6,391 research outputs found

    Decomposition tables for experiments I. A chain of randomizations

    Get PDF
    One aspect of evaluating the design for an experiment is the discovery of the relationships between subspaces of the data space. Initially we establish the notation and methods for evaluating an experiment with a single randomization. Starting with two structures, or orthogonal decompositions of the data space, we describe how to combine them to form the overall decomposition for a single-randomization experiment that is ``structure balanced.'' The relationships between the two structures are characterized using efficiency factors. The decomposition is encapsulated in a decomposition table. Then, for experiments that involve multiple randomizations forming a chain, we take several structures that pairwise are structure balanced and combine them to establish the form of the orthogonal decomposition for the experiment. In particular, it is proven that the properties of the design for such an experiment are derived in a straightforward manner from those of the individual designs. We show how to formulate an extended decomposition table giving the sources of variation, their relationships and their degrees of freedom, so that competing designs can be evaluated.Comment: Published in at http://dx.doi.org/10.1214/09-AOS717 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Intersection numbers for subspace designs

    Full text link
    Intersection numbers for subspace designs are introduced and qq-analogs of the Mendelsohn and K\"ohler equations are given. As an application, we are able to determine the intersection structure of a putative qq-analog of the Fano plane for any prime power qq. It is shown that its existence implies the existence of a 22-(7,3,q4)q(7,3,q^4)_q subspace design. Furthermore, several simplified or alternative proofs concerning intersection numbers of ordinary block designs are discussed

    Decomposition tables for experiments. II. Two--one randomizations

    Get PDF
    We investigate structure for pairs of randomizations that do not follow each other in a chain. These are unrandomized-inclusive, independent, coincident or double randomizations. This involves taking several structures that satisfy particular relations and combining them to form the appropriate orthogonal decomposition of the data space for the experiment. We show how to establish the decomposition table giving the sources of variation, their relationships and their degrees of freedom, so that competing designs can be evaluated. This leads to recommendations for when the different types of multiple randomization should be used.Comment: Published in at http://dx.doi.org/10.1214/09-AOS785 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An Algorithmic Framework for Efficient Large-Scale Circuit Simulation Using Exponential Integrators

    Full text link
    We propose an efficient algorithmic framework for time domain circuit simulation using exponential integrator. This work addresses several critical issues exposed by previous matrix exponential based circuit simulation research, and makes it capable of simulating stiff nonlinear circuit system at a large scale. In this framework, the system's nonlinearity is treated with exponential Rosenbrock-Euler formulation. The matrix exponential and vector product is computed using invert Krylov subspace method. Our proposed method has several distinguished advantages over conventional formulations (e.g., the well-known backward Euler with Newton-Raphson method). The matrix factorization is performed only for the conductance/resistance matrix G, without being performed for the combinations of the capacitance/inductance matrix C and matrix G, which are used in traditional implicit formulations. Furthermore, due to the explicit nature of our formulation, we do not need to repeat LU decompositions when adjusting the length of time steps for error controls. Our algorithm is better suited to solving tightly coupled post-layout circuits in the pursuit for full-chip simulation. Our experimental results validate the advantages of our framework.Comment: 6 pages; ACM/IEEE DAC 201
    corecore