation results also confirm the results from analysis.Comment: 10 pages, 7 figures, to appear in the Journal of Communications and Networks. arXiv admin note: substantial text overlap with arXiv:2001.1111

    On Throughput Maximization of Grant-Free Access with Reliability-Latency Constraints

    Full text link
    Enabling autonomous driving and industrial automation with wireless networks poses many challenges, which are typically abstracted through reliability and latency requirements. One of the main contributors to latency in cellular networks is the reservation-based access, which involves lengthy and resource-inefficient signaling exchanges. An alternative is to use grant-free access, in which there is no resource reservation. A handful of recent works investigated how to fulfill reliability and latency requirements with different flavors of grant-free solutions. However, the resource efficiency, i.e., the throughput, has been only the secondary focus. In this work, we formulate the throughput of grant-free access under reliability-latency constraints, when the actual number of arrived users or only the arrival distribution are known. We investigate how these different levels of knowledge about the arrival process influence throughput performance of framed slotted ALOHA with KK-multipacket reception, for the Poisson and Beta arrivals. We show that the throughput under reliability-latency requirements can be significantly improved for the higher expected load of the access network, if the actual number of arrived users is known. This insight motivates the use of techniques for the estimation of the number of arrived users, as this knowledge is not readily available in grant-free access. We also asses the impact of estimation error, showing that for high reliability-latency requirements the gains in throughput are still considerable.Comment: Accepted for publication in ICC'201

    Non-Orthogonal Contention-Based Access for URLLC Devices with Frequency Diversity

    Get PDF
    We study coded multichannel random access schemes for ultra-reliable low-latency uplink transmissions. We concentrate on non-orthogonal access in the frequency domain, where users transmit over multiple orthogonal subchannels and inter-user collisions limit the available diversity. Two different models for contention-based random access over Rayleigh fading resources are investigated. First, a collision model is considered, in which the packet is replicated onto KK available resources, K′≤KK' \leq K of which are received without collision, and treated as diversity branches by a maximum-ratio combining (MRC) receiver. The resulting diversity degree K′K' depends on the arrival process and coding strategy. In the second model, the slots subject to collisions are also used for MRC, such that the number of diversity branches KK is constant, but the resulting combined signal is affected by multiple access interference. In both models, the performance of random and deterministic repetition coding is compared. The results show that the deterministic coding approach can lead to a significantly superior performance when the arrival rate of the intermittent URLLC transmissions is low.Comment: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) - Special Session on Signal Processing for NOMA Communication System
    • …
    corecore