76,652 research outputs found

    A collective intelligence approach for building student's trustworthiness profile in online learning

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Information and communication technologies have been widely adopted in most of educational institutions to support e-Learning through different learning methodologies such as computer supported collaborative learning, which has become one of the most influencing learning paradigms. In this context, e-Learning stakeholders, are increasingly demanding new requirements, among them, information security is considered as a critical factor involved in on-line collaborative processes. Information security determines the accurate development of learning activities, especially when a group of students carries out on-line assessment, which conducts to grades or certificates, in these cases, IS is an essential issue that has to be considered. To date, even most advances security technological solutions have drawbacks that impede the development of overall security e-Learning frameworks. For this reason, this paper suggests enhancing technological security models with functional approaches, namely, we propose a functional security model based on trustworthiness and collective intelligence. Both of these topics are closely related to on-line collaborative learning and on-line assessment models. Therefore, the main goal of this paper is to discover how security can be enhanced with trustworthiness in an on-line collaborative learning scenario through the study of the collective intelligence processes that occur on on-line assessment activities. To this end, a peer-to-peer public student's profile model, based on trustworthiness is proposed, and the main collective intelligence processes involved in the collaborative on-line assessments activities, are presented.Peer ReviewedPostprint (author's final draft

    Hacker Combat: A Competitive Sport from Programmatic Dueling & Cyberwarfare

    Full text link
    The history of humanhood has included competitive activities of many different forms. Sports have offered many benefits beyond that of entertainment. At the time of this article, there exists not a competitive ecosystem for cyber security beyond that of conventional capture the flag competitions, and the like. This paper introduces a competitive framework with a foundation on computer science, and hacking. This proposed competitive landscape encompasses the ideas underlying information security, software engineering, and cyber warfare. We also demonstrate the opportunity to rank, score, & categorize actionable skill levels into tiers of capability. Physiological metrics are analyzed from participants during gameplay. These analyses provide support regarding the intricacies required for competitive play, and analysis of play. We use these intricacies to build a case for an organized competitive ecosystem. Using previous player behavior from gameplay, we also demonstrate the generation of an artificial agent purposed with gameplay at a competitive level

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    Privacy Issues of the W3C Geolocation API

    Full text link
    The W3C's Geolocation API may rapidly standardize the transmission of location information on the Web, but, in dealing with such sensitive information, it also raises serious privacy concerns. We analyze the manner and extent to which the current W3C Geolocation API provides mechanisms to support privacy. We propose a privacy framework for the consideration of location information and use it to evaluate the W3C Geolocation API, both the specification and its use in the wild, and recommend some modifications to the API as a result of our analysis

    A Factory-based Approach to Support E-commerce Agent Fabrication

    Get PDF
    With the development of Internet computing and software agent technologies, agent-based e-commerce is emerging. How to create agents for e-commerce applications has become an important issue along the way to success. We propose a factory-based approach to support agent fabrication in e-commerce and elaborate a design based on the SAFER (Secure Agent Fabrication, Evolution & Roaming) framework. The details of agent fabrication, modular agent structure, agent life cycle, as well as advantages of agent fabrication are presented. Product-brokering agent is employed as a practical agent type to demonstrate our design and Java-based implementation
    corecore