32 research outputs found

    UWSpeech: Speech to Speech Translation for Unwritten Languages

    Full text link
    Existing speech to speech translation systems heavily rely on the text of target language: they usually translate source language either to target text and then synthesize target speech from text, or directly to target speech with target text for auxiliary training. However, those methods cannot be applied to unwritten target languages, which have no written text or phoneme available. In this paper, we develop a translation system for unwritten languages, named as UWSpeech, which converts target unwritten speech into discrete tokens with a converter, and then translates source-language speech into target discrete tokens with a translator, and finally synthesizes target speech from target discrete tokens with an inverter. We propose a method called XL-VAE, which enhances vector quantized variational autoencoder (VQ-VAE) with cross-lingual (XL) speech recognition, to train the converter and inverter of UWSpeech jointly. Experiments on Fisher Spanish-English conversation translation dataset show that UWSpeech outperforms direct translation and VQ-VAE baseline by about 16 and 10 BLEU points respectively, which demonstrate the advantages and potentials of UWSpeech

    A segmental framework for fully-unsupervised large-vocabulary speech recognition

    Get PDF
    Zero-resource speech technology is a growing research area that aims to develop methods for speech processing in the absence of transcriptions, lexicons, or language modelling text. Early term discovery systems focused on identifying isolated recurring patterns in a corpus, while more recent full-coverage systems attempt to completely segment and cluster the audio into word-like units---effectively performing unsupervised speech recognition. This article presents the first attempt we are aware of to apply such a system to large-vocabulary multi-speaker data. Our system uses a Bayesian modelling framework with segmental word representations: each word segment is represented as a fixed-dimensional acoustic embedding obtained by mapping the sequence of feature frames to a single embedding vector. We compare our system on English and Xitsonga datasets to state-of-the-art baselines, using a variety of measures including word error rate (obtained by mapping the unsupervised output to ground truth transcriptions). Very high word error rates are reported---in the order of 70--80% for speaker-dependent and 80--95% for speaker-independent systems---highlighting the difficulty of this task. Nevertheless, in terms of cluster quality and word segmentation metrics, we show that by imposing a consistent top-down segmentation while also using bottom-up knowledge from detected syllable boundaries, both single-speaker and multi-speaker versions of our system outperform a purely bottom-up single-speaker syllable-based approach. We also show that the discovered clusters can be made less speaker- and gender-specific by using an unsupervised autoencoder-like feature extractor to learn better frame-level features (prior to embedding). Our system's discovered clusters are still less pure than those of unsupervised term discovery systems, but provide far greater coverage.Comment: 15 pages, 6 figures, 8 table

    Unsupervised pattern discovery in speech : applications to word acquisition and speaker segmentation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2007.Includes bibliographical references (p. 167-176).We present a novel approach to speech processing based on the principle of pattern discovery. Our work represents a departure from traditional models of speech recognition, where the end goal is to classify speech into categories defined by a pre-specified inventory of lexical units (i.e. phones or words). Instead, we attempt to discover such an inventory in an unsupervised manner by exploiting the structure of repeating patterns within the speech signal. We show how pattern discovery can be used to automatically acquire lexical entities directly from an untranscribed audio stream. Our approach to unsupervised word acquisition utilizes a segmental variant of a widely used dynamic programming technique, which allows us to find matching acoustic patterns between spoken utterances. By aggregating information about these matching patterns across audio streams, we demonstrate how to group similar acoustic sequences together to form clusters corresponding to lexical entities such as words and short multi-word phrases. On a corpus of academic lecture material, we demonstrate that clusters found using this technique exhibit high purity and that many of the corresponding lexical identities are relevant to the underlying audio stream.(cont.) We demonstrate two applications of our pattern discovery procedure. First, we propose and evaluate two methods for automatically identifying sound clusters generated through pattern discovery. Our results show that high identification accuracy can be achieved for single word clusters using a constrained isolated word recognizer. Second, we apply acoustic pattern matching to the problem of speaker segmentation by attempting to find word-level speech patterns that are repeated by the same speaker. When used to segment a ten hour corpus of multi-speaker lectures, we found that our approach is able to generate segmentations that correlate well to independently generated human segmentations.by Alex Seungryong Park.Ph.D

    Low-resource speech translation

    Get PDF
    We explore the task of speech-to-text translation (ST), where speech in one language (source) is converted to text in a different one (target). Traditional ST systems go through an intermediate step where the source language speech is first converted to source language text using an automatic speech recognition (ASR) system, which is then converted to target language text using a machine translation (MT) system. However, this pipeline based approach is impractical for unwritten languages spoken by millions of people around the world, leaving them without access to free and automated translation services such as Google Translate. The lack of such translation services can have important real-world consequences. For example, in the aftermath of a disaster scenario, easily available translation services can help better co-ordinate relief efforts. How can we expand the coverage of automated ST systems to include scenarios which lack source language text? In this thesis we investigate one possible solution: we build ST systems to directly translate source language speech into target language text, thereby forgoing the dependency on source language text. To build such a system, we use only speech data paired with text translations as training data. We also specifically focus on low-resource settings, where we expect at most tens of hours of training data to be available for unwritten or endangered languages. Our work can be broadly divided into three parts. First we explore how we can leverage prior work to build ST systems. We find that neural sequence-to-sequence models are an effective and convenient method for ST, but produce poor quality translations when trained in low-resource settings. In the second part of this thesis, we explore methods to improve the translation performance of our neural ST systems which do not require labeling additional speech data in the low-resource language, a potentially tedious and expensive process. Instead we exploit labeled speech data for high-resource languages which is widely available and relatively easier to obtain. We show that pretraining a neural model with ASR data from a high-resource language, different from both the source and target ST languages, improves ST performance. In the final part of our thesis, we study whether ST systems can be used to build applications which have traditionally relied on the availability of ASR systems, such as information retrieval, clustering audio documents, or question/answering. We build proof-of-concept systems for two downstream applications: topic prediction for speech and cross-lingual keyword spotting. Our results indicate that low-resource ST systems can still outperform simple baselines for these tasks, leaving the door open for further exploratory work. This thesis provides, for the first time, an in-depth study of neural models for the task of direct ST across a range of training data settings on a realistic multi-speaker speech corpus. Our contributions include a set of open-source tools to encourage further research

    Searching Spontaneous Conversational Speech:Proceedings of ACM SIGIR Workshop (SSCS2008)

    Get PDF

    Proceedings of the VIIth GSCP International Conference

    Get PDF
    The 7th International Conference of the Gruppo di Studi sulla Comunicazione Parlata, dedicated to the memory of Claire Blanche-Benveniste, chose as its main theme Speech and Corpora. The wide international origin of the 235 authors from 21 countries and 95 institutions led to papers on many different languages. The 89 papers of this volume reflect the themes of the conference: spoken corpora compilation and annotation, with the technological connected fields; the relation between prosody and pragmatics; speech pathologies; and different papers on phonetics, speech and linguistic analysis, pragmatics and sociolinguistics. Many papers are also dedicated to speech and second language studies. The online publication with FUP allows direct access to sound and video linked to papers (when downloaded)
    corecore