933 research outputs found

    Deriving and improving CMA-ES with Information geometric trust regions

    Get PDF
    CMA-ES is one of the most popular stochastic search algorithms. It performs favourably in many tasks without the need of extensive parameter tuning. The algorithm has many beneficial properties, including automatic step-size adaptation, efficient covariance updates that incorporates the current samples as well as the evolution path and its invariance properties. Its update rules are composed of well established heuristics where the theoretical foundations of some of these rules are also well understood. In this paper we will fully derive all CMA-ES update rules within the framework of expectation-maximisation-based stochastic search algorithms using information-geometric trust regions. We show that the use of the trust region results in similar updates to CMA-ES for the mean and the covariance matrix while it allows for the derivation of an improved update rule for the step-size. Our new algorithm, Trust-Region Covariance Matrix Adaptation Evolution Strategy (TR-CMA-ES) is fully derived from first order optimization principles and performs favourably in compare to standard CMA-ES algorithm

    On Entropy Regularized Path Integral Control for Trajectory Optimization

    Get PDF
    In this article we present a generalised view on Path Integral Control (PIC) methods. PIC refers to a particular class of policy search methods that are closely tied to the setting of Linearly Solvable Optimal Control (LSOC), a restricted subclass of nonlinear Stochastic Optimal Control (SOC) problems. This class is unique in the sense that it can be solved explicitly to yield a formal optimal state trajectory distribution. In this contribution we first review the PIC theory and discuss related algorithms tailored to policy search in general. We are able to identify a generic design strategy that relies on the existence of an optimal state trajectory distribution and finds a parametric policy by minimizing the cross entropy between the optimal and a state trajectory distribution parametrized through its policy. Inspired by this observation we then aim to formulate a SOC problem that shares traits with the LSOC setting yet that covers a less restrictive class of problem formulations. We refer to this SOC problem as Entropy Regularized Trajectory Optimization. The problem is closely related to the Entropy Regularized Stochastic Optimal Control setting which is lately often addressed by the Reinforcement Learning (RL) community. We analyse the theoretical convergence behaviour of the theoretical state trajectory distribution sequence and draw connections with stochastic search methods tailored to classic optimization problems. Finally we derive explicit updates and compare the implied Entropy Regularized PIC with earlier work in the context of both PIC and RL for derivative-free trajectory optimization

    On entropy regularized Path Integral Control for trajectory optimization

    Get PDF
    In this article, we present a generalized view on Path Integral Control (PIC) methods. PIC refers to a particular class of policy search methods that are closely tied to the setting of Linearly Solvable Optimal Control (LSOC), a restricted subclass of nonlinear Stochastic Optimal Control (SOC) problems. This class is unique in the sense that it can be solved explicitly yielding a formal optimal state trajectory distribution. In this contribution, we first review the PIC theory and discuss related algorithms tailored to policy search in general. We are able to identify a generic design strategy that relies on the existence of an optimal state trajectory distribution and finds a parametric policy by minimizing the cross-entropy between the optimal and a state trajectory distribution parametrized by a parametric stochastic policy. Inspired by this observation, we then aim to formulate a SOC problem that shares traits with the LSOC setting yet that covers a less restrictive class of problem formulations. We refer to this SOC problem as Entropy Regularized Trajectory Optimization. The problem is closely related to the Entropy Regularized Stochastic Optimal Control setting which is often addressed lately by the Reinforcement Learning (RL) community. We analyze the theoretical convergence behavior of the theoretical state trajectory distribution sequence and draw connections with stochastic search methods tailored to classic optimization problems. Finally we derive explicit updates and compare the implied Entropy Regularized PIC with earlier work in the context of both PIC and RL for derivative-free trajectory optimization
    corecore