158 research outputs found

    Cryptographic Hash Functions in Groups and Provable Properties

    Get PDF
    We consider several "provably secure" hash functions that compute simple sums in a well chosen group (G,*). Security properties of such functions provably translate in a natural way to computational problems in G that are simple to define and possibly also hard to solve. Given k disjoint lists Li of group elements, the k-sum problem asks for gi ∊ Li such that g1 * g2 *...* gk = 1G. Hardness of the problem in the respective groups follows from some "standard" assumptions used in public-key cryptology such as hardness of integer factoring, discrete logarithms, lattice reduction and syndrome decoding. We point out evidence that the k-sum problem may even be harder than the above problems. Two hash functions based on the group k-sum problem, SWIFFTX and FSB, were submitted to NIST as candidates for the future SHA-3 standard. Both submissions were supported by some sort of a security proof. We show that the assessment of security levels provided in the proposals is not related to the proofs included. The main claims on security are supported exclusively by considerations about available attacks. By introducing "second-order" bounds on bounds on security, we expose the limits of such an approach to provable security. A problem with the way security is quantified does not necessarily mean a problem with security itself. Although FSB does have a history of failures, recent versions of the two above functions have resisted cryptanalytic efforts well. This evidence, as well as the several connections to more standard problems, suggests that the k-sum problem in some groups may be considered hard on its own, and possibly lead to provable bounds on security. Complexity of the non-trivial tree algorithm is becoming a standard tool for measuring the associated hardness. We propose modifications to the multiplicative Very Smooth Hash and derive security from multiplicative k-sums in contrast to the original reductions that related to factoring or discrete logarithms. Although the original reductions remain valid, we measure security in a new, more aggressive way. This allows us to relax the parameters and hash faster. We obtain a function that is only three times slower compared to SHA-256 and is estimated to offer at least equivalent collision resistance. The speed can be doubled by the use of a special modulus, such a modified function is supported exclusively by the hardness of multiplicative k-sums modulo a power of two. Our efforts culminate in a new multiplicative k-sum function in finite fields that further generalizes the design of Very Smooth Hash. In contrast to the previous variants, the memory requirements of the new function are negligible. The fastest instance of the function expected to offer 128-bit collision resistance runs at 24 cycles per byte on an Intel Core i7 processor and approaches the 17.4 figure of SHA-256. The new functions proposed in this thesis do not provably achieve a usual security property such as preimage or collision resistance from a well-established assumption. They do however enjoy unconditional provable separation of inputs that collide. Changes in input that are small with respect to a well defined measure never lead to identical output in the compression function

    Evaluation Methods for Chebyshev Polynomials

    Get PDF
    The security of cryptosystems based on Chebyshev recursive relation, T_n(x)=2xT_{n-1}(x)-T_{n-2}(x), relies on the difficulty of finding the large degree of Chebyshev polynomials from given parameters. The relation cannot be used to evaluate T_n(x) if n is very large. We will investigate other three methods: matrix-multiplication-based evaluation, halve-and-square evaluation, and root-extraction-based evaluation. Though they have the same theoretical complexity O(\log n\log^2p), we find in some cases the root-extraction-based method is more efficient than the others, which is as fast as the general modular exponentiation. The result indicates that the hardness of some cryptosystems based on modular Chebyshev polynomials is almost equivalent to that of solving general discrete logarithm

    Hardware Architectures for Post-Quantum Cryptography

    Get PDF
    The rapid development of quantum computers poses severe threats to many commonly-used cryptographic algorithms that are embedded in different hardware devices to ensure the security and privacy of data and communication. Seeking for new solutions that are potentially resistant against attacks from quantum computers, a new research field called Post-Quantum Cryptography (PQC) has emerged, that is, cryptosystems deployed in classical computers conjectured to be secure against attacks utilizing large-scale quantum computers. In order to secure data during storage or communication, and many other applications in the future, this dissertation focuses on the design, implementation, and evaluation of efficient PQC schemes in hardware. Four PQC algorithms, each from a different family, are studied in this dissertation. The first hardware architecture presented in this dissertation is focused on the code-based scheme Classic McEliece. The research presented in this dissertation is the first that builds the hardware architecture for the Classic McEliece cryptosystem. This research successfully demonstrated that complex code-based PQC algorithm can be run efficiently on hardware. Furthermore, this dissertation shows that implementation of this scheme on hardware can be easily tuned to different configurations by implementing support for flexible choices of security parameters as well as configurable hardware performance parameters. The successful prototype of the Classic McEliece scheme on hardware increased confidence in this scheme, and helped Classic McEliece to get recognized as one of seven finalists in the third round of the NIST PQC standardization process. While Classic McEliece serves as a ready-to-use candidate for many high-end applications, PQC solutions are also needed for low-end embedded devices. Embedded devices play an important role in our daily life. Despite their typically constrained resources, these devices require strong security measures to protect them against cyber attacks. Towards securing this type of devices, the second research presented in this dissertation focuses on the hash-based digital signature scheme XMSS. This research is the first that explores and presents practical hardware based XMSS solution for low-end embedded devices. In the design of XMSS hardware, a heterogenous software-hardware co-design approach was adopted, which combined the flexibility of the soft core with the acceleration from the hard core. The practicability and efficiency of the XMSS software-hardware co-design is further demonstrated by providing a hardware prototype on an open-source RISC-V based System-on-a-Chip (SoC) platform. The third research direction covered in this dissertation focuses on lattice-based cryptography, which represents one of the most promising and popular alternatives to today\u27s widely adopted public key solutions. Prior research has presented hardware designs targeting the computing blocks that are necessary for the implementation of lattice-based systems. However, a recurrent issue in most existing designs is that these hardware designs are not fully scalable or parameterized, hence limited to specific cryptographic primitives and security parameter sets. The research presented in this dissertation is the first that develops hardware accelerators that are designed to be fully parameterized to support different lattice-based schemes and parameters. Further, these accelerators are utilized to realize the first software-harware co-design of provably-secure instances of qTESLA, which is a lattice-based digital signature scheme. This dissertation demonstrates that even demanding, provably-secure schemes can be realized efficiently with proper use of software-hardware co-design. The final research presented in this dissertation is focused on the isogeny-based scheme SIKE, which recently made it to the final round of the PQC standardization process. This research shows that hardware accelerators can be designed to offload compute-intensive elliptic curve and isogeny computations to hardware in a versatile fashion. These hardware accelerators are designed to be fully parameterized to support different security parameter sets of SIKE as well as flexible hardware configurations targeting different user applications. This research is the first that presents versatile hardware accelerators for SIKE that can be mapped efficiently to both FPGA and ASIC platforms. Based on these accelerators, an efficient software-hardwareco-design is constructed for speeding up SIKE. In the end, this dissertation demonstrates that, despite being embedded with expensive arithmetic, the isogeny-based SIKE scheme can be run efficiently by exploiting specialized hardware. These four research directions combined demonstrate the practicability of building efficient hardware architectures for complex PQC algorithms. The exploration of efficient PQC solutions for different hardware platforms will eventually help migrate high-end servers and low-end embedded devices towards the post-quantum era

    VLSI architectures for public key cryptology

    Get PDF

    Shomei kano anzensei o yusuru kokaikagi angokei ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:乙2340号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/25 ; 早大学位記番号:新593

    Pleco and Plectron -- Two Provably Secure Password Hashing Algorithms

    Get PDF
    Password-based authentication has been widely deployed in practice due to its simplicity and efficiency. Storing pass-words and deriving cryptographic keys from passwords in a secure manner are crucial for many security systems and services. However, choices of well-studied password hash-ing algorithms are extremely limited, as their security re-quirements and design principles are different from common cryptographic algorithms. In this paper, we propose two simple and practical password hashing algorithms, Pleco and Plectron. They are built upon well-understood cryp-tographic algorithms, and combine advantages of symmetric and asymmetric primitives. By employing the Rabin cryp-tosystem, we prove that the one-wayness of Pleco is at least as strong as the hard problem of integer factorization. In addition, both password hashing algorithms are designed to be sequential memory-hard, in order to thwart large-scale password cracking by parallel hardware, such as GPUs, FP-GAs, and ASICs. Moreover, total computation and memory consumptions of Pleco and Plectron are tunable through their cost parameters

    Cryptographic Key Distribution In Wireless Sensor Networks Using Bilinear Pairings

    Get PDF
    It is envisaged that the use of cheap and tiny wireless sensors will soon bring a third wave of evolution in computing systems. Billions of wireless senor nodes will provide a bridge between information systems and the physical world. Wireless nodes deployed around the globe will monitor the surrounding environment as well as gather information about the people therein. It is clear that this revolution will put security solutions to a great test. Wireless Sensor Networks (WSNs) are a challenging environment for applying security services. They differ in many aspects from traditional fixed networks, and standard cryptographic solutions cannot be used in this application space. Despite many research efforts, key distribution in WSNs still remains an open problem. Many of the proposed schemes suffer from high communication overhead and storage costs, low scalability and poor resilience against different types of attacks. The exclusive usage of simple and energy efficient symmetric cryptography primitives does not solve the security problem. On the other hand a full public key infrastructure which uses asymmetric techniques, digital signatures and certificate authorities seems to be far too complex for a constrained WSN environment. This thesis investigates a new approach to WSN security which addresses many of the shortcomings of existing mechanisms. It presents a detailed description on how to provide practical Public Key Cryptography solutions for wireless sensor networks. The contributions to the state-of-the-art are added on all levels of development beginning with the basic arithmetic operations and finishing with complete security protocols. This work includes a survey of different key distribution protocols that have been developed for WSNs, with an evaluation of their limitations. It also proposes Identity- Based Cryptography (IBC) as an ideal technique for key distribution in sensor networks. It presents the first in-depth study of the application and implementation of Pairing- Based Cryptography (PBC) to WSNs. This is followed by a presentation of the state of the art on the software implementation of Elliptic Curve Cryptography (ECC) on typical WSNplatforms. New optimized algorithms for performing multiprecision multiplication on a broad range of low-end CPUs are introduced as well. Three novel protocols for key distribution are proposed in this thesis. Two of these are intended for non-interactive key exchange in flat and clustered networks respectively. A third key distribution protocol uses Identity-Based Encryption (IBE) to secure communication within a heterogeneous sensor network. This thesis includes also a comprehensive security evaluation that shows that proposed schemes are resistant to various attacks that are specific to WSNs. This work shows that by using the newest achievements in cryptography like pairings and IBC it is possible to deliver affordable public-key cryptographic solutions and to apply a sufficient level of security for the most demanding WSN applications

    Studies on high-speed hardware implementation of cryptographic algorithms

    Get PDF
    Cryptographic algorithms are ubiquitous in modern communication systems where they have a central role in ensuring information security. This thesis studies efficient implementation of certain widely-used cryptographic algorithms. Cryptographic algorithms are computationally demanding and software-based implementations are often too slow or power consuming which yields a need for hardware implementation. Field Programmable Gate Arrays (FPGAs) are programmable logic devices which have proven to be highly feasible implementation platforms for cryptographic algorithms because they provide both speed and programmability. Hence, the use of FPGAs for cryptography has been intensively studied in the research community and FPGAs are also the primary implementation platforms in this thesis. This thesis presents techniques allowing faster implementations than existing ones. Such techniques are necessary in order to use high-security cryptographic algorithms in applications requiring high data rates, for example, in heavily loaded network servers. The focus is on Advanced Encryption Standard (AES), the most commonly used secret-key cryptographic algorithm, and Elliptic Curve Cryptography (ECC), public-key cryptographic algorithms which have gained popularity in the recent years and are replacing traditional public-key cryptosystems, such as RSA. Because these algorithms are well-defined and widely-used, the results of this thesis can be directly applied in practice. The contributions of this thesis include improvements to both algorithms and techniques for implementing them. Algorithms are modified in order to make them more suitable for hardware implementation, especially, focusing on increasing parallelism. Several FPGA implementations exploiting these modifications are presented in the thesis including some of the fastest implementations available in the literature. The most important contributions of this thesis relate to ECC and, specifically, to a family of elliptic curves providing faster computations called Koblitz curves. The results of this thesis can, in their part, enable increasing use of cryptographic algorithms in various practical applications where high computation speed is an issue
    corecore