10,502 research outputs found

    Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems

    Full text link
    We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bell function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state

    Achieving quantum precision limit in adaptive qubit state tomography

    Full text link
    The precision limit in quantum state tomography is of great interest not only to practical applications but also to foundational studies. However, little is known about this subject in the multiparameter setting even theoretically due to the subtle information tradeoff among incompatible observables. In the case of a qubit, the theoretic precision limit was determined by Hayashi as well as Gill and Massar, but attaining the precision limit in experiments has remained a challenging task. Here we report the first experiment which achieves this precision limit in adaptive quantum state tomography on optical polarization qubits. The two-step adaptive strategy employed in our experiment is very easy to implement in practice. Yet it is surprisingly powerful in optimizing most figures of merit of practical interest. Our study may have significant implications for multiparameter quantum estimation problems, such as quantum metrology. Meanwhile, it may promote our understanding about the complementarity principle and uncertainty relations from the information theoretic perspective.Comment: 9 pages, 4 figures; titles changed and structure reorganise

    Information Tradeoff Relations for Finite-Strength Quantum Measurements

    Get PDF
    In this paper we give a new way to quantify the folklore notion that quantum measurements bring a disturbance to the system being measured. We consider two observers who initially assign identical mixed-state density operators to a two-state quantum system. The question we address is to what extent one observer can, by measurement, increase the purity of his density operator without affecting the purity of the other observer's. If there were no restrictions on the first observer's measurements, then he could carry this out trivially by measuring the initial density operator's eigenbasis. If, however, the allowed measurements are those of finite strength---i.e., those measurements strictly within the interior of the convex set of all measurements---then the issue becomes significantly more complex. We find that for a large class of such measurements the first observer's purity increases the most precisely when there is some loss of purity for the second observer. More generally the tradeoff between the two purities, when it exists, forms a monotonic relation. This tradeoff has potential application to quantum state control and feedback.Comment: 15 pages, revtex3, 3 eps figure

    Feedback control of spin systems

    Full text link
    The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.Comment: 16 pages, 15 figure
    corecore