16,120 research outputs found

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Developing a Methodology for Creating Flexible Instructional Information Technology Laboratories

    Get PDF
    Many schools - particularly the more dynamic segments of high schools and community colleges - have begun to undertake instruction in the areas of PC repair, networking (vendor-neutral and specific alike), operating systems, wireless technologies, and so forth. For some schools, however, this leap forward has come only with a later realization that there are tremendous startup costs and ongoing expenses associated with such endeavors, especially considering that many of these instructional elements have historically called for independent instructional facilities. From this perspective, institutions may find they have to cut their programmatic vision short in the face of harsher budgetary realities of supporting so many laboratories, or abandon their efforts altogether. In this paper, it is suggested that this scenario does not have to become a reality. Instead, it is proposed that affordable, functional, and practical multipurpose Information Technology (IT) classrooms can be developed when a combination of good initial design and planning, affordable technologies, and mature business models are practiced. With the application of certain methodologies, a system can be created for any institution wishing to develop facilities and the means to support and mature them over time. Often faced with budgetary constraints, space limitations, or uncertain financial support mechanisms, it is becoming important that higher education institutions engaging in the instruction of advanced computing and networking develop a process and methodology for establishing and maintaining computing laboratories that can service a variety of diverse and complex instructional needs
    corecore