381 research outputs found

    H-Shaped Eight-Element Dual-Band MIMO Antenna for Sub-6 GHz 5G Smatphone Applications

    Get PDF
    The design of an eight-element H-shaped dual-band multiple-input multiple-output (MIMO) antenna system for sub-6 GHz fifth-generation (5G) smartphone applications is presented in this work. The radiating elements are designed on the side edge frame of the smartphone, placed on both sides of the main printed circuit board (PCB). Each side edge consists of four radiating elements, which ensures low mutual coupling between antenna elements. The total size of the main PCB is 150×75 mm 2 , while the size of the side edge frame is 150×7 mm 2 . A single antenna consists of an H-shaped radiating element fed using a 50Ω microstrip feeding line designed on the main board of the smartphone. The results show that, according to −6 dB impedance bandwidth criteria, the designed MIMO antenna radiates at two different frequency ranges within the allocated 5G spectrums, i.e., 3.1–3.78 GHz and 5.43–6.21 GHz with 680 MHz and 780 MHz bandwidths, respectively. It is also observed that the antenna elements are able to provide pattern diversity for both the frequency bands. Furthermore, an isolation of >12 dB is observed between any two given radiating elements. Numerous MIMO critical performance characteristics are assessed, including diversity gain (DG), envelope correlation coefficient (ECC), and channel capacity (CC). A prototype is built, measured, and it is observed that the measured and simulated data correspond well. On the basis of performance characteristics, it can be claimed that the suggested MIMO system may be used in 5G communication networks.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538

    Dual-Band Ten-Element MIMO Array Based on Dual-Mode IFAs for 5G Terminal Applications

    Get PDF
    A dual-band ten-element MIMO array based on dual-mode inverted-F antennas (IFAs) for 5G terminal applications is presented in this paper. The proposed dual-mode IFA is composed of two radiators, which are etched on the outer and inner surfaces of the side-edge frame. The outer part of the antenna generates the low-order mode at 3.5 GHz, while the inner part radiates another one-quarter-wavelength mode at 4.9 GHz. In this way, the IFA can achieve dual-band operation within a compact size of 10.6 × 5.3 × 0.8 mm 3 . Based on the proposed antenna, a dual-band ten-element multiple-input and multiple-output (MIMO) array is developed for 5G terminal applications. By combining neutralization line structures with decoupling branches, the isolations between the elements are improved. To validate the design concept, a prototype of the ten-element MIMO array is designed, fabricated, and measured. The experimental results show that the proposed antenna can cover the 3.3-3.6 GHz and 4.8-5.0 GHz bands with good isolation and high efficiency. Furthermore, the envelope correlation coefficient (ECC), and channel capacity are also calculated to verify the MIMO performances for 5G sub-6GHz applications

    Wideband Back-Cover Antenna Design Using Dual Characteristic Modes With High Isolation for 5G MIMO Smartphone

    Get PDF
    © 2022 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TAP.2022.3145456A novel method of designing a wideband high isolated dual-antenna pair using dual characteristic modes (CMs)is presented for fifth-generation (5G) multiple-input multiple output (MIMO) smartphone applications. A set of orthogonal CMs resonating from the square-loop slot is first introduced and works for the lower band. Then, another set of orthogonal CMs resonating from the edge branches is introduced with a shared compact radiator and works for the higher band. In combination with two sets of degenerated CMs and a capacitive coupling feeding structure, the proposed dual-antenna pair achieves abroad impedance bandwidth and high isolation without the need for any external decoupling structures. Based on this dual-antenna pair, an 8×8 MIMO array is developed and integrated into the back cover of a smartphone, which realizes zero ground clearance on the system circuit board. To verify the design concept, prototypes of the antenna pair and MIMO array were fabricated and measured. It shows that experimental results agree well with the simulation results. More importantly, the presented 8×8 MIMO array has high isolation of more than 20 dBis achieved across the operating band of 3.3-3.8 GHz.Peer reviewedFinal Accepted Versio

    Dual-band multiple-element MIMO antenna system for next-generation smartphones

    Get PDF
    This work presents a cost-effective multiple-element multiple-input multiple-output (MIMO) antenna system for next-generation smartphones. The proposed antenna system is developed on a 0.8 mm thin FR-4 substrate with a relative permittivity of 4.4, which consists of one main board and two sideboards. The dimensions of the main board and the two side boards are 150 × 75 mm2 and 150 × 6 mm2, respectively. The radiating elements are printed on the sideboards to provide space for other radio frequency (RF) components to be embedded on the main board. The proposed antenna resonates at two distinct allotted 5G bands, i.e., 3.5 GHz and 5.4 GHz, with impedance bandwidths of 200 MHz and 700 MHz, respectively. The isolation between the antenna elements is noted to be >18 dB and >12 dB for the 3.5 GHz and 5.4 GHz frequency bands. In addition, the proposed MIMO antenna provides pattern and spatial diversity characteristics in both bands with good gain and efficiency. Furthermore, the MIMO parameters such as envelope correlation coefficient (ECC), mean effective gain (MEG), and channel capacity (CC) are calculated, and it is observed that the MIMO antenna offers good diversity performance for the bands of interest. A prototype is fabricated and measured to verify the numerical data. The simulated results were discovered to be in excellent agreement with the measured results. It is also observed that the proposed MIMO antenna system holds promising features, and can be utilized for future generations of smartphones.Princess Nourah bint Abdulrahman Universit

    Reduction of Main Beam-Blockage in an Integrated 5G Array with a Metal-Frame Antenna

    Get PDF

    Future Smartphone: MIMO Antenna System for 5G Mobile Terminals

    Get PDF
    In this article, an inverted L-shaped monopole eight elements Multiple Input Multiple Output (MIMO) antenna system is presented. The multi-antenna system is designed on a low cost 0.8 mm thick FR4 substrate having dimensions of 136 x 68 mm(2) resonating at 3.5GHz with a 6dB measured bandwidth of 450MHz, and with inter element isolation greater than 15 dB and gain of 4 dBi. The proposed design consists of eight inverted L-shaped elements and parasitic L-shaped strips extending from the ground plane. These shorted stripes acted as tuning stubs for the four inverted L-shaped monopole elements on the side of chassis. This is done to achieve the desired frequency range by increasing the electrical length of the antennas. A prototype is fabricated, and the experimental results show good impedance matching with reasonable measured isolation within the desired frequency range. The MIMO performances, such as envelope correlation coefficient (ECC) and mean effective gain (MEG) are also calculated along with the channel capacity of 38.1bps/Hz approximately 2.6 times that of 4 x 4 MIMO system. Due to its simple shape and slim design, it may be a potential chassis for future handsets. Therefore, user hand scenarios, i.e. both single and dual hand are studied. Also, the effects of hand scenarios on various MIMO parameters are discussed along with the SAR. The performance of the proposed system in different scenarios suggests that the proposed structure holds promising future within the next generation radio smart phones

    Performance Investigation of a Mobile Terminal Phased Array With User Effects at 3.5 GHz for LTE Advanced

    Get PDF

    Dual-Band Eight-Element MIMO Array Using Multi-Slot Decoupling Technique for 5G Terminals

    Get PDF
    This paper presents a dual-band eight-element multiple-input multiple-output (MIMO) array using a multi-slot decoupling technique for the fifth generation (5G) mobile communication. By employing a compact dual-loop antenna element, the proposed array obtains two broad bandwidths of 12.2% and 15.4% for sub-6GHz operation. To reduce the mutual coupling between antenna elements, a novel dual-band decoupling method is proposed by employing a multi-slot structure. The proposed MIMO array achieves 15.5-dB and 19.0-dB isolations across the two operating bands. Furthermore, three decoupling modes generated by different bent slots can be independently tuned. Zero ground clearance is also realized by the coplanar arrangement of the antenna elements and decoupling structures. The proposed MIMO array was simulated, fabricated, and measured. Experimental results agree well with the simulations, showing that the dual-band MIMO array has good impedance matching, high isolation, and high efficiency. In addition, the envelope correlation coefficient and channel capacity are calculated and analyzed to validate the MIMO performance of the 5G terminal array. Such a dual-band high-isolation eight-element MIMO array with zero ground clearance is a promising candidate for 5G or future mobile applications
    • …
    corecore