5,332 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Multiverse: Mobility pattern understanding improves localization accuracy

    Get PDF
    Department of Computer Science and EngineeringThis paper presents the design and implementation of Multiverse, a practical indoor localization system that can be deployed on top of already existing WiFi infrastructure. Although the existing WiFi-based positioning techniques achieve acceptable accuracy levels, we find that existing solutions are not practical for use in buildings due to a requirement of installing sophisticated access point (AP) hardware or special application on client devices to aid the system with extra information. Multiverse achieves sub-room precision estimates, while utilizing only received signal strength indication (RSSI) readings available to most of today's buildings through their installed APs, along with the assumption that most users would walk at the normal speed. This level of simplicity would promote ubiquity of indoor localization in the era of smartphones.ope

    Optical wireless communication based indoor positioning algorithms: performance optimisation and mathematical modelling

    Get PDF
    In this paper, the performance of the optimal beam radius indoor positioning (OBRIP) and two-receiver indoor positioning (TRIP) algorithms are analysed by varying system parameters in the presence of an indoor optical wireless channel modelled in line of sight configuration. From all the conducted simulations, the minimum average error value obtained for TRIP is 0.61 m against 0.81 m obtained for OBRIP for room dimensions of 10 m × 10 m × 3 m. In addition, for each simulated condition, TRIP, which uses two receivers, outperforms OBRIP and reduces position estimation error up to 30%. To get a better understanding of error in position estimation for different combinations of beam radius and separation between light emitting diodes, the 90th percentile error is determined using a cumulative distribution frequency (CDF) plot, which gives an error value of 0.94 m for TRIP as compared to 1.20 m obtained for OBRIP. Both algorithms also prove to be robust towards change in receiver tilting angle, thus providing flexibility in the selection of the parameters to adapt to any indoor environment. In addition, in this paper, a mathematical model based on the concept of raw moments is used to confirm the findings of the simulation results for the proposed algorithms. Using this mathematical model, closed-form expressions are derived for standard deviation of uniformly distributed points in an optical wireless communication based indoor positioning system with circular and rectangular beam shapes

    Optical boundaries for LED-based indoor positioning system

    Get PDF
    Overlap of footprints of light emitting diodes (LEDs) increases the positioning accuracy of wearable LED indoor positioning systems (IPS) but such an approach assumes that the footprint boundaries are defined. In this work, we develop a mathematical model for defining the footprint boundaries of an LED in terms of a threshold angle instead of the conventional half or full angle. To show the effect of the threshold angle, we compare how overlaps and receiver tilts affect the performance of an LED-based IPS when the optical boundary is defined at the threshold angle and at the full angle. Using experimental measurements, simulations, and theoretical analysis, the effect of the defined threshold angle is estimated. The results show that the positional time when using the newly defined threshold angle is 12 times shorter than the time when the full angle is used. When the effect of tilt is considered, the threshold angle time is 22 times shorter than the full angle positioning time. Regarding accuracy, it is shown in this work that a positioning error as low as 230 mm can be obtained. Consequently, while the IPS gives a very low positioning error, a defined threshold angle reduces delays in an overlap-based LED IPS

    CrowdFusion: Multi-Signal Fusion SLAM Positioning Leveraging Visible Light

    Get PDF
    With the fast development of location-based services, an ubiquitous indoor positioning approach with high accuracy and low calibration has become increasingly important. In this work, we target on a crowdsourcing approach with zero calibration effort based on visible light, magnetic field and WiFi to achieve sub-meter accuracy. We propose a CrowdFusion Simultaneous Localization and Mapping (SLAM) comprised of coarse-grained and fine-grained trace merging respectively based on the Iterative Closest Point (ICP) SLAM and GraphSLAM. ICP SLAM is proposed to correct the relative locations and directions of crowdsourcing traces and GraphSLAM is further adopted for fine-grained pose optimization. In CrowdFusion SLAM, visible light is used to accurately detect loop closures and magnetic field to extend the coverage. According to the merged traces, we construct a radio map with visible light and WiFi fingerprints. An enhanced particle filter fusing inertial sensors, visible light, WiFi and floor plan is designed, in which visible light fingerprinting is used to improve the accuracy and increase the resampling/rebooting efficiency. We evaluate CrowdFusion based on comprehensive experiments. The evaluation results show a mean accuracy of 0.67m for the merged traces and 0.77m for positioning, merely replying on crowdsourcing traces without professional calibration
    corecore