3,343 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    INSPIRE Newsletter Summer 2017

    Get PDF
    https://scholarsmine.mst.edu/inspire-newsletters/1000/thumbnail.jp

    Tunable Reversible Dry Adhesion of Elastomeric Post Enabled by Stiffness Tuning of Microfluidic LMPA Thin Film

    Get PDF
    The goal of this study is to investigate the effects and underlying mechanisms of stiffness tuning on tunable reversible dry adhesion of an elastomeric post. This research introduces a novel device constructed out of a soft elastomer, polydemethylsiloxane (PDMS), with micro channels injected with low melting point alloy (LMPA) that can soften by applying a voltage. In contrast to traditional handling devices, such as metallic robot handlers, this soft gripper enables compliant manipulation of delicate fragile objects such as a thin glass slide. In this thesis, the design and fabrication of the elastomeric posts and the effects of three adhesion testing conditions will be presented. The first testing condition provided the baseline adhesion values that would be later referenced to certify adhesion reversibility. The second condition demonstrates the device’s ability to change adhesion forces on the spot, or dynamically. The third condition displays the ability of the device to maintain this adhesion change when activated and deactivated repeatedly. Theoretical Finite Element modeling provides insights indicating a maximum adhesion when varying one critical geometrical parameter, which was later confirmed with experiments. Experimental results prove the device’s capability of dynamically tunable reversible dry adhesion. This novel approach to tunable dry adhesion exhibits the feasibility of soft grippers that would not require complicated systems for activation but instead only need low power and simple circuitry, and thus have potential to function as effective soft gripping devices

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described

    Smart Robotic Exoskeleton: Constructing Using 3D Printer Technique for Ankle-Foot Rehabilitation

    Get PDF
    Patients with spinal cord injury (SCI), stroke, and coronavirus patients must undergo a rehabilitation process involving programmed exercises to regain their ability to perform activities of daily living (ADL). This study focuses on the rehabilitation of the foot-ankle joint to restore ADL through the design and implementation of a rehabilitation exoskeleton with three degrees of freedom (abduction/adduction, inversion/eversion, and plantarflexion/dorsiflexion movements). increase the patients cause worker fatigue, emotional exhaustion, a lack of motivation, and feelings of frustration, all contributing to a decrease in work efficacy and productivity. The robotic exoskeleton was developed to overcome this limitation and support the medical rehabilitation section.   The main goal of this study is to develop a portable exoskeleton that is comfortable, lightweight, and has a range of motion (ROM) compatible with human anatomy to ensure that movements outside of this range are minimized, the anthropometric parameters of a typical human lower foot have been considered. In addition, it's a home-based rehabilitation device which means the exoskeleton can be used in any environment due to its lightweight and small size to accelerate the rehabilitation process and increase patient comfort.  The proposed autonomous exoskeleton structure is designed in Solid Works and constructed with polylactic acid (PLA) plastic, the reason PLA was chosen is its lightweight, available, stiff material, and low cost, using 3D printing technology the exoskeleton was manufacturing. Electromyography (EMG) and angle data were extracted using EMG MyoWare and gyroscope sensors, respectively, to control the exoskeleton. It was evaluated on its own then with 2 normal subjects and 17 patients with stroke, spinal cord injury (SCI), and coronavirus. The limitation that has been faced was that the sessions were limited due to the limited time provided for the study. According to the improvement rate, the exoskeleton has a significant impact on regaining muscle activity and improving the range of motion of foot-ankle joints for the three types of patients. The rate of improvement was 300%, 94%, and 133.3% for coronavirus, SCI, and stoke respectively. These results demonstrate that this exoskeleton can be utilized for physiotherapy exercises

    Inherently Elastic Actuation for Soft Robotics

    Get PDF

    Soft Actuators and Robotic Devices for Rehabilitation and Assistance

    Get PDF
    Soft actuators and robotic devices have been increasingly applied to the field of rehabilitation and assistance, where safe human and machine interaction is of particular importance. Compared with their widely used rigid counterparts, soft actuators and robotic devices can provide a range of significant advantages; these include safe interaction, a range of complex motions, ease of fabrication and resilience to a variety of environments. In recent decades, significant effort has been invested in the development of soft rehabilitation and assistive devices for improving a range of medical treatments and quality of life. This review provides an overview of the current state-of-the-art in soft actuators and robotic devices for rehabilitation and assistance, in particular systems that achieve actuation by pneumatic and hydraulic fluid-power, electrical motors, chemical reactions and soft active materials such as dielectric elastomers, shape memory alloys, magnetoactive elastomers, liquid crystal elastomers and piezoelectric materials. Current research on soft rehabilitation and assistive devices is in its infancy, and new device designs and control strategies for improved performance and safe human-machine interaction are identified as particularly untapped areas of research. Finally, insights into future research directions are outlined
    • …
    corecore