

 1

A FACTORY-BASED APPROACH TO SUPPORT E-

COMMERCE AGENT FABRICATION

Steven Guan, Fangming Zhu and Min-Thein Maung

Department of Electrical and Computer Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

Abstract

With the development of Internet computing and software agent technologies, agent-

based e-commerce is emerging. How to create agents for e-commerce applications has

become an important issue along the way to success. We propose a factory-based

approach to support agent fabrication in e-commerce and elaborate a design based on the

SAFER (Secure Agent Fabrication, Evolution & Roaming) framework. The details of

agent fabrication, modular agent structure, agent life cycle, as well as advantages of agent

fabrication are presented. Product-brokering agent is employed as a practical agent type

to demonstrate our design and Java-based implementation.

Keywords: agent-based e-commerce, agent fabrication, software agents, agent

framework

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1. INTRODUCTION

With the dramatic growth of the Internet, electronic commerce (e-commerce) has boomed

rapidly. However, there also exist some obstacles to the success of e-commerce. Firstly,

buyers may lose their way in the ocean of items available, and likely to miss the best

deal. Secondly, it is a tedious task to search for a specific product through the Internet.

Thirdly, some tasks, such as negotiation with multiple terms, are so complicated that they

are difficult to be dealt with under the current infrastructure.

To solve these problems, agent-based e-commerce has thus become a promising

technology, within which software agents play a central role [6, 14]. Software agents

differ from traditional software in that they possess the properties of pro-activeness,

autonomy, and mobility [1, 21]. Therefore, they can carry out delegated tasks in simple,

intelligent, and independent manners. They have demonstrated tremendous potential in

conducting various tasks in e-commerce applications, such as comparison-shopping [7],

negotiation [14, 17], payment, etc. [10] proposes an XML framework for agent-based e-

commerce, with which software agents can easily interpret XML-based documents and

messages. The emergence of the semantic web [15, 19] has also facilitated agent’s access

to the Web.

Many agent-based e-commerce applications have emerged in recent years. AuctionBot

[27] is a generic auction server that allows users to auction products by employing

agents. Agents are created by sellers and buyers using the interfaces offered, and these

agents can conduct negotiation with customized bidding strategies. MIT Media Lab’s

 3

Kasbah [2] is an online marketplace where buyer and seller agents can interact. Users can

create buyer or seller agents, provide them with a set of criteria and dispatch them into

the marketplace. Buyer agents may filter the available offers according to users’ criteria,

and then proceed to negotiate a deal. ICOMA [20] is an open infrastructure to simulate

intelligent agent-based e-commerce, mainly dealing with product searching and filtering.

However, agents in these applications operate at a single server site, and they cannot

roam from server to server. Users cannot easily embed individual preferences in their

agents, and are given few or no options to customize agents.

As a matter of fact, many issues have to be dealt with before this agent-based approach

can be accepted widely as a new paradigm for e-commerce. Some literature has

attempted to address issues such as authorization, authentication, traceability, integrity,

and security [4, 11, 22, 25]. However, little effort has been devoted into the construction

of agents. Some researchers provide agent development frameworks and toolkits, such as

AgentBuilder [24], Zeus [3], and Aglet [18] to help users creating agents. However, such

frameworks and toolkits only provide basic development environment and tools to help

users create generic agents. For various agents in e-commerce applications, users still

need to program specific function modules by themselves. But most e-commerce users do

not have such programming skills, and the usage of toolkits may already be difficult for

them. Furthermore, e-commerce agents created with different toolkits also lead to lack of

interoperability, which may result in disorder and cause difficulty in communication

among agents.

 4

In order to alleviate the above concerns, a factory-based approach has been proposed for

agent fabrication and integrated into the SAFER architecture (Secure Agent Fabrication,

Evolution & Roaming) [29]. The objective of our scheme is to provide a convenient and

safe approach to create agents for various agent-based e-commerce applications. The key

point is that new agents should be fabricated by authorized agent factories according to

prescribed formalities and customizations from agent owners. With our scheme, users can

be alleviated from the laborious work of programming and hosts can be relieved from the

risks of accommodating unauthorized agents. Agents thus created would have a common

structure, facilitating communication and collaboration among them. We employ the

product-brokering agent in this paper to elaborate our design and implementation. The

function of a brokering agent is to accept queries from a user, visit relevant product

servers to find related product information, and finally present the information to the

user.

Although the concept of software factory has been studied well in the software

engineering arena [5, 8], it is especially applicable for agent-based e-commerce due to the

reasons explained above. To distinguish our work from the existing approaches in

software engineering, we place emphasis on the fabrication procedures for e-commerce

roaming agents and highlight their applications in e-commerce systems.

The remainder of this paper is organized as follows. In section 2, an overview of the

SAFER framework is presented and the role and functionality of each entity in the

framework are briefly introduced. Section 3 elaborates details on the agent fabrication

 5

scheme including agent modular structure, agent life cycle, and fabrication formalities.

Section 4 and 5 present implementation and discussions, and section 6 concludes the

paper.

2. SAFER FRAMEWORK

SAFER is a framework designed to serve agents in e-commerce and establish necessary

mechanisms to manipulate them [29]. The main objective of SAFER is to construct an

open, secure and evolutionary agent system for agent-based e-commerce, incorporating

agent fabrication [13], evolution [28], and roaming [12]. Agent fabrication is one of the

fundamental parts in the SAFER Architecture.

As shown in Figure 1, community is the basic unit under the SAEER framework. With

the basic structure of communities, agents may be regulated in a tidy order and perform

their tasks more efficiently. The community A in Figure 1 shows typical components in

one community, including agent factory, community administration center, agent owner,

product server, etc. In a real implementation, some communities may have more or less

entities. For instance, several communities may share one agent factory, and there can be

more than one marketplace in one community.

Agent factory is the kernel of SAFER, as it undertakes the primary task of creating

agents. An agent factory only serves registered owners. Before it accepts requests from

an owner, it checks the identity of the owner with the community administration center to

ensure that the owner has already registered. The agent factory then fabricates new agents

 6

according to the customizations from the owner, complying with prescribed procedures.

The detailed fabrication formalities will be presented in Section 3.4.

SAFER Community B

SAFER Community C

Agent Owner/

Butler

SAFER
Community A

Community

Administration

Center

Product Server/ Virtual

Marketplace

Agent Factory

 Agent

Internet

/

Intranet

Bank/

Clearing House

 Agent

Figure 1. SAFER Framework

Community administration center (CAC) is responsible for administrative matters in a

community, coordinating and facilitating activities of the entities in the community. It

aims to ensure smooth running of routine operations and security of the whole

community. A center has a roster of its community, which includes basic information

about the entities in the community. Whenever an agent is created or decomposed, certain

information will be reflected in the roster. In addition, the center does a thorough routine

examination on all entities in the community and updates its roster periodically.

Therefore, the center is well aware of its legal residents so that the community is well-

guarded from intruders.

 7

The agent owner stands at the top of the SAFER framework's hierarchy, since he holds

the priority and responsibility for all his agents. An agent owner can act as a buyer, seller,

or proxy, and he controls his agents from creation to termination. There are many agent

owners existing in one community, and each owner can possess several agents. To relieve

his burden, an owner can authorize an agent butler to handle most of his tasks. An agent

butler assists its owner in various tasks such as authorization, payment control, activities

tracking, etc. In the absence of the owner, an agent butler will, depending on the

authorization given, make decisions on behalf of its owner.

Agents play an active role under SAFER. Other entities in the SAFER framework serve

agents in one way or another. Each agent has a unique identity and belongs to one owner.

According to tasks assigned by their owners, agents can be classified into many

categories, such as negotiation agents, payment agents, brokering agents, and so on. The

location of agents can change frequently. Agents can be awaiting new instructions in the

owner’s computer when they are idle, or roaming from one host to another, or operating

in a foreign host. An agent can learn about the owner’s preferences, evolve its ability of

reasoning and adjust its behavior according to tasks assigned and resources available.

Product server and virtual marketplace are included under SAFER as typical commercial

facilities to serve software agents. Product server is a service provider that mainly

provides product information for agents. In a virtual marketplace, agents from buyers and

sellers can undertake various tasks, such as information-gathering, advertising,

negotiation, etc. For example, agents from sellers can post their product information in

 8

the marketplace, while agents from buyers can collect them. Moreover, they can

communicate with each other directly in the marketplace. The marketplace can also adopt

the auction business model [26]. Agents take part in some auction process on behalf of

their owners. Since they have their own strategies for auction, they can place bids

according to authorization, preferences, and current situation. If an agent becomes the

winning bidder at last, it may continue with the process of transaction, even bring the

auction targets (e.g. software products) back to its owner.

In order to facilitate agent-based financial transaction and clearance, clearing house/bank

are included as separate entities in each SAFER community. The detailed payment

schemes in SAFER are currently under active research [16], which is not the focus of this

paper.

3. AGENT FABRICATION

There are many reasons and advantages to adopt agent fabrication. We emphasize them

again as below.

• Since most users have no ability to create agents by themselves, it will be

more convenient and ideal if an agent can be fabricated according to

customizations from agent owners.

• Agents implemented individually can lead to lack of interoperability. This

may cause difficulty in communication among agents.

• Agents created from authorized factories will generally be more

trustworthy.

 9

• It can enhance security mechanisms of agent-based e-commerce, as agents

can be administered more efficiently and safely.

3.1 Agent Factory

The main task of the agent factory is to create new agents on behalf of community’s

members. The agent factory provides interfaces for agent owners to customize their new

agents to match their requirements. As the agent fabrication services are provided only to

the community’s members, the agent owner needs to be a legal member of the

community in order to request for the creation of new agents. (The details of agent

fabrication routine will be discussed in the later implementation section.) The agent

factory also maintains a database named Archive, where the records of successfully

fabricated agents are stored. In addition, the agent factory also assumes the

responsibilities of checking and fixing agents. The agent factory will update the Archive

whenever it performs a service for the agents.

3.2 Agent Modular Structure

In order to facilitate agent fabrication, modularization is adopted to support the

fabrication process. Various modules are maintained in agent factories. During

fabrication, necessary modules can be assembled according to the requests from the user

and guidelines for fabrication. As a matter of fact, the weight (size) of an agent is

essential for its efficiency. A heavy agent with redundant modules will be less efficient,

because a lot of time is wasted on transferring its fat body during roaming. Moreover, the

 10

risk of being attacked will be higher. On the other hand, if an agent lacks the necessary

modules, it cannot fulfill even the basic functions. So we need to strike a good balance.

Brokering Agent

Identity Module Functional ModuleData Module

Standard Module Specific Module

Roaming Module Communication Module Brokering Module

Knowledge Module

Scheduler

Figure 2. Agent Modular Structure

Figure 2 shows the structure of a brokering agent as well as the modules included inside.

The identity module contains basic elements of the identity of an agent, such as agent ID,

certificate, timestamp, etc. The data modules store information collected from hosts and

logs of the agent activities. The knowledge modules store agent knowledge to support

analysis and decision-making process. The functional modules provide functions that an

agent may need when performing specific tasks such as communicating with other

agents, roaming to other hosts, negotiating with vendor agents, brokering product

information across the Internet, and so on. The functional modules comprise standard and

specific modules. These modules are basic components shaping up the characteristics of

an agent and a group of them can be assembled to fulfill expected functionalities. There

are two choices for a standard module, i.e., direct module implementation or virtual

module with Global ID (GID). GID is a string representing a standard module in agent

factories. It can replace a real implementation to decrease the weight of an agent.

Whenever an agent visiting a host needs to make use of standard functions that are GID-

 11

represented, the host will simply load the module implementations from a local database

if there is one. Even if the real implementation associated with a certain GID cannot be

found in the database, the host can download it from agent factories.

In most situations, agents must cooperate or interact with others to accomplish their

delegated tasks, whether for individual or common goals. The communication module is

the key requirement to cooperation and interaction. In order to properly understand the

meaning of messages from others agents, both agents must have the same definitions for

symbols (constants) used in the messages. The communication module defines the

standard message structure. A message is comprised with a message type, for describing

the intention, and a message body, which includes the information needed for

accomplishing that intention.

3.3 Scheduler and Task Queue

As the scheduler is a key component of an agent, we discuss it in a separate section. The

first responsibility of the scheduler is to map the user’s delegated tasks into the agent’s

tasks. This means, even though the user assigns only one task, an agent may have to

construct a couple of agent tasks to accomplish it. Agent tasks are maintained in a task

queue, which uses a FIFO (First In First Out) queue mechanism to guarantee an orderly

processing from the first task to the last. The task queue maintains two pointers, one

pointing to the front of the queue and the other pointing to the end. The details will be

further discussed in the implementation section.

 12

Agent tasks can be classified into two types, namely primary task and secondary task,

based on their dependency. A primary task is independent of the other tasks inside the

task queue, and can be executed under any conditions. On the contrary, a secondary task

depends on a particular primary task and will not be executed if its associated primary

task fails. For example, the task for roaming to a product server is a primary task and an

agent will execute that task by all means, while an enquiry task is a secondary one and

will be executed only if the agent has successfully roamed to the destination. There is no

meaning for executing the enquiry task when the agent fails in roaming to the destination,

as the enquiry task is supposed to be run at that specific destination. The scheduler will

therefore remove the dependent secondary tasks from the task queue, if a primary task

fails.

The scheduler is not only responsible for planning the tasks ahead of time but also

responsible for the following tasks during an agent’s runtime:

• Make sure that the agent continues executing the correct tasks at the right host

until the task queue is empty.

• Ensure that the agent stops its execution at the local host when the agent is

about to roam to another host.

• Record the task queue states so that the agent can resume its execution from

where it is left off at the previous host.

 13

Roam (Product Server)

Enqui ry (SQL Query)

Roam (Agent Owner)

Report (Resul t Set)

f ront

rear

Report (Resul t Set) f ront
rear

Enqui ry (SQL Query)

Roam (Agent Owner)

Report (Resul t Set)

f ront

rear

Roam (Agent Owner)

Repor t (Resul t Set)

f ront

rear

Roam

Roam

Agent _007

Agent _007

Agent _007

Agent _007

Product ServerProduct ServerProduct ServerProduct ServerAgent OwnerAgent OwnerAgent OwnerAgent Owner

Figure 3. Agent’s Task Queue at Different Hosts

Figure 3 shows an illustration of a brokering agent’s task queue at different hosts when

performing its assignment. Initially there are four tasks inside the task queue, namely,

roaming to a product server, finding out product information, roaming back, and

reporting the result set to its owner. The agent will pack itself and roam to the product

server. If the roaming task fails, the scheduler will remove its dependent task(s), i.e., the

enquiry task. As shown in the figure, when the agent reaches the product server, the task

queue has only three tasks left, since the scheduler has already assigned the first task and

finished it. As soon as a separate thread has been assigned for the agent, it will resume its

outstanding tasks at the product server. The agent submits its queries to the agent

coordinator of the product server, and may get some results back. (The detailed process

will be presented in the implementation section). After the agent roams back to its owner

 14

host, it will execute the final outstanding task, which is to present the brokering results to

the agent owner.

3.4 Agent Life Cycle

In order to control the transition of agent’s states, an agent life cycle is constructed. As

shown in Figure 4, an agent’s life cycle includes six states, namely, new, ready, running,

roamed, sleep and dead.

New

Ready Dead

Sl eepRunni ng

Roami ng

Deact i vat i on

Act i vat i on

Ro
am

Ar
ri

ve

Di
sp

at
ch

Co
mp

l e
t e

 e
xe

cu
t i

on

As
si

gn
 n

ew
 t

as
k

Dest ruct i on

Figure 4. Agent's Life Cycle

The new state is the starting point of an agent’s life cycle. The agent will be in the new

state after an agent factory successfully fabricated it. The agent owner where the newborn

agent is dispatched to will place it in the ready state, which means it is ready to undertake

new assignments. When the agent owner assigns it a new task and instantiates a new

agent runtime environment, the agent will move from the ready state to the running state.

In the running state, the agent may be assigned with a separate thread for execution.

When the agent finishes its assignment, it will return to the ready state. During runtime,

the agent might roam and mark itself as roaming, and it will move back to the running

 15

state when the agent arrives at a new host and resumes its task. In order to free up

resources, the agent owner may deactivate the agent, serialize it into byte streams and

store it in the disk. Thus the agent will be put into the sleep state. The agent owner can

however activate the sleeping agent and put it back in the ready state whenever needed.

The Dead state represents that the agent has been destroyed permanently. An agent owner

may destroy an agent whenever he doesn’t need its services anymore.

3.5 Agent Fabrication Formalities

The agent fabrication process comprises of three stages: namely identification,

customization, and fabrication. Figure 5 shows the whole process and message exchange

during fabrication.

The identification stage mostly deals with checking the identity of an agent owner to

make sure that the requesting agent owner is a legal member of the community. In the

customization stage, the agent owner customizes his new agent through the interface

provided by an agent factory. And finally in the fabrication stage, a new agent is

fabricated by the agent factory based on the agent owner’s customizations. In order to

fabricate a new agent successfully, the fabrication procedure must pass through all three

stages successfully. Some accidents may occur unexpectedly. For instance, the agent

owner and the factory may not reach an agreement in the customization stage, or the

agent owner has not registered yet, or messages are lost during transfer. These will result

in termination of the fabrication procedure midways.

 16

The agent owner initiates the fabrication process by sending a Request message to an

authorized agent factory. The message contains the identification and certificate of the

agent owner. When the agent factory gets this message, it checks the identity of the agent

owner with the CAC by sending over a Check_ID message that contains the information

of the agent owner. Then, the CAC looks up in the roster where the basic information of

registered components is stored. Agent owners can register with the CAC at any time as

long as they meet the membership’s criteria of the agent community. After the CAC

makes sure that the agent owner is registered, it will send back a Confirmation message

to the agent factory. Then the agent factory informs the owner of the approval of his

fabrication request with an Approval message. The message will contain the available

agent types for fabrication. The only condition required for passing this stage

successfully is that the agent owner is a legal member of the community and has

registered in the CAC.

The agent owner can freely choose any agent type that is suitable for performing the

intended task, and send a Customization message to the agent factory to indicate the

selected agent type. As soon as the agent factory gets the Customization message, the

agent factory will return a Choice message to the agent owner, which contains all the

modules available for the requested agent type. After the agent owner customizes these

modules, a Fabrication message will be sent to the agent factory and a new agent will be

fabricated accordingly.

 17

Agent Owner Agent Factory Community
Administration Center

Request

Check_ID

Confirmation

Customization

Choice

Approval

Fabrication

Register_agent

Successful

Dispatch

Id
en

ti
fi

ca
ti

o
n

C
u

st
o
m

iz
a
ti

o
n

F
a
b

ri
ca

ti
o
n

Figure 5. Formalities of Agent Fabrication

After an agent is created successfully, the agent factory stores its information for future

use. The factory is also responsible for registering the new agent with the CAC, which is

done by sending a Register_agent message to the CAC. The CAC will generate a

certificate for the agent, record it in its roster, and return a Successful message to the

agent factory. The agent factory will integrate the certificate into the new agent’s identity

module and reply to the agent owner with a Dispatch message. The newly born agent is

then dispatched. At this stage, the fabrication procedure has completed successfully and

the agent owner can employ the agent for intended tasks.

 18

4. IMPLEMENTATION

The implementation of agent fabrication includes the development of many entities such

as community administration center, agent factory, agent owner, product server, as well

as the agent fabrication procedures.

Java is chosen as the implementation language as it bundles a lot of attractive features

including portability, stability, and security. Java’s portable byte code feature enables an

agent to roam anywhere across the network and resume its operation at any host that

supports Java Virtual Machine, regardless of the underlying operating system. In

addition, with Java’s multithreading facility, an agent can be allowed to execute on a

separate thread, independently of other agents executing on the same host.

4.1 Implementation of the SAFER Entities

We have implemented a prototype of SAFER framework in which agent fabrication is an

essential part. We have implemented a community that includes one agent factory, one

community administration center, product servers, and several agent owners. Brokering

agents have been fabricated successfully in the agent factory according to the formalities

described earlier.

Figure 6 shows the class inheritance diagram of the main entities involved in agent

fabrication. All entities in SAFER are extended directly or indirectly from the Entity

class, which defines the basic features for all entities such as identity, description,

certificate, and corresponding manipulation methods. All extended entities automatically

 19

inherit the basic feature of the base class, plus some additional features individually. For

an ECAgent class, it also implemented Serializable interface. Thus, an ECAgent object

can be converted to a byte stream and sent across the network.

Figure 6. Class Inheritance Diagram

Figure 7 shows the interface for an agent factory. The interface looks somewhat simple,

as most functions of an agent factory are automatic and invisible to users. Apart from

these automatic functions, Figure 7 shows the interface for other functions, such as

searching agent records, browsing factory archive, viewing agent catalogs, and

maintaining the agent factory. The factory archive stores records of all the agents that

were fabricated in the factory. Therefore, users can search agent records using keywords

such as agent ID, owner ID, and agent type.

 20

Figure 7. Screenshot of a User Browsing Agent Records in the Agent Factory

Among the three stages of agent fabrication, the customization stage is the most

important and complicated. Figure 8 depicts the scenario that an agent owner is

customizing a new brokering agent. Among a variety of module choices, the owner can

pick up modules according to his preferences. Some modules are indispensable, while

some are optional. A user can also specify parameters in some modules after he chooses

these modules. After fixing the customization information, the agent owner can request

the agent factory to continue the fabrication process.

Figure 8. Screenshot of Module Customization during Fabrication

 21

4.2 Implementation of the Task Queue and Scheduler

For ensuring the sequential processing of tasks inside, the task queue maintains five

attributes, namely front, rear, noOfTask, maxSize, and queue. The first four are all

integers. The front attribute locates the earliest task inside the queue, while the rear

attribute points to the latest task. The noOfTasks attribute counts the number of

outstanding tasks inside the queue. The maxSize attribute is set as the maximum number

of tasks that a task queue can hold. The queue attribute is an array of scheduled tasks.

The task queue also contains some methods to manage the task queue. The get() method

takes out the task at the front location if the queue is not empty, and move the front

pointer to the next task. The put(Task) method is responsible for adding the new task at

the rear location if the queue is not full, and moves the rear pointer to point to the new

task. The peek() method views the task at the front location without taking it out. The

isFull() and isEmpty() methods are to check whether the task queue is full or empty

respectively.

When an agent gets an assignment from its owner, the compose() method of the scheduler

will be called to plan the agent’s tasks to accomplish the assignment. Whenever an agent

gets its own thread of control, it will invoke the performTask() method of the scheduler.

The performTask() method is responsible for performing the following tasks:

• Checking whether the task queue is empty or not by using the isEmpty() method

of the task queue.

 22

• Taking out the current task with the getTask() method and invoking it. If the task

queue is empty, the scheduler will stop its executing tread.

• Checking for dependency with checkDependency() method if the current task is

unsuccessful.

The checkDependency() method checks the dependency between the unsuccessful task

and its dependent tasks by searching through the task queue. The scheduler is responsible

for removing the dependent tasks of a failed task. When a task fails, the scheduler will

check whether the failed task has its dependent tasks or not. If so, the scheduler will

remove the dependent tasks from the task queue. The addTask() method will use put() to

add a new task into the task queue.

4.3 Implementation of a Product Server

We have implemented a product server that serves brokering agents with product

information. The architecture of a product server is shown in Figure 9. The main

components are agent coordinator, agent receptionist, database handler, and various

product databases.

The agent receptionist runs at the product server, assuming responsibilities to protect the

server against malicious agents. The agent receptionist will verify the identity of an

incoming agent at the CAC before allowing it to run at the product server. Furthermore, it

will also be responsible for assigning a communication channel for the incoming agent

with one of its unused TCP ports. A new agent runtime environment will also be created

 23

for the incoming agent to execute. With the new agent runtime environment, the

incoming agent will get its own thread for execution and begin to perform its assignment.

Agent Runtime Environment

Agent2

Agent Runtime Environment

Agent1

Agent Coordinator

Database Handler

Enquiry

Res
ult

se
t

E
n
q
u
ir

y

R
esu

lt set

Enquiry
Result set

Agent Receptionist

Product

Database

Product

Database

Product

Database

Figure 9. Product Server Architecture

The agent requests for services through the agent coordinator since they are not allowed

to access the local product databases directly. The agent coordinator will locate the

databases and forward the agent’s requests to the database handlers. Therefore, the

internal components in a product server are protected from direct access, which will be

more secure for a product server.

In order to handle multiple requests concurrently, the agent coordinator will create a new

message handler for each incoming request. In this way, the agent coordinator can pass

 24

the socket connection to a message handler and waits for other incoming requests, while

the message handler will be responsible for fulfilling the request.

Figure 10. Result Set Presented by a Brokering Agent

We have created a number of Microsoft Access databases in a product server for agents

to search, by submitting their queries using SQL (Structured Query Language). Figure

10 shows that a brokering agent has retrieved product information from a product server,

and present the result set to its owner when it returns to the owner host.

4.4 A Prototype of Virtual Marketplace

We have also implemented a prototype of a virtual marketplace where buyer agents and

airline agents can negotiate the price of air-tickets. The detailed design can be found in

 25

[23]. The integration of the virtual marketplace into the SAFER framework is in active

progress.

User

Buyer Agent

Virtual Marketplace

Control Center

Client /

Agent

Database

Authentication /

policing

Business Center

Merchant

Brokering /

Negotiation

Airline

Inventory

Preferences /

Strategy

Financial Center

Purchase and

Delivery

Bank

Record

Roaming

Airline

 Management

Interface

Dynamic

Pricing

Internet /

Intranet

Figure 11. A Prototype of Virtual Marketplace

Figure 11 shows the architecture of a virtual marketplace. It consists of three separate

elements, namely, control center, business center, and financial center. Seller agents are

permanent entities residing in the marketplace and they belong to individual airlines, and

airline companies can manage their agents via management interfaces. Buyer agents act

on behalf of users who are interested in purchasing air tickets which best match their

preferences. They will meet seller agents in the marketplace, negotiate with them, and

even make transactions if applicable. A user can set his/her preferences based on the

details like flight time, preferred airlines, etc. Certain parameter such as departure time

also has a flexibility rating. The user has the option of choosing among different

flexibility settings that are used to determine an acceptable range for that particular

parameter. After setting the desired preferences, the user is required to customize the

buyer agent’s negotiation strategy. This includes setting an initial offer price, the

 26

maximum allowable price, and a choice of three time-based price-adjustment functions.

The user can then proceed to dispatch his buyer agent into the marketplace. After being

authenticated by the control center, the buy agent will be matched with several seller

agents according to the preference settings. A negotiation session will be initiated

through the help from a proxy agent designated by the marketplace. Both the buyer agent

and seller agents have their own negotiation strategies to propose offers or counter-offers.

The negotiation session will last until both sides agree on the price or either side quits. If

they finally reach a deal, they will conduct the transaction in the financial center and the

user will be informed of the transaction details.

5. DISCUSSIONS

When designing the scheduler and task queue, we assume that the itinerary of a roaming

agent is planned in advance, so that the task queue can be determined a priori. The

scheduler is only responsible for the scheduling of pre-defined tasks and it cannot change

or reschedule an agent’s itinerary. However, it may be necessary to create new tasks or

reschedule the task queue due to some conditions causing an itinerary change. This also

means we need to embed agents with such dynamic task creation and rescheduling

capability so that it can cope with new events and readjust its itinerary when required.

We present an agent life cycle model from the viewpoint of an agent (or agent owner)

itself. Actually, we could design the lifecycle model from a host’s point of view, with

different focus. For example, a host may be more interested in whether an agent is

‘running’; or has ‘roamed’, rather than whether a foreign agent is ‘dead’. When an agent

 27

has ‘roamed’ to another host, the current host could then archive the agent’s data to disk

if it still expect the agent to return in the near future. Otherwise, the host could choose to

delete the agent’s records when the agent has roamed away forever.

With the feature of GID, agent body will be lighter and network bandwidth requirements

will be reduced during agent roaming. But there is a basic requirement that the hosts

visited by such agents should be able to download required class packages from the agent

factories. Such downloading may not be possible if the hosts are barred from factory

access due to firewall constraints.

With the factory-based approach for agent fabrication, agent software upgrade is made

much easier. For example, an agent factory may update modules in an agent and

consequently assign a new version number, without disposing of a GID-based agent. It is

also easier to ensure the integrity of agents, as they are fabricated by authorized agent

factories. For instance, an agent digest may accompany a roaming agent, and a certain

cryptographic method such as PKI (Public Key Infrastructure) can be used for integrity

protection and certificate authentication.

6. CONCLUSIONS

This paper presents a factory-based agent fabrication scheme which aims to provide a

convenient and safe approach to create agents for various e-commerce applications.

SAFER is introduced as a basic framework for agent fabrication. A generic modular

structure has been proposed to facilitate agent fabrication. A rich set of off-shelf modules

provided by the agent factory enables users to customize agents for delegated tasks.

 28

Agent life cycle is presented to control the state transitions of an agent. Agent fabrication

formalities are carefully designed to facilitate the fabrication process and strengthen

agent security and trustworthiness.

Currently, the entities involved in agent fabrication, including the community

administration center, agent factory, agent owner, and product server, have been

implemented with Java successfully. Brokering agent is employed as a practical agent

type to demonstrate our design and implementation for agent fabrication. A product

server is implemented to evaluate the functionality of brokering agents. A prototype of

virtual marketplace is also implemented as a potential application for agent-based e-

commerce.

We plan future enhancements as follows. Firstly, some agent communication language

such as FIPA-ACL can be used to standardize agent communication [9]. Secondly, a

directory service, which maintains information about all the services offered, may be

implemented to help agents locate the service providers. Thirdly, coordination and

cooperating mechanisms will be implemented to enable the collaboration among multi-

agents to achieve common goals.

REFERENCES

[1] Bradshaw, J.M. Software Agent, MA: MIT Press, 1997.

 29

[2] Chavez, A. and Maes, P. Kasbah: an agent marketplace for buying and selling

goods. In Proceedings of First International Conference on Practical Application of

Intelligent Agents and Multi-Agent Technology, London, 1998, 75-90.

[3] Collis, J., Ndumu, D., Nwana, H., and Lee, L. The Zeus agent building toolkit, BT

Technology Journal, 16(3), 1998.

[4] Corradi, A., Montanari, R., and Stefanelli, C. Mobile agents integrity in e-

commerce applications. In Proceedings of 19th IEEE International Conference on

Distributed Computing Systems, 1999, 59-64.

[5] Cusumano, M.F. The software factory: a historical interpretation, IEEE Software,

March, 1989, 23-30.

[6] Dignum F., and Cortés, U. (eds). Agent-mediated electronic commerce III: current

issues in agent-based electronic commerce systems. Lecture notes in artificial

intelligence. Berlin: Springer, 2001.

[7] Doorenbos, R., Etzioni, O., and Weld, D. A scalable comparison-shopping agent for

the World Wide Web. In Proceedings of the First International Conference on

Autonomous Agents, Marina del Rey, CA, 1997, 39-48.

[8] Fernstrom, C., Narfelt, K.H., and Ohlsson, L. Software factory principles,

architecture, and experiments, IEEE Software, 9(2), 1992, 36 –44.

[9] FIPA, Foundation of Intelligent Physical Agents, http://www.fipa.org.

[10] Glushko, R.J., Tenenbaum, J.M., and Meltzer, B. An XML framework for agent-

based e-commerce. Communications of the ACM, 42(3), 1999, 106-114.

[11] Greenberg, M.S., Byington, J.C., and Harper, D.G. Mobile agents and security.

IEEE Communications Magazine, 36(7), 1998, 76-85.

 30

[12] Guan, S.U. and Yang, Y. SAFE: secure-roaming agent for e-commerce. In

Proceedings the 26th International Conference on Computers & Industrial

Engineering, Melbourne, Australia, 1999, 33-37.

[13] Guan, S.U., Zhu, F.M., and Ko, C.C. Agent fabrication and authorization in agent-

based electronic commerce. In Proceedings of International ICSC Symposium on

Multi-Agents and Mobile Agents in Virtual Organizations and E-Commerce,

Wollongong, Australia, 2000, 528-534.

[14] Guttman, R.H. and Maes, P. Agent-mediated negotiation for retail electronic

commerce. In Agent Mediated Electronic Commerce: First International Workshop

on Agent Mediated Electronic Trading, Springer, Berlin, 1999, 70-90.

[15] Hendler, J. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2), 2001,

30-37.

[16] Hua, F. and Guan, S.U. Agent and payment systems in e-commerce, Internet

Commerce and Software Agents: Cases, Technologies and Opportunities, Rahman,

S.M. and Bignall, R.J. (ed.), Idea Group, PA, 2000, 317-330.

[17] Krishna, V. and Ramesh, V.C. Intelligent agents for negotiation in market games,

part2: application. IEEE Transactions on Power Systems, 13(3), 1998, 1109-1114.

[18] Lange, D.B. and Oshima, M. Programming and Deploying Mobile Agents with

Java Aglets, Mass.: Addison-Wesley, 1998.

[19] Lassila, O., Van Harmelen, F., Horrocks, I., Hendler, J., and McGuinness, D.L. The

semantic Web and its languages. IEEE Intelligent Systems, 15(6), 2000, 67 –73.

 31

[20] Lee, J.G., Kang, J.Y., and Lee, E.S. ICOMA: an open infrastructure for agent-based

intelligent electronic commerce on the Internet. In Proceedings of International

Conference on Parallel and Distributed Systems, 1997, 648-655.

[21] Maes, P. Agent that reduce work and information overload. Communication of the

ACM, 37(7), 1994, 31-40.

[22] Marques, P.J., Silva, L.M., and Silva, J.G. Security mechanisms for using mobile

agents in electronic commerce. In Proceedings of the 18th IEEE Symposium on

Reliable Distributed Systems, 1999, 378-383.

[23] Ng, C.H., Guan, S.U., and Zhu. F.M., Virtual Marketplace for Agent-based

Electronic Commerce, to appear in Architectural Issues of Web-Enabled Electronic

Business, PA: Idea Group, 2002.

[24] Reticular Systems, Inc. AgentBuilder: an integrated toolkit for constructing

intelligent software agents, revision 1.3, http://www.agentbuilder.com/.,1999.

[25] Wang, T.H., Guan, S.U., and Chan, T.K. Integrity protection for code-on-demand

mobile agents in e-commerce. To appear in Journal of Systems and Software, 2001.

[26] Wang, T.H., Guan, S.U., and Ong, S.H. An agent based auction service for

electronic commerce, in Proceedings of International ICSC Symposium on

Interactive and Collaborative Computing (ICC'2000), Australia, 2000.

[27] Wurman, P.R., Wellman, M.P., and Walsh, W.E. The Michigan Internet

AuctionBot: a configurable auction server for human and software agents. In

Proceedings of the Second International Conference on Autonomous Agents,

Minneapolis, USA, 1998, 301-308.

 32

[28] Zhu, F.M. and Guan, S.U. Evolving software agents in e-commerce with GP

operators and knowledge exchange, in Proceedings of the 2001 IEEE Systems,

Man, and Cybernetics Conference, Tucson, USA, 2001.

[29] Zhu, F.M., Guan, S.U., and Yang, Y. SAFER E-Commerce: Secure Agent

Fabrication, Evolution & Roaming for E-Commerce. Internet Commerce and

Software Agents: Cases, Technologies and Opportunities, Rahman, S.M. and

Bignall, R.J. (ed.), PA: Idea Group, 2000, 190-206.

